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Abstract. A subset D of a domain Ω ⊂ Cd is determining for an analytic function
f : Ω → D if whenever an analytic function g : Ω → D coincides with f on D, equals
to f on whole Ω. This note finds several sufficient conditions for a subset of the
symmetrized bidisk to be determining. For any N ≥ 1, a set consisting of N2−N +1
many points is constructed which is determining for any rational inner function with
a degree constraint. We also investigate when the intersection of the symmetrized
bidisk intersected with some special algebraic varieties can be determining for rational
inner functions.

1. Introduction

1.1. Motivation. For a domain Ω in Cd (d ≥ 1), let S(Ω) denote the set of analytic
functions f : Ω → D, where D denotes the open unit disk in C. Given a function
f ∈ S(Ω), this paper revolves around the question when a given subset D of Ω has
the property that whenever g ∈ S(Ω) coincides with f on D, equals to f on whole Ω.
When a subset has this property we call it a determining set for (f,Ω), or just f when
the domain is clear from the context. For example, {0, 1/2} is a determining set for
the identity map (by the Schwarz Lemma); any open subset of Ω is determining for
any analytic function on Ω (by the Identity Theorem). See Rudin [32, Chapter 5] for
some interesting results related to a similar concept for Ω = Dd.
The motivation behind the study of determining sets comes from the Pick inter-

polation problem. It corresponds to the case when D is a finite set. Given a finite
subset D = {λ1, λ2, . . . , λN} of Ω and points w1, w2, . . . , wN in the open unit disk D,
the Pick interpolation problem asks if there is an analytic function f : Ω → D such
that f(λj) = wj for j = 1, 2, . . . , N . Therefore in this case, D being a determining set
for (f,Ω) means that the (solvable) Pick problem λj 7→ f(λj) has a unique solution.
In view of Pick’s pioneering work [31], it is therefore clear that when Ω = D, then D
is determining for f if and only if the Pick matrix[

1−f(λi)f(λj)
1−λiλj

]N
i,j=1

has rank less than N , which is further equivalent to the existence of a Blaschke function
of degree less than N solving the data. The classical Pick interpolation problem has
seen a wide range of generalizations. To mention a few, a necessary and sufficient
condition for the solvability of a given Pick data is known when Ω is the polydisk Dd

[2], the Euclidian ball Bd [26], the symmetrized bidisk [10, 14], an affine variety [22]
and in more general setting of test functions [19, 20]. However, unlike the classical
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case, it is rather obscure in higher dimension when it comes to understanding when a
given solvable Pick problem has a unique solution, and usually one has to settle with
either necessary or sufficient conditions; see for example [4, 33, 34, 35].

1.2. The main results. The purpose of this article is to explore this direction where
the domain under consideration is the symmetrized bidisk

G := {(z1 + z2, z1z2) : (z1, z2) ∈ D2}.(1.1)

Following the work [7] of Agler and Young, this domain has remained a field of extensive
research in operator theory and complex geometry constituting examples and counter-
examples to celebrated problems in these areas such as the rational dilation problem
[8, 12] and the Lempert Theorem [18]. In quest of understanding the determining sets
we shall actually consider the following more general situation.

Definition 1.1. Let Ω ⊂ Cd be a domain, E ⊂ Ω and f ∈ S(Ω). We say that a subset
D of E is determining for (f, E) if for every g ∈ S(Ω), g = f on D implies g = f on E.
If D is determining for (f, E) for all f ∈ S(Ω), then we say that D is determining for
E. Moreover, when E is the largest set in Ω such that D is determining for (f, E), we
say that E is the uniqueness set for (f,D), i.e., in this case

E =
⋂

{Z(g − f) : g ∈ S(Ω) and g = f on D}.

Here, for a function f , we use the standard notation Z(f) for the zero set of f .

Note that if E is the uniqueness set for (f,D), then for every z ∈ Ω \E, there exists
a function g ∈ S(Ω) such that g = f on D but f(z) ̸= g(z). Remarkably, when D is a
finite subset of G, then for any function f ∈ S(G), the uniqueness set for (f,D) is an
affine variety (see [16], [3]). This is owing to the fact that every solvable Pick data in
G always has a rational inner solution (see [16], [5]). Also note that if f and g agree
on D, then D is determining for (f, E) if and only if D is determining for (g, E) also.
In view of these facts, we shall mostly be concerned with the case when the function
f in Definition 1.1 is rational and inner. Here, a function f in S(G) is called inner, if
limr→1− |f(rζ1 + rζ2, r

2ζ1ζ2)| = 1 for almost all ζ1, ζ2 in T.
Note that G is the image of D2 under the (proper) holomorphic map π : (z1, z2) 7→

(z1 + z2, z1z2). The topological boundary of G is ∂G := π(D × T) ∪ π(T × D) and
the distinguished boundary of G is bG := π(T × T) (see [9]). Here the distinguished
boundary of a bounded domain Ω ⊂ Cd is the Šilov boundary with respect to the algebra
of complex-valued functions continuous on Ω and holomorphic in Ω. A special type of
algebraic varieties has been prevalent in the study of uniqueness of the solutions of a
Pick interpolation problem (see [3, 16, 24, 25, 26, 27]). We define it below. Throughout
the paper, the notation ξ stands for a polynomial in two variables.

Definition 1.2. An algebraic variety Z(ξ) in C2 is said to be distinguished with respect
to a bounded domain Ω, if

Z(ξ) ∩ Ω ̸= ∅ and Z(ξ) ∩ ∂Ω = Z(ξ) ∩ bΩ.

An example of a distinguished variety with respect to G is {(2z, z2) : z ∈ C}. We
refer the readers to the papers [3, 11, 16, 17, 29] for results concerning these varieties
and their connection to interpolation problems.
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We now state the main results of this paper in the order they are proved.

(1) In §2.1 we reformulate the notion of determining set in the more general setting
of reproducing kernel Hilbert spaces and find a sufficient condition for a finite
subset of a general domain to be determining. This is Theorem 2.1. We also
show by an example that the sufficient condition need not be necessary, in
general.

(2) Starting with a natural number N , §2.2 constructs a finite subset of G consist-
ing exactly of N2 − N + 1 many points which is determining for any rational
inner function with a natural degree constraint on it. This is Theorem 2.5.
Proposition 2.4 is an intermediate step of the construction and is interesting
on its own right.

(3) Given a distinguished variety W = Z(ξ), we investigate in §2.3 when the inter-
section W ∩G can be the uniqueness set for (f,D), where f is a rational inner
function and D a finite subset of G – see Theorem 2.10. The preparatory results
Propositions 2.7 and 2.8 are interesting in their own rights. Propositions 2.7
states that if f is a rational inner function with some regularity assumption,
then there is a natural number N depending on f large enough so that any
subset of W ∩ G consisting of N points is determining for (f,W ∩ G). This
section then goes on to find (in Theorem 2.12) a sufficient condition for W ∩G
to be determining for a rational inner function f with a regularity assumption
on it. The condition is just that the inequality

2Re⟨f, ξh⟩H2 < ∥ξh∥22
holds, whenever h is a non-zero analytic function on G and ξh is bounded on
G. Here the inner product is the Hardy space inner product, briefly discussed
in §2.3.

(4) §3 proves a bounded extension theorem for distinguished varieties with no sin-
gularities on bG. More precisely, given a distinguished variety W , we show that
corresponding to every two-variable polynomial f , there is a rational function
F on G such that F |W∩G = f and that supG |F (s, p)| ≤ α supW∩G |f |, for some
constant α depending only on the distinguished variety W .

2. Determining and the uniqueness sets

2.1. A result for a general domain. We begin by proving a sufficient condition for
a finite subset of a general domain to be determining. The concept of determining
set can be formulated in a general setup of reproducing kernel Hilbert spaces. Here
a kernel on a domain Ω in Cd (d ≥ 1) is a function k : Ω × Ω → C such that for
every choice of points λ1, λ2, . . . , λN in Ω, the N × N matrix [k(λi, λj)] is positive
definite. Given a kernel k, there is a unique Hilbert space H(k) associated to it, called
the reproducing kernel Hilbert space; we refer the uninitiated reader to the book [30].
For the purpose of this paper, all that is needed to know is that elements of the form
{
∑n

j=1 cjk(·, λj) : cj ∈ C and λj ∈ Ω} constitute a dense set of H(k). A kernel k is said
to be a holomorphic kernel, if it is holomorphic in the first and conjugate holomorphic
in the second variable. Note that when k is holomorphic, then so are the elements of
H(k). Let us denote by MultH(k) the algebra of all bounded holomorphic functions
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φ on Ω such that φ · f ∈ H(k) whenever f ∈ H(k). Such a holomorphic function is
generally referred to as a multiplier for H(k). Let Mult1H(k) denote the set of all
multipliers φ such that the operator norm of Mφ : f 7→ φ · f for all f in H(k) is
no greater than one. A subset D ⊂ Ω is said to be determining for a function φ in
Mult1H(k) if whenever ψ ∈ Mult1H(k) such that φ = ψ on D, then φ = ψ on Ω.

Theorem 2.1. Let k be a holomorphic kernel on a domain Ω in Cd, φ ∈ Mult1H(k)
and D = {λ1, λ2, . . . , λN} ⊂ Ω. If the matrix

[(1− φ(λi)φ(λj))k(λi, λj)]
N
i,j=1(2.1)

is singular, then D is determining for φ.

Proof. Since the matrix (2.1) is singular, there is a non-zero vector in its kernel; let us
denote it by γ. Let λN+1 be any point in Ω \ D, and ψ ∈ Mult1H(k) be any function
such that φ = ψ on D. Since ψ ∈ Mult1H(k), the operator Mψ : f 7→ ψ · f is a
contractive operator on H(k) and therefore for every z ∈ C,

⟨[(1− ψ(λi)ψ(λj))k(λi, λj)]
N+1
i,j=1

[
γ
z

]
,

[
γ
z

]
⟩ ≥ 0.

Since γ ∈ Ker[(1−φ(λi)φ(λj))k(λi, λj)] and φ = ψ on D, the above inequality collapses
to

2Re[z
N∑
j=1

(1− ψ(λj)ψ(λN+1))γjk(λN+1, λj)] + |z|2(1− |ψ(λN+1)|2)||kλN+1
||2 ≥ 0.

Since the above inequality is true for all z ∈ C, we have

N∑
j=1

(1− ψ(λj)ψ(λN+1))γjkN+1,j = 0,

which, after a rearrangement of terms, gives

ψ(λN+1)

(
N∑
j=1

ψ(λj)γjk(λN+1, λj)

)
=

N∑
j=1

γjk(λN+1, λj).(2.2)

Define for z in Ω,

L(z) =
N∑
j=1

γjkλj(z) =
N∑
j=1

γjk(z, λj).

By definition, it is clear that L ∈ H(k). Consider the open set O = Ω \ Z(L). Note
that if λN+1 ∈ O, then the right hand side of (2.2) does not vanish, and therefore
ψ(λN+1) is uniquely determined.

Now suppose ϕ = ψ on O. By the assumption that O is a set of uniqueness for
Mult1(H(k)), it follows that ϕ = ψ. □

The converse of the above result is not true as the simple example below demon-
strates.
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Example 2.2. Let k be the Bergman kernel on Ω = D, i.e., k(z, w) = (1 − zw)−2.
Then it is well-known that Mult1H(k) = S(D), see for example [6, section 2.3]. By
the Schwarz Lemma, D = {0, 1/2} is determining for the identity function. However,
the matrix

[
1 1
1 4/3

]
is non-singular.

The rest of the paper specializes to the symmetrized bidisk.

2.2. Finite sets as a determining set. Given a natural number N , this subsection
constructs a finite subset D of G consisting exactly of N2 −N +1 many points, which
is determining for any rational inner function on G with a degree constraint on it. This
is inspired by the work of Scheinker [33] which extends the following classical result
for the unit disk to the polydisks.

Lemma 2.3 (Pick [31]). Let D = {λ1, λ2, . . . , λN} ⊂ D and f be a rational inner
function on D with degree strictly less than N . Then if g ∈ S(D) is such that f = g on
D, then f = g on D.

For ϵ > 0 and z ∈ C, let D(z; ϵ) := {w ∈ D : |z − w| < ϵ}. For ζ ∈ T and a ∈ D, let
mζ,a be the Möbius map

mζ,a(z) = ζ
z − a

1− az
.

We shall have use of two notions of degree for a polynomial in two variables. The
one used in this subsection is the following. For a polynomial ξ(z, w) =

∑
i,j ai,jz

iwj,

we define deg ξ := max(i + j) such that ai,j ̸= 0. The degree of a rational function
in its reduced fractional representation is defined to be the degree of the numerator
polynomial. The following is an intermediate step to proving Theorem 2.5.

Proposition 2.4. Let N be a positive integer and for each j = 1, 2, . . . , N , βj be
distinct points in T and Dj be the analytic disks Dj = {(z + βjz, βjz

2) : z ∈ D}. Then
(a) there exist β ∈ T and ϵ > 0 such that for every fixed ζ ∈ D(β; ϵ) ∩ T and

a ∈ D(0; ϵ), the analytic disk

Dζ,a = {(z +mζ,a(z), zmζ,a(z)) : z ∈ D}
intersects each of the analytic disks Dj at a non-zero point;

(b) for each ζ ∈ T and ϵ > 0, the set

Dζ = {(z +mζ,a(z), zmζ,a(z)) : z ∈ D and a ∈ D(0; ϵ)}
is a determining set for any function in S(G); and

(c) the set

E = {(z + βjz, βjz
2) : z ∈ D and j = 1, 2, . . . , N} = ∪Nj=1Dj

is a determining set for any rational inner function of degree less than N .

Proof. For part (a), note that given a ζ ∈ T and a ∈ D, the analytic disk Dζ,a intersects
each Dj at a non-zero point if and only if there exist 0 ̸= z ∈ D such that for each j,
βjz = mζ,a(z), which is equivalent to having aβjz

2 + (βj − ζ)z − aζ = 0. Therefore ζ
must belong to T \ {βj : j = 1, 2, . . . , N}. Now fix one such ζ and j. Let λ1(a), λ2(a)
be the roots of the polynomial above. Then clearly λ1(0) = 0 = λ2(0). Therefore by
continuity of the roots, there exists ϵ > 0 such that whenever a ∈ D(0; ϵ), λ1(a) and
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λ2(a) belong to D. This ϵ will of course depend on j but since there are only finitely
many j, we can find an ϵ > 0 so that (a) holds.
For part (b) we have to show that if f : G → D is any analytic function such

that f |Dζ
= 0, then f = 0 on G. Fix z ∈ D and consider fz : D → D defined by

fz : w 7→ f(z + w, zw). Since f vanishes on Dζ , fz vanishes on {mζ,a(z) : a ∈ D(0; ϵ)}
which shows that fz = 0 on D. Since z ∈ D is arbitrary, f = 0 on G.
For (c), let f be a rational inner function of degree less than N and g ∈ S(G)

be such that g = f on each Dj. For each ζ and a as in part (a), Dζ,a intersects
each Dj at say (sj, pj) = (λj +mζ,a(λj), λjmζ,a(λj)). Restrict f and g to Dζ,a to get
fζ,a(z) = f(z +mζ,a(z), zmζ,a(z)) and gζ,a(z) = g(z +mζ,a(z), zmζ,a(z)). Then clearly
fζ,a is a rational inner function on D of degree less than N and gζ,a ∈ S(D). Then for
each j = 1, 2, . . . , N , gζ,a(λj) = fζ,a(λj). Therefore by Lemma (2.3), we have gζ,a = fζ,a
on D for each ζ and a as in part (a). Hence g = f on D, which by part (b) gives g = f
on G. This completes the proof. □

Theorem 2.5. For any N ≥ 1, there exists a set D consisting of (N2 −N +1) points
in G such that D is a determining set for any rational inner function of degree less
than N .

Proof. For N = 1, it is trivial because then a rational inner function of degree less
than 1 is identically constant. So suppose N > 1. Let λ1 := 0, λ2, ..., λN be distinct
points in D, β1, ..., βN be distinct points in T and D1, ..., DN be the analytic disks as
in Proposition 2.4. Consider the set

D = {(λj + βkλj, βkλ
2
j) : k, j = 1, 2, ..., N}.

Since βj and λj are distinct, D consists of precisely N2−N+1 many points. Let f be a
rational inner function on G and g ∈ S(G) be such that g agrees with f on D. As before
restrict f and g to each Dk to obtain rational inner functions fk(z) = f(z + βkz, z

2βk)
and gk(z) = g(z + βkz, z

2βk) on the unit disk D. We then have fk(λj) = gk(λj) for
each j = 1, 2, . . . , N . Thus by Lemma 2.3, fk(z) = gk(z) on D for each k = 1, 2, . . . , N ,
which is same as saying that f = g on ∪Nk=1Dk. Consequently, by part (c) of Proposition
2.4, f = g on G. □

2.3. Distinguished varieties as a determining and the uniqueness set. A ra-
tional function f = g/h with relatively prime polynomials g and h, is called regular
if h ̸= 0 on G. For example, note that while the rational function (3p − s)/(3 − s) is
regular, (2p− s)/(2− s) is not.
We first recall the known results that will be used later. Let W = Z(ξ) be a

distinguished variety with respect to G. Then it follows easily that V = Z(ξ◦π) defines
a distinguished variety with respect to D2. Lemma 1.2 of [3] produces a regular Borel
measure ν on ∂V := V∩T2 such that ν gives rise to a Hardy-type Hilbert function space
on V ∩ D2, denoted by H2(ν), i.e., H2(ν) is the closure in L2(ν) of polynomials such
that evaluation at every point in V∩D2 is a bounded linear functional on H2(ν). It was
then shown in [29, Lemma 3.2] that the push-forward measure µ(E) = ν(π−1(E)) for
every Borel subset E of ∂W := W∩ bΓ has all the properties that ν has. Furthermore,
the spaces H2(µ) and H2(ν) are unitary equivalent via the isomorphism given by

U : H2(µ) → H2(ν) by U : f 7→ f ◦ π.(2.3)
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Note that if kµ and kν are the Szegö-type reproducing kernels for H2(µ) and H2(ν),
respectively, then for every (z, w) ∈ V ∩ D2 and f ∈ H2(µ)

⟨U∗kν(z,w), f⟩H2(µ) = ⟨kν(z,w), Uf⟩H2(ν) = f ◦ π(z, w) = ⟨kµπ(z,w), f⟩H2(µ).

We observe the following.

Lemma 2.6. Let W be a distinguished variety with respect to G and µ be the regular
Borel measure on ∂W as in the preceding discussion. Then for every regular rational
inner function f on G, the multiplication operator Mf on H2(µ) has a finite dimen-
sional kernel.

Proof. We note that for every (z, w) ∈ V ∩ D2,

U∗M∗
f◦πk

ν
(z,w) = f ◦ π(z, w)U∗kν(z,w) = f ◦ π(z, w)kµπ(z,w) =M∗

f k
µ
π(z,w) =M∗

fU
∗kν(z,w).

Thus Mf on H2(µ) and Mf◦π on H2(ν) are unitarily equivalent via the unitary U as
in 2.3. Now the lemma follows from [34, Theorem 3.6], which states that KerMf◦π is
finite dimensional. □

Proposition 2.7. Let W = Z(ξ) be a distinguished variety with respect to G and f
be a regular rational inner function on G. If dimKerM∗

f < N , then any N distinct
points in W ∩G is a determining set for (f,W ∩G).

Proof. Let {w1, w2, . . . , wN} be distinct points in W ∩ G and g ∈ S(G) be such that
g(wj) = f(wj) for each j = 1, 2, . . . , N . Let V = Z(ξ ◦ π) and {v1, v2, . . . , vN} be in
V ∩ D2 such that π(vj) = wj for all j = 1, 2, ..., N . Thus g ◦ π(vj) = f ◦ π(vj) for each
j = 1, 2, . . . , N . Theorem 1.7 of [34] yields g ◦ π = f ◦ π on V ∩ D2 which is same as
g = f on W ∩G. This completes the proof. □

The 2-degree of a two-variable polynomial ξ ∈ C[z, w] is defined as (d1, d2) =: 2-deg ξ,
where d1 and d2 are the largest power of z and w, respectively in the expansion of
ξ(z, w). The reflection of a two-variable polynomial ξ ∈ C[z, w] is defined as

ξ̃(z, w) = zd1wd2ξ
(1
z
,
1

w

)
.

For a rational function f(z, w) = ξ(z, w)/η(z, w) with ξ and η having no common
factor, the 2-degree of f is defined to be the 2-degree of the numerator. For two pairs
of non-negative integers (p, q) and (m,n), we write (p, q) ≤ (m,n) to indicate that
p ≤ m and q ≤ n.

Proposition 2.8. Let W = Z(ξ) be an irreducible distinguished variety and f be a
regular rational inner function on G of the form

f ◦ π(z, w) = (zw)m
η̃ ◦ π(z, w)
η ◦ π(z, w)

.(2.4)

If 2-deg ξ ◦ π ≤ 2-deg f ◦ π, then for each (s, p) ∈ G \ (G ∩W) there exists a regular
rational inner function g on G such that g coincides with f on W ∩ G but g(s, p) ̸=
f(s, p).
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Proof. Let 2-deg η ◦ π = (l, l) and 2-deg ξ ◦ π = (n, n). The hypothesis then is that
m+ l − n is non-negative. For ϵ > 0, define a symmetric function gϵ on D2 as

gϵ(z, w) =
(zw)mη̃ ◦ π(z, w) + ϵξ̃ ◦ π(z, w)

η ◦ π(z, w) + ϵ(zw)m+l−nξ ◦ π(z, w)
.(2.5)

Simple computation shows that the reflection of the denominator of gϵ is equal to the
numerator of gϵ, which implies that each each gϵ is a rational inner function on D2

provided that the denominator does not vanish on D2. Since η ◦ π does not vanish on

D2
, we can always find a sufficiently small ϵ so that the denominator of each gϵ does

not vanish in D2
, thus making gϵ regular.

By Proposition 4.3 of [23], ξ ◦ π = cξ̃ ◦ π for some c ∈ T. This ensures that each gϵ
coincides with f on W ∩ G. Now let (z0, w0) ∈ D2 be such that π(z0, w0) ∈ G \ W .
Then gϵ(z0, w0) = f ◦ π(z0, w0) if and only if

(z0w0)
mη̃ ◦ π(z0, w0) + ϵc̄ξ ◦ π(z0, w0)

η ◦ π(z0, w0) + ϵ(z0w0)m+l−nξ ◦ π(z0, w0)
= (z0w0)

m η̃ ◦ π(z0, w0)

η ◦ π(z0, w0)
,

which, after cross-multiplication and using the fact that ξ ◦ π(z0, w0) ̸= 0, leads to

cη ◦ π(z0, w0) = (z0w0)
2m+l−nη̃ ◦ π(z0, w0).(2.6)

Since η ◦ π does not vanish on D2
, we have z0w0 ̸= 0. Therefore the above equation

holds if and only if

f ◦ π(z0, w0) = (z0w0)
m η̃ ◦ π(z0, w0)

η ◦ π(z0, w0)
=

c

(z0w0)m+l−n .(2.7)

If m + l − n = 0, then f is a constant function. The hypothesis on the 2-degrees of ξ
and f then implies that ξ must be constant. This is not possible because ξ defines a
distinguished variety. Thereforem+l−n ≥ 1, in which case, equation (2.7) implies that
|f ◦ π(z0, w0)| > 1. This again is a contradiction because f is a rational inner function
and so by the Maximum Modulus Principle, |f ◦ π(z)| ≤ 1 for every (z, w) ∈ D2.
Consequently, gϵ(s, p) ̸= f(s, p) for every (s, p) ∈ G \ (W ∩G). □

Remark 2.9. In a forthcoming paper [15] it is shown that any rational inner function
on G is of the form (2.4) possibly multiplied by a unimodular constant.

Theorem 2.10. Let W = Z(ξ) be an irreducible distinguished variety with respect to
G, f be a regular rational inner function on G of the form (2.4) such that 2-deg ξ ◦π ≤
2-deg f ◦ π, and D be any subset of W ∩G consisting of at least 1+ dimKerM∗

f many
points. Then W ∩G is the uniqueness set for (f,D).

Proof. Consider the multiplication operator Mf on H2(µ), where H2(µ) is the Hilbert
space corresponding to W as mentioned in Lemma 2.6. By this lemma, dimKer(M∗

f ) is
finite. So let N be such that dimKer(M∗

f ) < N and D = {λ1, λ2, ..., λN} ⊂ W∩G. By
Proposition 2.7, D is determining for (f,W∩G). We use Proposition 2.8 to show that
W ∩G is the uniqueness set. Toward that end, pick (s, p) ∈ G \ W ∩G. Proposition
2.8 guarantees the existence of a (regular) rational inner function g that coincides with
f on W ∩ G but g(s, p) ̸= f(s, p). This proves that W ∩ G is the uniqueness set for
the interpolation problem. This completes the proof of the theorem. □

https://doi.org/10.4153/S0008439523000103 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000103


DETERMINING SETS 9

Remark 2.11. An extremal interpolation problem in G is a solvable problem with
no solution of supremum norm less than 1. Let D = {λ1, λ2, . . . , λN} be a subset
of G and f be a rational inner function on G such that the N -point Pick problem
λj 7→ f(λj) is extremal and that none of the (N − 1)-point subproblems is extremel.
Then it is shown in [16] that the uniqueness set for (f,D) contains a distinguished
variety. Theorem 2.10 can be seen as a converse to this result. Indeed, Theorem 2.10
starts with a distinguished variety W = Z(ξ) and produces a regular rational inner
function f and a finite set D depending on W such that W ∩G is the uniqueness set
for (f,D). In addition, we note that the problem λj 7→ f(λj) is an extremal problem.
This is because if g is any solution of the problem, then by Proposition 2.7 g = f on
W ∩G. Thus

∥g∥∞,G ≥ ∥g∥∞,W∩G = ∥f∥∞,W∩G = 1.

The last equality follows because f is a regular rational inner function.

There is a sufficient condition for a distinguished variety to be determining. In
the theorem below and in its proof, the inner product ⟨, ⟩H2 for analytic functions
f, g : G → C is defined to be

⟨f, g⟩H2 = sup
0<r<1

∫
T×T

f ◦ π(rζ1, rζ2)g ◦ π(rζ1, rζ2)|J(rζ1, rζ2)|2dm(ζ1, ζ2),(2.8)

where m is the standard normalized Lebesgue measure on T×T, and J(z, w) = z−w
is the Jacobian of the map π : (z, w) 7→ (z + w, zw). See the papers [13, 14, 28] for
some motivation for and operator theory on the spaces of analytic functions for which
∥f∥2 :=

√
⟨f, f⟩

H2 <∞. Note here that if f is an inner function on G, then ∥f∥2 = 1.

Theorem 2.12. Let W = Z(ξ) be a distinguished variety such that ξ = ξ1.ξ2 . . . ξl
where ξi are irrudicible polynomials with ξi and ξj are co-prime for each i ̸= j and f
be a regular rational inner function on G. If for each analytic function h(̸≡ 0) on G,

2Re⟨f, ξh⟩H2 < ∥ξh∥22
holds, whenever ξh is bounded on G, then W ∩G is a determining set for f .

Proof. We shall use contrapositive argument. So suppose that there exists g ∈ S(G)
such that g coincides with f on W ∩ G but g ̸= f . Choose an integer N so that
dimKerM∗

f < N and pick N distinct points λ1, ...., λN ∈ W . Consider the N -point
(solvable) Nevanlinna-Pick problem λj 7→ f(λj). By Proposition 2.7 all the solutions
to this problem agree on W ∩ G. Since g ̸= f , there exists a λN+1 ∈ G \ W such
that g(λN+1) ̸= f(λN+1). Now consider the (N + 1)-point Nevanlinna-Pick problem
λj 7→ g(λj) on G. By [16, Theorem 5.3], every solvable Nevanlinna-Pick problem in G
has a rational inner solution. Let ψ be a rational inner solution to the (N + 1)-point
problem λj 7→ g(λj). Since ψ, in particular, solves the problem λj 7→ f(λj) for each
j = 1, 2, . . . , N , ψ = f on W ∩ G. But since ψ(λN+1) = g(λN+1) ̸= f(λN+1), ψ is
distinct from f . Since ψ = f on W ∩ G, by the Study Lemma there exists a rational
function h such that f − ψ = ξh, see [21, chapter 1]. Since ψ is inner,

1 = ∥ψ∥22 = ∥f − ξh∥22 = ∥f∥22 − 2Re⟨f, ξh⟩H2 + ∥ξh∥22.
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Since f is an inner function, ∥f∥2 = 1, and therefore the above computation leads to
2Re⟨f, ξh⟩ = ∥ξh∥22. This contradicts the hypothesis because ξh = f − ψ is bounded.
Consequently, g must coincide with f on G. □

One can easily find examples of distinguished varieties and regular rational inner
functions such that the stringent hypothesis of the above result is satisfied.

Example 2.13. Let f ◦ π(z, w) = (zw)d and W = Z(ξ) be such that

ξ ◦ π(z, w) = (zm − wn)(zn − wm),

where m,n are mutually prime integers bigger than d. Then it follows that W is a
distinguished variety with respect to G because Z(zm − wn) is a distinguished variety
with respect to D2. For concrete example, one can take d = 1 and (m,n) = (2, 3) –
the corresponding distinguished variety then is the Neil parabole. Note that the inner
product ⟨, ⟩ as defined in (2.8) can be expressed in terms of the inner product on the
Hardy space of the bidisk H2(D2) as

⟨f, ξh⟩H2(G) =
1

∥J∥2
⟨J(f ◦ π), J

(
(ξ ◦ π)(h ◦ π)

)
⟩H2(D2).(2.9)

Let h : G → C be an analytic function such that ∥ξh∥2 < ∞. Since {ziwj : i, j ≥ 0}
forms an orthonormal basis for H2(D2), it is easy to read off from (2.9) that ⟨f, ξh⟩ = 0.
Therefore, by Theorem 2.12, W ∩G is a determining set for f as chosen above.

3. A bounded extension theorem

We end with a bounded extension theorem for distinguished varieties with no sin-
gularities on the distinguished boundary of Γ. Here singularity of an algebraic variety
Z(ξ) at a point means that both the partial derivatives of ξ vanish at that point. Note
that the substance of the following theorem is not that there is a rational extension of
every polynomial, it is that the supremum of the rational extension over G does not
exceed the supremum of the polynomial over the variety intersected with G multiplied
by a constant that only depends on the variety. See the papers [1, 23, 36] for similar
results in other contexts.

Theorem 3.1. Let W be a distinguished variety with respect to G such that it has
no singularities on bΓ. Then for every polynomial f ∈ C[s, p], there exists a rational
extension F of f such that

|F (s, p)| ≤ α sup
W∩G

|f |

for all (s, p) ∈ G, where α is a constant depends only on W.

Proof. Let V be a distinguished variety with respect to D2 such that W = π(V). Since
W has no singularities on bΓ, it follows that V has no singularities on T2. Invoke
Theorem 2.20 of [23] to obtain a rational extension G of the polynomial f ◦π ∈ C[z, w]
such that

|G(z, w)| ≤ α sup
V∩D2

|f ◦ π|(3.1)
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for all (z, w) ∈ D2, where α is a constant depends only on V . Now, define a rational
function H on D2 as follows

H(z, w) =
G(z, w) +G(w, z)

2
.(3.2)

Clearly, H is also a rational extension of f ◦ π with

|H(z, w)| ≤ α sup
V∩D2

|f ◦ π| for all (z, w) ∈ D2.

Note that H is a symmetric rational function on D2. So, there is a rational function
F on G such that

H(z, w) = (F ◦ π)(z, w) = F (z + w, zw) for all (z, w) ∈ D2.

Now we will show that this F will do our job. It is easy to see that F is a rational
extension of f . Let (s, p) ∈ G. Then there exists a point (z, w) ∈ D2 such that
(s, p) = (z + w, zw). Now,

|F (s, p)| = |(F ◦ π)(z, w)| = |H(z, w)| ≤ α sup
V∩D2

|f ◦ π| = α sup
W∩G

|f |.

This complete the proof. □

Acknowledgement: The first author is supported by the Mathematical Research Im-
pact Centric Support (MATRICS) grant, File No: MTR/2021/000560, by the Science
and Engineering Research Board (SERB), Department of Science & Technology (DST),
Government of India. The second author was supported by the University Grants
Commission Centre for Advanced Studies. The research works of the third author is
supported by DST-INSPIRE Faculty Fellowship DST/INSPIRE/04/2018/002458.

The second author thanks his supervisor Professor Tirthankar Bhattacharyya for
some fruitful discussions.

We thank the anonymous referee for some valuable suggestions.

References

[1] K. Adachi, M. Andersson and H. R. Cho, Lp and Hp extensions of holomorphic functions from
subvarieties of analytic polyhedra, Pacific J. Math. 189 (1999), 201–210.

[2] J. Agler, On the representation of certain holomorphic functions define on polydisc, Topics in
operator theory: Ernst D Hellinger memorial volume, 47-66, Oper. Theory Adv. Appl. 48,
Birkhauser, Basel, 1990.

[3] J. Agler and J. E. McCarthy, Distinguished Varieties, Acta Math. 194 (2005), no. 2, 133-153.
[4] J. Agler and J. E. McCarthy, The three point Pick problem on the bidisk, New York J. Math. 6

(2000), 227-236.
[5] J. Agler and J. E. McCarthy, Nevanlinna-Pick interpolation on the bidisk, J. Reine Angew. Math.

506 (1999) 191-204.
[6] J. Agler and J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, American Mathe-

matical Society, Providence, 2002.
[7] J. Agler and N. J. Young, A commutant lifting theorem for a domain in C2 and spectral

interpolation, J. Funct. Anal. 161 (1999), no. 2, 452–477.
[8] J. Agler and N. J. Young, A model theory for Γ-contractions, J. Operator Theory 49 (2003), no.

1, 45–60.
[9] J. Agler and N. J. Young, The hyperbolic geometry of the symmetrized bidisc, J. Geom. Anal. 14

(2004), 375-403.

https://doi.org/10.4153/S0008439523000103 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000103


12 DAS, KUMAR, AND SAU

[10] J. Agler and N. J. Young, Realization of functions on the symmetrized bidisc, J. Math. Anal.
Appl. 453 (2017), 227-240.

[11] T. Bhattacharyya, P. Kumar and H. Sau, Distinguished varieties through the Berger–Coburn–
Lebow theorem, Anal. PDE 15 (2022), no. 2, 477–506.

[12] T. Bhattacharyya, S. Pal and S. Shyam Roy, Dilations of Γ-contractions by solving operator
equations, Adv. Math. 230 (2012), no. 2, 577–606.

[13] T. Bhattacharyya, B. K. Das and H. Sau, Toeplitz operators on the symmetrized bidisc, Int. Math.
Res. Not. IMRN 2021, no. 11, 8492–8520.

[14] T. Bhattacharyya and H. Sau, Holomorphic functions on the symmetrized bidisk- Realization,
interpolation and extension, J. Funct. Anal. 274 (2018), 504-524.

[15] M. Bhowmik and P. Kumar, Bounded analytic functions on certain symmetrized domains,
arXiv:2208.07569 [math.FA].

[16] B. Krishna Das, P. Kumar and H. Sau, Distinguished varieties and the Nevanlinna-Pick interpo-
lation problem on the symmetrized bidisk, arXiv:2104.12392.
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