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Two-temperature activity induces liquid-crystal phases inaccessible in equilibrium
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In equilibrium hard-rod fluids, and in effective hard-rod descriptions of anisotropic soft-particle systems, the
transition from the isotropic (I) phase to the nematic phase (N) is observed above the rod aspect ratio L/D = 3.70
as predicted by Onsager. We examine the fate of this criterion in a molecular dynamics study of a system of soft
repulsive spherocylinders rendered active by coupling half the particles to a heat bath at a higher temperature
than that imposed on the other half. We show that the system phase-separates and self-organizes into various
liquid-crystalline phases that are not observed in equilibrium for the respective aspect ratios. In particular, we
find a nematic phase for L/D = 3 and a smectic phase for L/D = 2 above a critical activity.
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I. INTRODUCTION

The equilibrium liquid-crystalline properties of anisotropic
particles are well understood [1–14]. Onsager’s theory [1] of
the transition from the isotropic (I) phase to the nematic (N)
phase, which has uniaxial apolar orientational order, predicts
that a nematic phase cannot arise for hard rods with aspect
ratio L/D < 3.70 [1–3]. In this paper, we inquire into the
extension of Onsager’s limit to active matter, in the specific
context of two-temperature systems.

Active matter is driven locally by a constant supply of
free energy to its constituent particles, which dissipate it by
performing mechanical work [15–37]. In flocking models,
activity is linked to a vector order parameter [15–17,38,39]. In
scalar active matter [31,40–43], activity enters by minimally
breaking the detailed balance in scalar Halperin-Hohenberg
models [44] or, as in our present work, by introducing two (or
more) species of particles coupled to thermal baths at distinct
temperatures [42,43,45–52]. The temperatures in question are
not thermodynamic but emergent from the effective diffusiv-
ities of the multiple motile species. Two-temperature models
have accounted for chromatin organization in the cell nucleus
[47], self-organization in bidisperse Brownian soft disks [43]
and Lennard-Jones (LJ) particles [50], and in polymer sys-
tems [48,49]. Recently, we have implemented this idea in a
system of soft repulsive spherocylinders (SRSs) of aspect ratio
L/D = 5 (where L and D are the effective length and diameter
defined by the anisotropic repulsive potential [3,5,53–55]) and
showed that increasing the temperature of the hot particles
promotes liquid-crystal ordering in the cold particles, shifting
the IN phase boundary to lower densities than its equilibrium
location [51]. Here, we aim to explore ordering transitions of
SRSs of different L/D, in particular, those below Onsager’s
limit.
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II. MODEL AND SIMULATION METHOD

We have carried out a series of molecular dynamics (MD)
simulations of a system of SRSs with L/D = 5, 3, and 2. The
model [Fig. 1(a)] and simulation protocol are as in our previ-
ous work [51]. Here, we give brief details for completeness.
The SRSs interact through the Weeks-Chandler-Andersen po-
tential [56]:

USRS = 4ε

[(
D

dm

)12

−
(

D

dm

)6
]

+ ε if dm < 2
1
6 D

= 0 if dm � 2
1
6 D. (1)

Here, dm, the shortest distance between two spherocylin-
ders, implicitly determines their relative orientation and the
direction of the interaction force [3,5,53–55]. We build the ini-
tial configuration in a hexagonal-close-packed (HCP) crystal
structure and perform MD simulations at constant parti-
cle number, pressure, and temperature (NPT ) with periodic
boundary conditions in all three directions [7,8,57]. For each
aspect ratio, we simulate a wide range of pressures spanning
the transition from the crystal to the isotropic phase and char-
acterize the phases by calculating the nematic order parameter
and appropriate pair correlation functions. For a system of N
spherocylinders labeled i = 1, . . . , N , with orientations de-
fined by unit vectors ui with components uiα , the traceless
symmetric nematic order parameter Q has components Qαβ =
(1/N )

∑N
i=1[(3/2)uiαuiβ − 1

2δαβ]. The scalar nematic order
parameter S is the largest eigenvalue of Q.

Hereafter we work in reduced units defined in terms of the
system parameters ε and D: temperature T ∗ = kBT/ε, pres-
sure P∗ = PvHSC/(kBT ), and packing fraction η = vHSCρ,
where ρ = N/V and vHSC = πD2(D/6 + L/4) is the volume
of a spherocylinder.

Activity in our system is introduced by connecting half
of the particles to a thermostat of higher temperature, while
maintaining the temperature of the other half fixed at a lower
value. Let T ∗

h and T ∗
c be the temperatures of the baths con-

nected to the hot and cold particles, respectively, controlled by
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TABLE I. Liquid-crystal phases in the cold zone for the respec-
tive aspect ratios at different activities. The phases that are absent in
the equilibrium system and occur in the active systems are mentioned
in bold. The equilibrium phases of HSC at the given aspect ratios are
taken from Refs. [3,4].

ASRS AHSC χ = 0 Phases at χ �= 0

5 5.28 I, N, Sm, K I, N, Sm, K, multidomain K
at η = 0.36

3 3.20 I, Sm, K I, N, Sm, K at η = 0.33
2 2.11 I, K I, Sm, K at η = 0.45

a Berendsen thermostat [58] with a time constant τT = 0.01.
We then define the activity χ = (T ∗

h − T ∗
c )/T ∗

c . Starting from
a statistically isotropic structure at a definite temperature with
T ∗

h = T ∗
c = 5, we gradually increase the temperature of the

hot particles T ∗
h , keeping the volume of the simulation box

constant [51].

III. RESULTS

A. Equilibrium phase behavior of SRS and Onsager’s limit

In equilibrium, we observe four stable phases for L/D =
5, crystal (K), smectic-A (SmA), nematic (N), and isotropic
(I), three stable phases for L/D = 3, crystal, smectic-A, and
isotropic, and two stable phases for L/D = 2, crystal and
isotropic [see Fig. S1 in the Supplemental Material (SM)
[59]]. Our results are consistent with the studies of soft rods
[5,6].

To define a criterion analogous to that of Onsager [1] for
our case, we construct an effective hard-cylinder diameter for
the SRS, in terms of the interaction potential and the temper-
ature of the system (Fig. S2) defined as Deff(T ) = ∫ ∞

0 (1 −
exp[−βUSRS(dm)])d (dm) [6,60,61]. Therefore, a SRS with
aspect ratio ASRS = L/D can be mapped to a hard sphero-
cylinder (HSC) with an effective aspect ratio AHSC = L/Deff.
In Table I, we mention different values of ASRS and the
corresponding values of AHSC at T ∗ = 5. The value of ASRS

corresponding to AHSC = 3.70 (Onsager’s limit for HSC) be-
comes ASRS = 3.52 (Onsager’s limit for SRS) at T ∗ = 5. This
approximate version of Onsager’s criterion is verified by the
absence of a nematic phase for SRS at thermal equilibrium
with ASRS = 3 and 2 in our simulations and those of Cuetos
et al. [5,6].

B. Activity-induced phase separation

Starting from a homogeneous isotropic structure, we
observe local phase separation between hot and cold par-
ticles, which emerges at the macroscopic scale by forming
a well-defined interface [Figs. 1(b)–1(e)]. We quantify the
degree of mesoscale phase separation through the differ-
ence between the local densities of hot and cold particles.
Dividing the simulation box into subcells labeled i =
1, . . . , Ncell and letting ni

hot, ni
cold be the numbers of hot

and cold particles, respectively, in each cell, we define
φ = N−1

cell〈
∑Ncell

i=1 |(ni
hot − ni

cold)|/ni
tot〉 [50,51] where the aver-

age 〈· · · 〉 is carried out over a sufficiently large number of
steady-state configurations. The choice of Ncell is such that

FIG. 1. (a) Schematic diagram of SRSs. The dotted line segment
joining the centers of the two hemispheres is known as the core of
the spherocylinder. u1 and u2 represent the orientation vectors of
spherocylinders 1 and 2, respectively. r is the distance between their
centers of mass, and dm is the shortest distance that determines the
interaction potential between them. (b)–(e) Snapshots representing
steady-state configurations of hot (red) and cold (green) particles
before (middle panel) and after (right panel) phase separation for the
aspect ratios (b), (c) L/D = 2 at a packing fraction η = 0.45 and
activity χ = 9 and (d), (e) L/D = 3 at η = 0.33 and χ = 4. Cold
particles show (c) smectic ordering for L/D = 2 and (e) nematic
ordering for L/D = 3 at the aforementioned activities.

each cell contains a sufficient number of particles to get stable
statistics. φ is further offset by its initial value φ0 at χ = 0
[50,51].

In Fig. 2(a), we plot φ as a function of activity χ for L/D =
5, 3, and 2. For the sake of comparison, the system is chosen
with a packing fraction between η = 0.33 and 0.36 for which
the system is in the isotropic phase at thermal equilibrium for
the given L/D at T ∗ = 5 (Fig. S1). From Fig. 2(a), we observe
(i) phase separation starts at a lower activity for higher aspect
ratios, and (ii) the amount of phase separation at a given χ is
higher for higher aspect ratios. To understand observation (i)
precisely, we calculate the critical activity χc, which is defined
as the value of χ above which macroscopic phase separation
is seen (see SM and Fig. S3 for details [59]). The calculated
ranges of critical activities for the given packing fractions are
χc = 1.4–2 for L/D = 5, χc = 2–3 for L/D = 3, and χc =
3–5 for L/D = 2.

C. Activity-induced liquid-crystalline ordering

After phase separation, the interactions between hot and
cold particles mostly take place at the interface. The cold zone
undergoes an ordering transition above a critical activity χ∗
that depends on the aspect ratio of the rods as well as their
packing fractions. In Fig. 2(b), we see that the nematic order
parameter of cold particles Scold increases with χ for L/D = 5
and 3 for 0 � χ � 9, while for L/D = 2 it increases above
χ � 10 (Fig. S4), resulting in a higher χ∗. However, the dif-
ference between the critical activities for phase separation and
ordering decreases with increasing density. In Fig. 2(c), we
have plotted Scold vs χ for L/D = 2 at a slightly higher pack-
ing fraction, η = 0.45, which also corresponds to the isotropic
phase in equilibrium. Here, we see both phase separation
and the ordering transition for the given range of activities.
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FIG. 2. (a) Density order parameter φ of the system and (b) nematic order parameter of the cold particles Scold vs activity χ for different
aspect ratios L/D at their respective packing fractions: for L/D = 5, η = 0.36, for L/D = 3, η = 0.33, and for L/D = 2, η = 0.35. (c) Nematic
order parameter of the cold and hot particles for L/D = 2 at a higher packing fraction η = 0.45.

The critical activities for phase separation and ordering at
η = 0.45 are χc = 3–5 and χ∗ = 5, respectively.

The phases of the ordered structures in the cold zones are
identified by calculating the local nematic order parameter S
and appropriate pair correlation functions (see SM for details).
We observe that with increasing activity both translational
and orientational correlations in the cold zone are enhanced,
indicating incipient order in the cold zone. Interestingly, we
observe liquid-crystal phases for small values of L/D that do
not occur for the same parameter range in a one-temperature
system, i.e., in equilibrium.

In Figs. 3(a)–3(d), we plot different pair correlation func-
tions of the cold particles at different activities for L/D = 3
at η = 0.33. We see that both translational [g(r)] and orienta-
tional [g2(r)] pair correlation functions are flat in the absence
of activity (χ = 0) which is obvious for an isotropic phase.
g(r) develops the first peak at χ = 4 and eventually the other
peaks at higher values of χ . In Fig. 3(b), we see that g2(r) has
a finite correlation length of roughly 2.5D, beyond which it
decays to zero for χ = 4 and 5 and to a finite value for χ � 6.
This is also observe in the calculation of the half width at half
maximum (HWHM) of g2(r) defined as the distance from the
first peak at which the value of g2(r) is half of its value at the
first peak (see Fig. S5 in SM for details). These observations
suggest that there exists a finite orientational order in the cold
zone for χ = 4 and 5 which designates this phase as nematic.
Above this activity, g2(r) develops multiple peaks at longer
distances and saturates at a finite value. This is due to the pres-
ence of multiple clusters of different average directors, which
effectively suppress the overall orientational correlation. In
these cases, we calculate the g2(r) in a single cluster of a defi-
nite director and find it to saturate at a higher value, as shown

in the inset of Fig. 3(b). Smectic and crystalline structures are
identified by calculating translational correlations along the
parallel [g‖(r‖)] and perpendicular [g⊥(r⊥)] directions of the
average nematic director of the spherocylinders. The periodic
oscillations in g‖(r‖) and the liquidlike structure in g⊥(r⊥) at
χ = 6 and 7 indicate that the phase is smectic, as shown in
Figs. 3(c) and 3(d).

Similarly, we find that the system with L/D = 2 exhibits
smectic ordering at η = 0.45, χ = 9 as shown in Fig. S6.
However, the hot zone shows an isotropic structure with
reduced packing fractions for each of the cases. Table I
summarizes these results, comparing equilibrium and two-
temperature phases for each aspect ratio.

D. Pressure anisotropy and heat flux

To find the microscopic origin of the ordering transitions
that are not observed in equilibrium, we calculate the local
pressure in the phase-separated system. We divide the sim-
ulation box into a number of slabs (i) along the direction
normal to the interface, following the procedure mentioned
in Ref. [51]. The region where the local densities of hot and
cold particles change sharply between their values in the seg-
regated zones is identified as the interfacial region [Fig. 4(a)].

We then calculate the pressure components along the nor-
mal (x) and tangential directions (yz) of the interfacial plane
using the diagonal components of the stress tensor. Therefore,
the normal Pn and tangential Pt components of the pressure
are defined as Pn(i) = Pxx(i) and Pt (i) = [Pyy(i) + Pzz(i)]/2,
where Pαβ (i) = 1

V (i) (
∑n(i)

j=1 mvα
j v

β
j + ∑n(i)−1

j=1

∑
k> j rα

jk f β

jk ).
The first and second terms in this equation represent the

FIG. 3. Pair correlation functions for the cold particles at different activities χ for L/D = 3 at the packing fraction η = 0.33. (a) The
center-of-mass pair radial distribution function g(r), (b) orientational pair distribution function g2(r), and (c) projection of g(r) along the
direction parallel [g‖(r‖)] and (d) perpendicular [g⊥(r⊥)] to the director of the spherocylinders. The inset of (b) shows g2(r) at χ = 7 in a
single cluster with a definite director. The distance between the two peaks in (c) is 4D, which is the end-to-end distance of a spherocylinder
with L/D = 3.
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FIG. 4. Pressure anisotropy and local heat flux across the hot-cold interface for L/D = 3 at η = 0.33 and χ = 7. We plot (a) effective
packing fraction η, (b) normal (Pn) and tangential (Pt ) components of the pressure, (c) pressure anisotropy A = Pn − Pt , and (d) local heat flux
J along the direction perpendicular to the interfacial plane. The red dashed lines indicate boundaries of different zones. The black dashed lines
in (d) indicate the location where the heat flux becomes 0. The arrows indicate the directions of the heat flow, depending on the sign of J . We
find a positive pressure anisotropy at the interface that extends in the cold zone and a finite heat flux flowing from the bulk hot zone to the bulk
cold zone. Here, Scold = 0.42, Shot = 0.07.

kinetic and virial contributions (arising due to the particle’s
interaction) of the pressure tensor, where 	r j = (rα

j ) and
	v j = (vα

j ) are the position and velocity of the jth particle

(α = x, y, z) and 	r jk and 	f jk are the relative distance and
interacting force between the SRSs j and k. n(i) and V (i)
represent the total number of particles and volume of the ith
slab.

In Fig. 4(b), for aspect ratio L/D = 3, we find the follow-
ing: (i) In equilibrium (χ = 0), normal and tangential pressure
components are equal, implying that the pressure tensor is
isotropic throughout the simulation box. (ii) After phase sepa-
ration (χ � χc), the pressure anisotropy A = Pn − Pt vanishes
within error bars in the hot zone. (iii) At the interface and in
the cold zone, Pt acquires a lower value, while Pn remains bal-
anced throughout the simulation box. This causes a pressure
anisotropy at the interface that persists in the bulk cold zone
as well [Fig. 4(c)]. This compresses the cold zone along the
interface normal promoting cold-particle alignment parallel to
the interfacial plane, thereby inducing an ordering transition.

To understand further the effects of the activity, we cal-
culate the local heat flux 	J in each slab using the following
equation [62,63],

	J (i) = 1

V (i)

〈
n(i)∑
j=1

	v je j +
n(i)∑
j=1

σj · 	v j

〉
, (2)

where e j = (1/2)mv2
j + ∑

j �=k Ujk is the total energy and

σ j = (1/2)
∑

j �=k 	r jk 	f jk is the stress tensor. In Fig. 4(d), we

show the spatial variation of 	J along the direction normal to
the interface. We find 	J = 0 in equilibrium, but it obtains a
finite value in the phase-separated systems, both at the in-
terface and in the bulk region. This reveals that, though the
interaction between hot and cold particles takes place mainly
at the interface, its effect extends to the bulk region as well.
The sign of 	J indicates heat flows from the bulk hot to the bulk
cold zone. This results in heterogeneous activity and broken
time-reversal invariance throughout the simulation box, giving
rise to anomalous thermodynamic behavior (such as pressure
anisotropy) away from the interface.

E. System size effects

For larger system sizes with N ≈ 4000, we find Scold sat-
urates at a lower value for L/D = 2 [Fig. 2(c)] which is due

to the presence of multiple clusters that sometimes makes it
challenging to identify the phases precisely. However, our key
findings, i.e., the emergence of liquid-crystalline phases for
the lower aspect ratios and the spontaneous appearance of
macroscopic heat currents and anisotropic stresses in the bulk
zones, remain unaffected by the system sizes (see Fig. 2 and
Figs. S8–S11).

IV. CONCLUSION AND OUTLOOK

Our simulation study examines the effect of two-
temperature activity in a soft-rod fluid for a range of effective
aspect ratios of the rods. We show that the two-temperature
model can give rise to liquid-crystal phases that are not ob-
served in equilibrium for the respective aspect ratios. We
observe a smectic phase for L/D = 2 and a nematic phase
for L/D = 3. We find that the presence of two temperatures
causes a pressure anisotropy extending from the hot-cold
interface into the bulk of the cold zone, and a heat current
flowing from the hot to the cold zone. Thus, the nonequi-
librium behavior is not limited to the hot-cold interfaces but
pervades the system as a whole, driving the anomalous order-
ing transitions in the cold zone. An understanding of these
results within analytical theory, experimental realizations of
two-temperature systems, presumably in suspensions with
bidisperse motility, and methods to capture and stabilize the
anomalously ordered domains are some of the challenges that
emerge from our work.
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