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Abstract
We propose a discrete analogue of null geodesics in causal sets that are approximated
by M

2, in the spirit of Kronheimer and Penrose’s ”grids” and ”beams” for an abstract
causal space. The causal set analogues are “ladder molecules”, whose rungs are linked
pairs of elements corresponding loosely to Barton et al’s horizon bi-atoms [1]. In M

2

a ladder molecule traps a ribbon of null geodesics corresponding to a thickened or
fuzzed out horizon. The existence of a ladder between linked pairs of elements in
turn provides a generalisation of the horismotic relation to causal sets. Simulations
of causal sets approximated by a region of M

2 show that ladder molecules are fairly
dense in the causal set, and provide a light-cone like grid. Moreover, similar to the
uniqueness of null geodesics between horismotically related events in M

2, in such
causal sets there is a unique ladder molecule between any two linked pairs which are
related by the generalised horismotic relation.

Keywords Discrete geometry · Quantum gravity · Causal structure poset · Null
geodesics

“To admit structures which can be very different from amanifold. The possibility
arises, for example, of a locally countable or discrete event-space equipped with
causal relations macroscopically similar to those of a space-time continuum.” –
Kronheimer and Penrose on the aims of studying axiomatic causal spaces [2].

Kronheimer and Penrose’s (KP) abstract causal spaces come equipped with the order
relations,� (causal) and≺≺≺ (chronological) [2]1. These are required to be acyclic (thus
preventing closed causal and chronological curves), with each satisfying transitivity
individually, and together, a mixed transitivity condition. The KP causal spaces are

1 Here � is reflexive, i.e., x � x and ≺≺≺ is irreflexive, x ≺≺≺/x .
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therefore posets with respect to both � and ≺≺≺ separately, with � strictly larger than
the relation ≺≺≺. A third, the horismotic relation →, is obtained from the first two by
the simple exclusion: x � y, x �≺≺≺ y ⇒ x → y. It is used by KP to build “girders”
and “beams” which provide the abstract analogs of the null-geodesics of a continuum
spacetime.

Causal posets are also the fundamental building blocks in causal set theory [3, 4]. In
this approach to quantum gravity, continuum spacetime is approximated by a locally
finite poset or causal set, with the order relation� corresponding to the causal order of
the spacetime. The requirement of local finiteness allows a correspondence between
the number of elements in a causal interval n and the continuum spacetime volume
V . In the continuum approximation which we denote by C ∼ (M, g) this is realised
on average as 〈n〉 = ρV , where ρ−1 is the spacetime discreteness scale. The average
is obtained from a random Poisson sprinkling of points into (M, g) at density ρ, with
probability PV (n) = (ρV )n

n! e−ρV . For each realisation, a causal set is assembled from
the sprinkled points using the induced causal ordering from (M, g).

The Poisson sprinkling process is uniform with respect to the spacetime volume
which means that null related elements are a set of measure zero. Thus the elements
in C ∼ (M, g) are almost surely only related via the chronological relationship ≺≺≺ in
(M, g). Because the chronological relation is irreflexive, it is therefore more appropri-
ate to use the irreflexive ≺ symbol for causal sets. The closest analogue of a null-like
relation between elements in a causal set is a link or nearest neighbour relation ≺∗
where e ≺∗ e′ ⇒ �∃ e′′, e ≺ e′′ ≺ e′. For a causal set C which is approximated by
d-dimensional Minkowski spacetime M

d , for example, the elements linked to any
e ∈ C “hug” the future and past light cone of e. However, these links are almost
surely time-like. While they can be used to roughly characterise the light-cones, they
cannot substitute for a null-relation; a link in C ∼ M

d that hugs the light-cone in one
frame can be far from null in another frame. Thus one cannot make a Lorentz invariant
statement about the “null-ness” of a single link. In order to obtain a truly null-relation,
one would therefore need the right combination of time-like and space-like related
elements.

Null hypersurfaces are of course important in several contexts, not least as black
hole horizons. In causal set theory there has been considerable success in extracting
geometric information from the causal order, including discrete versions of proper
time, spatial topology, scalar field propagators and the Einstein-Hilbert action, which
help in establishing a robust correlation between the continuum approximation and the
underlying causal set ensemble. However, an intrinsic definition of null hypersurfaces
is still lacking. In [1] “horizon molecules”, which are a class of sub-causal sets, were
defined using the help of a continuum spatial hypersurface � and a null hypersurface
N . � andN divide the spacetime into four regions M−− ≡ J−(�) ∩ J−(N ), M−+ ≡
J−(�) ∩ J+(N ), M+− ≡ J+(�) ∩ J−(N ) and M++ ≡ J+(�) ∩ J+(N ). Labelling
the corresponding causal set regions C−− ,C−+ ,C+− ,C++ , respectively, the horizon n-
molecule is a subcauset {p, q(1), ..., q(n)} such that (i) p ≺ q(k) ∀k = 1, 2, ...n, (ii)
p ∈ C−− , (iii) q(k) ∈ C−+ ∀k = 1, 2, ...n (iv) {q(1), ..., q(n)} are the only elements in
bothC−+ and in the future of p. It was shown that in the limit of large sprinkling density
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Fig. 1 The horizon bi-atoms Hi
2

associated with a family of
spatial hypersurfaces which
intersect a null hypersurface N .
These are “stacked” one on top
of the other but do not form a
ladder molecule. N and the
bottom-most spatial
hypersurface � are also
“thickened” to depict a family of
(N , �) which share the same
horizon bi-atom H1

2 made up of
the linked pair {p1, q1}. The
regions C±± ⊂ C depicted are
with respect to �

ρ, the number of horizon molecules is proportional to the area of the intersection
A = � ∩ N .

While this construction is very powerful andworks for any pair (�,N ), the question
remains –what intrinsically is a horizon in a causal set? Inspired by theKP construction
of null geodesics as “beams” as well as the horizon molecule construction we take
a first step in this direction. Ours is a proposal for constructing null geodesics in
C ∼ M

2; since each null geodesic in M
2 is also a null hypersurface trivially, it is

also therefore a proposal for a causal set horizon. Conversely, it allows us to define
a discrete horismotic relation. We now describe this proposal and show results from
simulations that lend support to it. Our discussion is strictly for d = 2; the analogous
construction in M

d for d > 2 does not result from a straightforward generalisation of
the d = 2 case. At the end of this paper we discuss a possible generalisation to higher
d.

We begin with the definition of the simplest horizon molecule or bi-atom H2
associated with (N , �). This is a linked pair (p, q) in C ∼ (M, g) where (a)
p ∈ I−(N )∩ I−(�),(b) q ∈ I+(N )∩ I−(�), (c) q is the only point in I+(p)∩ I−(�).
This implies that q is maximal in C |I+(N )∩I−(�) and p is maximal in C |I−(N )∩I−(�).
Because of the fundamental discreteness of causal sets H2 is also a horizon molecule
for an entire continuum family of {(N , �)}. Figure 1 depicts the associated “thick-
ened” horizon and spatial hypersurface for a single H2. This suggests that any discrete
analogue of a horizon will correspond at best to a thickened horizon in the continuum.

In order to motivate our construction we consider a discrete family of �i and the
associated horizon molecules Hi

2 for each N ∩ �i as shown in Fig. 1. Given such
a “stack” of Hi

2, we can think of them as guides for a thickened horizon. However
since the Hi

2 are not intrinsically defined, this is not sufficient for our purpose. Instead
we consider stacks of linked pairs hi = (pi , qi ), pi ≺∗ qi . In order to recover a
null geodesic, we must stack these one on top of the other in a suitable and intrinsic
manner so that, when embedded in the continuum they trap a ribbon of null geodesics.
We denote the causal interval by [p, q] ≡ {r ∈ C |r ∈ Future(p) ∩ Past(q)}, where
Future(p) ≡ {r ∈ C |p ≺ r} and Past(p) ≡ {r ∈ C |r ≺ p}. Importantly, because of
the use of the irreflexive relation ≺, p, q /∈ [p, q]
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Fig. 2 Illustrations of ladder molecules L2, L3, L4 and the associated ribbons of null geodesics. As more
rungs are added the ribbons become narrower

We construct a ladder molecule Lk step by step as follows. Let L1 ≡ h1 where
h1 = (p1, q1), p1 ≺∗ q1 be the first rung. The next rung h2 = (p2, q2), p2 ≺∗ q2
must satisfy the stacking condition

p1 ≺∗ p2, q1 ≺∗ q2, p1 ≺ q2, |[p1, q2]| = 2. (1)

The rung h2 is thus “stacked” on top of the rung h1 in a causally rigid manner since no
elements other than those in h1, h2 are allowed in the interval [p1, q2]. L2 is then the
4-element diamond sub-causal set, with the pair q1, p2 space-like to each other. More
generally, we build Lk from Lk−1 by stacking hk = (pk, qk) on top of Lk−1 such that

pk−1 ≺∗ pk, qk−1 ≺∗ qk, |[pk−i , qk]|=2i, |[pi , p j ]|= j − i − 1, |[qi , q j ]|= j − i − 1.
(2)

Thus, |[p1, qk]| = 2(k−1), with the pairs pi , q j being space-like to each other for all
j < i . This volume rigidity that goes all the way down the ladder ensures that it is “as
straight as possible”. It is important to note here that although inspired by the horizon
molecules, typically stacks of horizon bi-atoms do not form ladders as depicted in
Fig. 1.

As shown in Fig. 2 the Lk trap a ribbon of null geodesics in M
2, which we define

as follows. Let P denote the set of all inextendible null geodesics in M
2. The ribbon

of null geodesics associated with an Lk is

Nk(Lk) ≡ {η ∈ P|η ∩ J+(q1) = ∅, η ∩ J−(pk) = ∅}. (3)

We now use the ladder molecules to generalise the horismotic relation to causal
sets. We say that the linked pairs h = (p, q), p ≺∗ q and h′ = (p′, q ′), p′ ≺∗ q ′ are
discrete horismotically related

h � h′ if ∃ Lk, k ≥ 2, Lk |1 = h, Lk |k = h′. (4)
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Fig. 3 An illustration of a V4
sub-causal set and the directions
∂u , ∂v that can be obtained from
it

where Lk |i = hi denotes the i th rung of an Lk . As in the case of the horismotic
relation, � does not satisfy transitivity:

h � h′, h′ � h′′
� h � h′′, (5)

since the two ladders L from h to h′ and L ′ from h′ to h" while sharing a rung h′ (and
thus being causally ordered) may not satisfy the various rigidity conditions between
elements in L and those in L ′. This is similar to the horismotic relation in the continuum
where a → b, b → c �⇒ a → c. We know that unlike the chronological relation, if
p → q then there exists a unique future directed null geodesic from p to q in M

2. Is
this also true for the relation �? As we discuss below there is numerical evidence to
suggest that this is indeed the case.

In M
2 we can go further since we need only two independent null directions ∂u, ∂v

to define a tangent basis. As we have defined them, the ladders do not carry an intrinsic
direction that would help assign a family of rightmovers or left movers to themwithout
the embedding. Consider the causal diamond L2 with rungs h1, h2, h1 � h2. Since
the pair q1, p2 are space-like, with both linked to p1 to the past and q2 to their future
it can also be viewed as the ladder L ′

2 with h′
1 = (p1, p2), h′

2 = (q1, q2), where
q1 ↔ p2. Thus, one can “grow” a ladder Lk, L ′

k either using the h2 rung or the h′
2

rung as shown in Fig. 3. These two ladders then correspond to the two null directions
∂u, ∂v “at” L2. We will call this double ladder a Vk sub-causal set.

Sinceweweremotivated by the horizon bi-atoms,we can nowaskwhether the rungs
of the ladder molecules are in fact horizon molecules of a given spatial hypersurface.
In the continuum this is trivially the case since we can always “fit” in a �. In the
discrete setting the analogue of a spatial hypersurface is an antichain. If we take the
antichain Ai associated with hi = (pi , qi ) as one that “threads” through qi , but is to
the past of pi+1, then the intersection of the discrete horizon with Ai is just qi . The
“area” of this intersection is then proportional to the number of horizon molecules as
in [1].

Thefirst questionwemust address iswhether ladders occur often enough inC ∼ M
2

to make this definition a useful one in our characterisation of null geodesics in C .
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Starting with a linked pair h1 = (p1, q1), how likely it is that there is a next rung
h2 = (p2, q2), and a next one and so on? Since a ladder Lk embeds1 in M

2 for any
k > 1, an Lk with Lk |1 = h1 almost surely exists in M

2 since there is infinite room,
so to speak, to find the next rung and the next2. What is more relevant however is
the density of ladders in a given bounded region of M

2. In [6] the abundance of k-
element intervals in a causal diamond in M

d was calculated analytically as a function
of sprinkling density and the volume of the causal diamond. While the ladders are
2(k − 1) element intervals, they are not the only causal sets in this class. For example,
for k = 2, there are two causal sets which are 2-element intervals: the causal diamond
poset L2 and the 4-element totally ordered set or chain. The calculations of [6] do not
tell us anything about the more detailed distributions of specific sub-causal sets.

Since we have defined the Lk using the the discrete intervals the likelihood can
be assessed by looking at the associated continuum volumes in a Poisson sprinkling.
For every x ∈ M

2 there are invariant hyperbolae defined by the volume V of the
Alexandrov interval between any point on this hyperbola and x (or equivalently, its
proper time

√
2V to x) both to the future and the past. Let vk(x) denote the region

between the future invariant hyperbolae of discrete volume k − √
k and k + √

k about
x where k = ρV , and we have included the Poisson fluctuations of order

√
ρV .

Let us start with the likelihood of finding an L2 associated with a given p1. For
p1 ≺∗ q1 the interval [p1, q1] should be empty, and hence q1 is most likely to lie in
the region v1(p1) between the future light cone of p1, i.e., at k = 1−√

1 = 0 and the
invariant hyperbola at discrete spacetime volume at k = 1+ √

1 = 2. This is a region
of infinite spacetime volume and hence almost surely there exists a pair h1 = {p1, q1}.
Next, we look for p2 where p1 ≺∗ p2. Since the volume of v1(p1) is infinite, such a
p2 can again almost surely be found. The conditions on q2 are however much more
stringent since not only should p2 ≺∗ q2 and q1 ≺∗ q2, but also |[p1, q2]| = 2, i.e.,
q2 ∈ v1(q1) ∩ v1(p2) ∩ v3(p1). For such a q2 to be sufficiently likely, the discrete
volume ρvol(v1(q1) ∩ v1(p2) ∩ v3(p1)) � 1.

Firstwe look at the regionCEDFC ≡ v1(q1)∩v1(p2)which is itself finite as shown
in Fig. 4, when the proper space-like distance d = d(q1, p2) > 0. We can always
choose coordinates such that q1 = (0,−d/2) and p2 = (0, d/2). In this case, C =
(d/2, 0), D = (

√
d2/4 + 4, 0), E = (2/d + d/2, 2/d), F = (2/d + d/2,−2/d).

CEDFC is symmetric about x = 0 and bounded by the curves t2 − (x + d/2)2 = 4
(upper boundary of v1(q1)), t2 − (x − d/2)2 = 4 (upper boundary of v2(p2)) and the
null ray t = x + d/2 from q1 and the null ray t = x − d/2 from p2. Thus, its volume
is

1 An embedding C ↪→ M does not require the number-volume correspondence to hold. Not all causal sets
embed in M

2. However, the fact that the ladder does embed does not mean that it is in any sense typical.
2 Spaces of infinite extent allow all kinds of possibilities for causal sets, but may not be physically relevant.
For example, while a void the size of the present universe almost surely occurs in M

d , the probability for
a Fermi-radius sized void within the Hubble radius is essentially zero, as shown in [5].
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Fig. 4 As the proper distance between q1 and p2 decreases, the overlap regionCEDFC (shaded dark gray)
increases monotonically

V (d) = 2
∫ 2/d

0

(√(
x − d

2

)2

+ 4 − (x + d/2)

)
dx

= 4 sinh−1
(
4 − d2

4d

)
+ 4 sinh−1

(
d

4

)
− 2 + d

4

(√
d2 + 16 − d

)
(6)

which monotonically decreases with d, becoming infinite as d → 0. For d < d0 ∼
2.23 the discrete volume � 1.

The tricky part of course is to ensure that the further overlap with v3(p1) is large
enough. Figure 5 illustrates the fact that when d is too large the overlap is zero, while
the overlap can be significant for smaller d. In order to calculate the volume of the
overlap region, we make a simplifying assumption that q1 and p2 are symmetrically
to the future of p1, i.e., if p1 = (0, 0) then we assume q1 = (T ,−d/2), p2 =
(T , d/2) (which is of course not strictly possible in the causal set.) The overlap region
CEDFC = v1(q1)∩v1(p2)hasC = (d/2+T , 0), D = (

√
d2/4 + 4+T , 0) and E =

(d/2+2/d+T , 2/d) and F = (d/2+2/d+T ,−2/d)while the boundary hyperbolae

of v3(p1) intersect the t-axis at τ− = (
√
6 − 2

√
3, 0) and τ+ = (

√
6 + 2

√
3, 0). Here

there are two parameters d and T , but because the lower boundary of v3(p1) is at
3 − √

3 < 2, the overlap with CEDFC is not bounded from above as d → 0 and
T → 0. For non-vanishing values of d and T (which is almost surely the case for
{p1, q1, p2}), the overlap is finite, and the question is whether there is a “sweet spot”
in (d, T ) for which this overlap is large but also probable.

Calculating this analytically is messy, since there are a large number of possible
types of intersections of CEDFC with v3(p1) leading to different formulae for the
volume. We instead turn to numerical simulations to help us determine the abundance
of the L2 in a causal diamond. Figure 6 gives an idea of the growth of the L2 as a
function of n. Comparing with the analytic expression of [6] we see that the diamonds
are roughly the same in number as the remaining 2-element intervals, namely the 4-
element chain. Note that the 4-element chains are intrinsically more “time-like”, and
hence can stray further away from null directions. The causal diamond interval on the

123



   32 Page 8 of 12 A. Bhattacharya et al.

Fig. 5 The overlap region O ≡ v1(q1) ∩ v1(p2) ∩ v3(p1) for two different choices of d and T . q1, p2 lie
in the the region v1(p1) which is unshaded, but overlaps with the shaded region v3(p1). In the figure on the
left d and T are large enough that O is empty: the CEDFC region lies entirely above v3(p1). In the figure
on the right d and T values are small enough to make the overlap (the darkest shaded region) O non-empty

Fig. 6 The abundance of causal diamond intervals in a causal diamond inM
2 as a function of n.We compare

it with the analytic expression for the abundance of all 2-element intervals depicted by a solid line

other hand has both time-like (p1 and q2) and space-like (q1 and p2) relations, which
force it into a more null-like configuration.

In the rest of the paper we present results on numerical simulations of causal sets.
We find that the Lk for k = 2, 3, 4 are not rare even in finite regions of M

2. We
calibrate the density of these discrete null geodesics by using the embedding in M

2

to obtain the null ribbons and find that they form a dense null grid on the causal set.
We also find that that for small k values the Vk causal sets while not common, do
exist, thus providing local ∂u, ∂v directions in the causal set. Finally we find that the
ladders satisfy a uniqueness condition, “upto qk”. This suggests a discrete version of
Penrose’s Proposition 2.19 [7] (see below) for the generalised horismotic relation �.

For numerical convenience in what follows we consider sprinklings into a half
diamond in M

2 rather than the full diamond, for

n ∼ 500, 1000, 2000, 3000, 5000, 7000, 10000, 12000, 15000, 18000. (7)

and perform 10 trials for each value of n. We search for the Lk starting with a p1 in the
bottom n/10 of the elements as shown in Fig. 7. We restrict our search to k = 2, 3, 4,
since already for k = 4, the abundance is very small.
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Fig. 7 The p1 are chosen from
the bottom ∼ n/10th set of
sprinkled elements

Fig. 8 A log-log plot of the abundance of Lk with n

Figure 8 shows the number of ladders for k = 2, 3, 4 as a function of n on a log-
log plot. There is a clear scaling behaviour of the abundance of Lk , i.e., N (Lk) ∼
aknαk , with ak a decreasing function of k with the exponent αk being approximately
k independent. Thus the abundance decreases with k as expected, with a significant
population of k = 2, 3 ladders compared to k = 4.

The Lk are moreover statistically significant enough to form a dense “grid” of null
geodesics in M

2. In Fig. 9 we plot the null ribbons associated with every L3 and L4
which has been generated in a particular sprinkling with n ∼ 18, 000. These form a
dense null grid in M

2, the former more dense than the latter.
In Fig. 10 we show a specific example of an L4 ladder and the associated null

ribbon for different boost parameters, for an n ∼ 18, 000 sprinkling. As expected,
the null ribbon “fattens” or “thins” depending on the choice of β. In M

2 there is a
simple Lorentz invariant quantity associated with the ribbon. This is the causal volume
associated with the unique pair (x, y), x → q1, x → pn and q1 → y, pn → y. The
volume of [x, y] is therefore an invariant under a Lorentz transformation. Thus, one
can squeeze or fatten the ribbon without changing this volume.

Our simulations also give rise to intersecting or V -type ribbons of the type shown
in Fig. 3. These are however far fewer than the ladders. For V3, we show the number
of occurence in Fig. 11. In Fig. 12 we show the only example of a V4 that resulted
from our simulations.

Finally, our simulations support the conjecture that there is a unique Lk between
h � h′. In all our simulations, we find that there are no “branching” Lk (except of
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Fig. 9 The null grid formed by L3 and L4 ladders in an n ∼ 18, 000 sprinkling.We show the same zoomed-
in region in both cases, as well as the entire Lorentz transformed region. The grid for L3 is far more dense
than for L4 and is fine enough to reach the discreteness scale

Fig. 10 An L4 ladder in an n ∼ 18, 000 sprinkling with boost parameters a β = 0 b β = 0.8 c β = −0.8.
The pi are depicted in blue while the qi are depicted in red

Fig. 11 The abundance of V3 as a function of n
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Fig. 12 An example of an V4
subcausal set, using which we
obtain an intrinsic
characterisation of the directions
∂u, ∂v. The purple points are the
pairs (q1, p2) = (p′

2, q
′
1). As

before, the pi , p
′
i are depicted in

blue and the qi , q
′
i in red

Fig. 13 Two examples of L4, which are unique “upto” q4. Given h1 and h4, there is a unique L4 from h1 to
h4. However h4 itself is not unique and so we have a second ladder L

′
4 from h1 to h

′
4. Such non-uniqueness

however gets ironed out as one goes to higher k, as is the case with the L3’s

the above Vk sort) upto the last qk . In other words, the only cases we find are ladders
which are identical but for a single differing element, namely qk , examples of which
we show in Fig. 13.

Proposition 2.19 of Penrose’s monograph [7] states that:

Proposition (Penrose) If α is a null geodesic from a to b and β is a null geodesic from
b to c, then either a ≺≺≺ b or else α ∪ β constitutes a single null geodesic from a to c.

Our simulations lend support to the following generalisation thus providing the
strongest evidence that ladders are indeed the analogues of null geodesics in causal
sets that embed into M

2:

Conjecture If Lk, k > 1 is a ladder from h to h′ and L ′
k′ , k′ > 1 is a ladder from h′

to h′′, where the h, h′, h′′ are linked pairs of elements, then either h �� h′′ or else
Lk ∪ L ′

k′ constitutes a single ladder Lk+k′−1 from h to h′′.

We have taken the first steps towards a geometric reconstruction of null geodesics
in manifold like causal sets. The construction presented above is limited to M

2 but
because all spacetimes ind = 2 are conformally related it is likely that this construction
will go through for curved d = 2 spacetimes. The generalisation to higher dimensions
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is non-trivial and currently being investigated. Any definition of null-ladders should
be able to trap an entire d-dimensional pencil of null-geodesics for it to be realised in
the causal set via a Poisson process. Hence the d = 2 null ribbon construction cannot
suffice in higher dimensions. A proposal currently being investigated is to use (d − 1)
horizon molecules as the rungs of the null ladder with p ≺∗ q(i), i = 1, . . . d − 1
forming a (d −1)“simplex” whose (d −1) face has a space-like normal. Constructing
the ladder molecule requires the q(i) from different rungs to be tied together suitably
in order to make the ladder as straight as possible. Numerical investigations of such a
ladder molecule construction in d = 3 are underway.

Our work is numerical, more out of simplicity than necessity. Integrals for calculat-
ing the probabilities of ladder molecules are easily defined but non-trivial to calculate
analytically, since several simultaneous conditions must be met by each ladder ele-
ment. While the interval abundance calculations of [6] give complex, but closed form
expressions, preliminary work on ladder molecules suggests otherwise. Numerical
investigations of this causal set architecture will therefore remain a robust tool in
investigating generalised ladder molecules in higher dimensions.
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