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Threshold graphs are a class of graphs that have many equivalent definitions and have 
applications in integer programming and set packing problems. A graph is said to have 
a threshold cover of size k if its edges can be covered using k threshold graphs. Chvátal 
and Hammer, in 1977, defined the threshold dimension th(G) of a graph G to be the least 
integer k such that G has a threshold cover of size k and observed that th(G) ≥ χ(G∗), 
where G∗ is a suitably constructed auxiliary graph. Raschle and Simon (1995) [9] proved 
that th(G) = χ(G∗) whenever G∗ is bipartite. We show how the lexicographic method of 
Hell and Huang can be used to obtain a completely new and, we believe, simpler proof 
for this result. For the case when G is a split graph, our method yields a proof that is 
much shorter than the ones known in the literature. Our methods give rise to a simple 
and straightforward algorithm to generate a 2-threshold cover of an input graph, if one 
exists.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple, undirected and finite graphs. We denote an edge between two vertices u and v of a graph 
by the two-element set {u, v}, which is usually abbreviated to just uv . Two edges ab, cd in a graph G are said to form an 
alternating 4-cycle if ad, bc ∈ E(G). A graph G that does not contain any pair of edges that form an alternating 4-cycle is 
called a threshold graph; or equivalently, G is (2K2, P4, C4)-free [1]. A graph G = (V , E) is said to be covered by the graphs 
H1, H2, . . . , Hk if E(G) = E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk).

Definition 1 (Threshold cover and threshold dimension). A graph G is said to have a threshold cover of size k if it can be covered 
by k threshold graphs. The threshold dimension of a graph G , denoted as th(G), is defined to be the smallest integer k such 
that G has a threshold cover of size k.

Mahadev and Peled [8] give a comprehensive survey of threshold graphs and their applications.
Chvátal and Hammer [1] showed that the fact that a graph G has th(G) ≤ k is equivalent to the following: there exist 

k linear inequalities on |V (G)| variables such that the characteristic vector of a set S ⊆ V (G) satisfies all the inequalities if 

✩ A preliminary version of this paper, claiming the same result as proved in this work, appeared in the proceedings of the conference CALDAM 2020. But 
the proof in that version contains a serious error, and the algorithm mentioned in that paper may fail to produce a 2-threshold cover if the input graph 
contains a paraglider as an induced subgraph.
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Fig. 1. (a) A graph G , and (b) the auxiliary graph G∗ of G .

and only if S is an independent set of G (see [9] for details). They further defined the auxiliary graph G∗ corresponding to 
a graph G as follows.

Definition 2 (Auxiliary graph). Given a graph G , the graph G∗ has vertex set V (G∗) = E(G) and edge set E(G∗) =
{{ab, cd} : ab, cd ∈ E(G) such that ab, cd form an alternating 4-cycle in G}.

A graph G and the auxiliary graph G∗ corresponding to it is shown in Fig. 1. Chvátal and Hammer observed that since 
for any subgraph H of G that is a threshold graph, E(H) is an independent set in G∗ , the following lower bound on th(G)

holds.

Lemma 1 (Chvátal-Hammer). th(G) ≥ χ(G∗).

This gave rise to the question of whether there is any graph G such that th(G) > χ(G∗). Cozzens and Leibowitz [4]
showed the existence of such graphs. In particular, they showed that for every k ≥ 4, there exists a graph G such that 
χ(G∗) = k but th(G) > k. While the question of whether such graphs exist for k = 3 does not seem to have received much 
attention and still remains open (to the best of our knowledge), the question for the case k = 2 was studied quite intensively 
(see [7]). Ibaraki and Peled [6] showed, by means of some very involved proofs, that if G is a split graph or if G∗ contains 
at most two non-trivial components, then χ(G∗) = 2 if and only if th(G) = 2. They further conjectured that for any graph 
G , χ(G∗) = 2 ⇔ th(G) = 2. If the conjecture held, it would show immediately that graphs having a threshold cover of size 
2 can be recognized in polynomial time, since the auxiliary graph G∗ can be constructed and its bipartiteness checked in 
polynomial time. In contrast, Yannakakis [12] showed that it is NP-complete to recognize graphs having a threshold cover 
of size 3. Cozzens and Halsey [3] studied some properties of graphs having a threshold cover of size 2 and showed that it 
can be decided in polynomial time whether the complement of a bipartite graph has a threshold cover of size 2. Finally, 
more than a decade after the question was first posed, Raschle and Simon [9] proved the conjecture of Ibaraki and Peled by 
extending the methods in [6].

Theorem 1 (Raschle-Simon). For any graph G, χ(G∗) = 2 if and only if th(G) = 2.

This proof of Raschle and Simon is very technical and involves the use of a number of complicated reductions and 
previously known results. In this paper, we provide a new, and we believe, simpler, proof for Theorem 1.

We construct an algorithm that generates a 2-threshold cover of an input graph G if G∗ is bipartite. In Sections 3 and 4, 
we describe the algorithm and its proof of correctness for the case when the input graph belongs to the class of “paraglider-
free” graphs, which is a superclass of the class of chordal graphs. Since all split graphs are also chordal graphs, we have 
a proof of Theorem 1 for the case of split graphs in Section 4 itself. We believe that this proof for split graphs is much 
simpler and shorter than the proof for split graphs given by Ibaraki and Peled [6] (or the proof of Raschle and Simon [9] for 
general graphs that builds upon the work of Ibaraki and Peled). In Section 5, we show how our algorithm can be modified 
to work for general graphs. Note that for the case of general graphs, even though the algorithm remains simple, the proof 
of its correctness becomes more involved.

Outline of the algorithm. Let G be any graph such that G∗ is bipartite. We would like to construct a threshold cover of size 
2 for G . A natural way to approach the problem is to compute a 2-coloring of G∗ , which corresponds to a partition of the 
edge set of G into two sets, say E1 and E2, and try to show that G1 = (V (G), E1) and G2 = (V (G), E2) are threshold graphs 
(and so {G1, G2} is a 2-threshold cover of G). But this approach does not work since if we take an arbitrary 2-coloring 
of G∗ , the graphs G1 and G2 need not necessarily be threshold graphs (this can be easily seen in the case when G is a 
complete graph, as then G∗ contains only isolated vertices). Instead, our algorithm generates a special kind of 2-coloring of 
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G∗ , which is then used to construct a 2-threshold cover of G . Let X denote the set of isolated vertices in G∗ . Our algorithm 
computes a set Y ⊆ X and a 2-coloring of G∗ − Y (we call this a “partial 2-coloring” of G∗) which partitions E(G) \ Y into 
two sets E1 and E2 such that the graphs G1 = (V (G), E1 ∪ Y ) and G2 = (V (G), E2 ∪ Y ) are both threshold graphs, thereby 
yielding a 2-threshold cover of G . Note that as G∗ need not be connected, even if X = ∅, there can be an exponential 
number of 2-colorings of G∗ and as noted above, not every 2-coloring gives rise to a 2-threshold cover of G . The algorithm 
runs in time O (|V (G∗)| + |E(G∗)|) = O (|E(G)|2). In the case of split graphs, and more generally paraglider-free graphs, our 
algorithm does not need to process the isolated vertices in G∗ at all; instead it just takes Y = X . In other words, it computes 
a 2-coloring of G∗ − X which partitions E(G) \ X into two sets E1 and E2 such that the graphs G1 = (V (G), E1 ∪ X) and 
G2 = (V (G), E2 ∪ X) are both threshold graphs.

The Chain Subgraph Cover Problem. A bipartite graph G = (A, B, E) is called a chain graph if it does not contain a pair 
of edges whose endpoints induce a 2K2 in G . Let Ĝ be the split graph obtained from G by adding edges between every 
pair of vertices in A (or B). It can be seen that G is a chain graph if and only if Ĝ is a threshold graph. A collection of 
chain graphs {H1, H2, . . . , Hk} is said to be a k-chain subgraph cover of a bipartite graph G if it is covered by H1, H2, . . . , Hk . 
Yannakakis [12] credits Martin Golumbic for observing that a bipartite graph G has a k-chain subgraph cover if and only 
if Ĝ has a k-threshold cover. The problem of deciding whether a bipartite graph G can be covered by k chain graphs, i.e. 
whether G has a k-chain subgraph cover, is known as the k-chain subgraph cover (k-CSC) problem. Yannakakis [12] showed 
that 3-CSC is NP-complete, which implies that the problem of deciding whether th(G) ≤ 3 for an input graph G is also 
NP-complete. He also pointed out that using Golumbic’s observation and the results of Ibaraki and Peled [6], the 2-CSC 
problem can be solved in polynomial time, as it can be reduced to the problem of determining whether a split graph can 
be covered by two threshold graphs. Thus our algorithm for split graphs can also be used to compute a 2-chain subgraph 
cover, if one exists, for an input bipartite graph G in time O (|E(G)|2) (note that even though |E(Ĝ)| > |E(G)|, the vertices 
in Ĝ∗ corresponding to the edges in E(Ĝ) \ E(G) are all isolated vertices and hence do not need to be put in G∗ since our 
algorithm for split graphs does not take them into account anyway). Note that Ma and Spinrad [7] propose a more involved 
O (|V (G)|2) algorithm for the problem. However, our algorithm for split graphs, and hence the algorithm for computing a 
2-chain subgraph cover that it yields, is considerably simpler to implement than the algorithms of [6,7,9,11].

Lex-BFS orderings. A Lex-BFS ordering of a graph is an ordering of the vertices of the graph having the property that it is 
possible for a Lexicographic Breadth First Search (Lex-BFS) algorithm to visit the vertices of the graph in that order. A Lex-BFS 
ordering is also a BFS ordering—i.e., a breadth-first search algorithm can also visit the vertices in that order—but it has some 
additional properties. Lex-BFS can be implemented to run in time linear in the size of the input graph and was introduced 
by Rose, Tarjan and Lueker [10] to construct a linear-time algorithm for recognizing chordal graphs. Later, Lex-BFS based 
algorithms were discovered for the recognition of many different graph classes (see [2] for a survey).

The Lexicographic Method. We use a technique called the lexicographic method introduced by Hell and Huang [5], who 
demonstrated how this method can lead to shorter proofs and simpler recognition algorithms for certain problems that 
involve constructing a specific 2-coloring of an auxiliary bipartite graph that captures certain relationships among the edges 
of the graph. The method involves fixing an ordering < of the vertices of the graph, and then processing the edges in the 
“lexicographic order” implied by the ordering <. We adapt this technique to construct a partial 2-coloring of G∗ that can be 
used to generate a 2-threshold cover of G . Hell and Huang [5] start with an arbitrary ordering of the vertices of the graph 
in their recognition algorithms for comparability graphs and proper circular-arc graphs, but for the case of proper interval 
graphs, they start with a “perfect elimination ordering” of the given graph, which should necessarily exist when the graph is 
chordal (note that proper interval graphs form a subclass of chordal graphs). From the work of Rose, Tarjan and Lueker [10], 
it is known that for chordal graphs, the perfect elimination orderings are exactly the reversals of Lex-BFS orderings. Thus 
the recognition algorithm for proper interval graphs based on the lexicographic method that is given in [5] starts with the 
reversal of a Lex-BFS ordering of the input graph. As we shall see, our recognition algorithm for graphs having a 2-threshold 
cover starts with a Lex-BFS order of the input graph. When it is known that the input graph is a “paraglider-free graph” 
(defined in Section 4), we can even start with an arbitrary ordering of the vertices of the input graph.

2. Preliminaries

Let G = (V , E) be any graph. Recall that edges ab, cd ∈ E(G) form an alternating 4-cycle if bc, da ∈ E(G). In this case, we 
also say that a, b, c, d, a is an alternating 4-cycle in G (alternating 4-cycles are called AC4s in [9]). The edges ab and cd are 
said to be the opposite edges of the alternating 4-cycle a, b, c, d, a. Thus for a graph G , the auxiliary graph G∗ is the graph 
with V (G∗) = E(G) and E(G∗) = {{ab, cd} : ab, cd ∈ E(G) are the opposite edges of an alternating 4-cycle in G}. Note that it 
follows from the definition of an alternating 4-cycle that if a, b, c, d, a is an alternating 4-cycle, then the vertices a, b, c, d
are pairwise distinct. We shall refer to the vertex of G∗ corresponding to an edge ab ∈ E(G) alternatively as {a, b} or ab, 
depending upon the context.

Our goal is to provide a new proof for Theorem 1.
3
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Fig. 2. (a) An A1-pentagon, (b) an A1-switching path, and (c) an A1-switching cycle. In each of the figures: a dashed line between two vertices indicates 
that they are non-adjacent, a thin line represents an edge that may be in either A1 or A0, a thick line indicates an edge in A1, and a gray line represents 
an edge in A2.

It is easy to see that χ(G∗) = 1 if and only if th(G) = 1. Therefore, by Lemma 1, it is enough to prove that if G∗
is bipartite, then G can be covered by two threshold graphs. In order to prove this, we find a specific 2-coloring of the 
non-trivial components of G∗ (components of size at least 2) using the lexicographic method of Hell and Huang [5].

We say that (A0, A1, A2) is a valid 3-partition of E(G) if {A0, A1, A2} is a partition of E(G) with the property that in 
any alternating 4-cycle in G , one of the opposite edges belongs to A1 and the other to A2. In other words, for any edge 
{ab, cd} ∈ E(G∗), one of ab, cd is in A1 and the other in A2. Note that this means while some edges in A1 and A2 may have 
the property that they do not form an alternating 4-cycle with any other edge, every edge in A0 definitely has this property.

Given a valid 3-partition (A0, A1, A2) of E(G) and A ∈ {A1, A2}, we say that a, b, c, d is an alternating A-path if a 
= d, 
ab, cd ∈ A ∪ A0, and bc ∈ E(G). Further, we say that a, b, c, d, e, f , a is an alternating A-circuit if a 
= d, ab, cd, ef ∈ A ∪ A0, 
and bc, de, f a ∈ E(G).

Observation 1. Let (A0, A1, A2) be a valid 3-partition of E(G) and let {A, A} = {A1, A2}.

(a) If a, b, c, d is an alternating A-path, then ad ∈ E(G).
(b) If a, b, c, d, e, f , a is an alternating A-circuit, then ef ∈ A and ad ∈ A.

Proof. To prove (a), it just needs to be observed that if ad ∈ E(G), then a, b, c, d, a would be an alternating 4-cycle in G
whose opposite edges both belong to A ∪ A0, which contradicts the fact that (A0, A1, A2) is a valid 3-partition of E(G). To 
prove (b), suppose that a, b, c, d, e, f , a is an alternating A-circuit. Since a, b, c, d is an alternating A-path, we have by (a) 
that ad ∈ E(G). Then since a, d, e, f , a is an alternating 4-cycle in G and ef ∈ A ∪ A0, it follows that ef ∈ A and ad ∈ A. �

We shall use the above observation throughout this paper without referring to it explicitly.

Let (A0, A1, A2) be a valid 3-partition of E(G) and let {A, A} = {A1, A2}. We say that (a, b, c, d, e) is an A-pentagon in G
with respect to (A0, A1, A2) if a, b, c, d, e ∈ V (G), ac, ad, be ∈ E(G), ab, ae ∈ A, bc, bd, ec, ed ∈ A and cd ∈ A ∪ A0. We abbreviate 
this to just “A-pentagon” when the graph G and the 3-partition (A0, A1, A2) of G are clear from the context. We say that 
an A-pentagon (a, b, c, d, e) is a strict A-pentagon if cd ∈ A. We say that (a, b, c, d, e) is a pentagon (resp. strict pentagon) if it 
is an A-pentagon (resp. strict A-pentagon) for some A ∈ {A1, A2}. (Pentagons are similar to the “A P5-s” in [9].)

We say that (a, b, c, d) is an A-switching path in G with respect to (A0, A1, A2) if a, b, c, d ∈ V (G), ad ∈ E(G), ab, cd ∈ A ∪ A0, 
and bc ∈ A. When the graph G and the 3-partition (A0, A1, A2) of G are clear from the context, we abbreviate this to 
just “A-switching path”. We say that (a, b, c, d) is a strict A-switching path if it is an A-switching path and in addition, 
ab, cd ∈ A. We say that (a, b, c, d) is a switching path (resp. strict switching path) if it is an A-switching path (resp. strict 
A-switching path) for some A ∈ {A1, A2}. We say that (a, b, c, d) is an A-switching cycle in G with respect to (A0, A1, A2) if 
ab, cd ∈ A ∪ A0 and bc, ad ∈ A. As before, we say that (a, b, c, d) is a switching cycle in G with respect to (A0, A1, A2) if there 
exists A ∈ {A1, A2} such that (a, b, c, d) is an A-switching cycle.

Note that from the definitions of pentagons, switching paths and switching cycles, it follows that if (a, b, c, d, e) is a 
pentagon, then the vertices a, b, c, d, e are pairwise distinct, and if (a, b, c, d) is a switching path or a switching cycle, then 
the vertices a, b, c, d are pairwise distinct. Fig. 2 illustrates an A1-pentagon, an A1-switching path, and an A1-switching 
cycle.

Lemma 2. Let (A0, A1, A2) be a valid 3-partition of E(G). If there are no switching paths and no switching cycles in G with respect to 
(A0, A1, A2) then th(G) = 2.

Proof. Consider the graphs H1, H2, having V (H1) = V (H2) = V (G), E(H1) = A1 ∪ A0 and E(H2) = A2 ∪ A0. We claim that 
H1 and H2 are both threshold graphs. Suppose for the sake of contradiction that Hi is not a threshold graph for some 
4
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i ∈ {1, 2}. Then there exist edges ab, cd ∈ E(Hi) such that bc, ad ∈ E(Hi). If bc, ad ∈ E(G), then a, b, c, d, a is an alternating 4-
cycle in G whose opposite edges both belong to Ai ∪ A0, which contradicts the fact that (A0, A1, A2) is a valid 3-partition. So 
we can assume by symmetry that bc ∈ E(G). Since bc ∈ E(Hi), bc /∈ Ai ∪ A0, which implies that bc ∈ A3−i . Now if ad ∈ E(G), 
then (a, b, c, d) is an Ai -switching path in G with respect to (A0, A1, A2), which is a contradiction. On the other hand, if 
ad ∈ E(G), then ad ∈ A3−i (since ad ∈ E(Hi)), which implies that (a, b, c, d) is an Ai -switching cycle in G with respect to 
(A0, A1, A2), which is again a contradiction. Thus we can conclude that both H1 and H2 are threshold graphs. �
Lemma 3. Let (A0, A1, A2) be a valid 3-partition of E(G). Let {A, A} = {A1, A2}. Let (x, y, z, w) be an A-switching path in G and let 
y′z′ ∈ E(G) be such that yz′, zy′ ∈ E(G). Then,

(a) if x = y′ , then (x = y′, y, z, w, z′) is an A-pentagon and
(b) if w = z′ , then (w = z′, z, y, x, y′) is an A-pentagon.

Proof. Since yz ∈ A and {yz, y′z′} ∈ E(G∗) we have that y′z′ ∈ A. Suppose that x = y′ . Then y, (x = y′), z, w, (x = y′), z′, y
is an alternating A-circuit (note that y 
= w as x ∈ N(y) \ N(w)), implying that yw ∈ A. This further implies that z′ 
= w . 
Then we also have alternating A-circuits z′, y′, z, w, x, y, z′ and z′, (y′ = x), w, z, (y′ = x), y, z′ , implying that xy ∈ A and 
z′w, z′z ∈ A. Consequently, (x = y′, y, z, w, z′) is an A-pentagon. Since (w, z, y, x) is also an A-switching path, we can 
similarly conclude that if w = z′ , then (w = z′, z, y, x, y′) is an A-pentagon. �

We then have the following corollary.

Corollary 1. Let (A0, A1, A2) be a valid 3-partition of E(G). Suppose that there are no pentagons (resp. strict pentagons) in G with 
respect to (A0, A1, A2). Let (x, y, z, w) be a switching path (resp. strict switching path) with respect to (A0, A1, A2). Let y′z′ ∈ E(G)

be such that yz′, zy′ ∈ E(G). Then, y′ 
= x and z′ 
= w.

Proof. Let {A, A} = {A1, A2}. Suppose that there are no pentagons (resp. strict pentagons) in G with respect to (A0, A1, A2). 
Let (x, y, z, w) be an A-switching path (resp. strict A-switching path, and therefore xy, zw ∈ A). By Lemma 3, we know 
that if y′ = x then (x = y′, y, z, w, z′) is an A-pentagon (resp. a strict A-pentagon, as zw ∈ A), and if z′ = w then (w =
z′, z, y, x, y′) is an A-pentagon (resp. a strict A-pentagon, as xy ∈ A). Since there are no pentagons (resp. strict pentagons), 
we can conclude that y′ 
= x and z′ 
= w . �

Let < be an ordering of the vertices of G . Given two k-element subsets S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} of 
V (G), where s1 < s2 < · · · < sk and t1 < t2 < · · · < tk , S is said to be lexicographically smaller than T , denoted by S < T , if 
s j < t j for some j ∈ {1, 2, . . . , k}, and si = ti for all 1 ≤ i < j. In the usual way, we let S ≤ T denote the fact that either S < T
or S = T . For a set S ⊆ V (G), we abbreviate min< S to just min S . Note that the relation < (“is lexicographically smaller 
than”) that we have defined on k-element subsets of V (G) is a total order. Therefore, given a collection of k-element subsets 
of V (G), the lexicographically smallest one among them is well-defined.

The following observation states a well-known property of Lex-BFS orderings [2].

Observation 2. Let < denote a Lex-BFS ordering of a graph G. For a, b, c ∈ V (G), if a < b < c, ab /∈ E(G) and ac ∈ E(G), then there 
exists x ∈ V (G) such that x < a < b < c, xb ∈ E(G) and xc /∈ E(G).

3. The algorithm

Let G be a graph such that G∗ is bipartite. For two vertices ab, a′b′ ∈ V (G∗) (i.e. ab, a′b′ ∈ E(G)), we say that ab is 
lexicographically smaller than a′b′ with respect to an ordering < of V (G), if {a, b} < {a′, b′}.

We shall now construct a partial 2-coloring of the vertices of G∗ using the colors {1, 2} by means of an algorithm, and 
then construct a valid 3-partition of E(G) using this partial 2-coloring.

Phase I. Construct a Lex-BFS ordering < of G .

Recall that every vertex of G∗ is a two-element subset of V (G).

Phase II. For every non-trivial component C of G∗ , perform the following operation:

Choose the lexicographically smallest vertex in C (with respect to the ordering <) and assign
the color 1 to it. Extend this to a proper coloring of C using the colors {1,2}.

Note that after Phase II, every vertex of G∗ that is in a non-trivial component has been colored either 1 or 2. For 
i ∈ {1, 2}, let Fi = {e ∈ V (G∗) : e is colored i}. Further, let F0 denote the set of all isolated vertices (trivial components) in 
5
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G∗ . Clearly, F0 is exactly the set of uncolored vertices of G∗ and we have V (G∗) = F0 ∪ F1 ∪ F2. Note that since the opposite 
edges of any alternating 4-cycle in G correspond to adjacent vertices in G∗ , one of them receives color 1 and the other color 
2 in the partial 2-coloring of G∗ constructed in Phase II. It follows that (F0, F1, F2) is a valid 3-partition of E(G).

First we note the following lemma.

Lemma 4. If there are no strict pentagons in G with respect to (F0, F1, F2), then there are no strict switching paths in G with respect 
to (F0, F1, F2).

Proof. Suppose that G contains a strict switching path. We say that a strict switching path (a, b, c, d) is lexicographically 
smaller than a strict switching path (a′, b′, c′, d′) if {a, b, c, d} < {a′, b′, c′, d′}. Let (a, b, c, d) be the lexicographically smallest 
strict switching path in G .

Claim. (a, b, c, d) is not a strict F1-switching path.

Suppose for the sake of contradiction that (a, b, c, d) is a strict F1-switching path. Let C be the component of G∗ con-
taining bc. Let b0c0, b1c1, . . . , bkck , where b0 = b and c0 = c, be a path in C between bc and the lexicographically smallest 
vertex bkck in C . We assume that for each i ∈ {0, 1, . . . , k − 1}, bici+1, cibi+1 ∈ E(G). As b0c0 ∈ F2, it follows that bici ∈ F2
for each even i and bici ∈ F1 for each odd i. Since bkck is the lexicographically smallest vertex in its component in G∗ , we 
know that bkck ∈ F1, which implies that k is odd.

We claim that bia, cid ∈ F1 for each even i and bia, cid ∈ F2 for each odd i, where 0 ≤ i ≤ k. We prove this by induction 
on i. The case where i = 0 is trivial as b0 = b and c0 = c. So let us assume that i > 0. Consider the case where i is 
odd. As i − 1 is even, by the induction hypothesis we have bi−1a, ci−1d ∈ F1. Since bi−1ci−1 ∈ F2, we can observe that, 
(a, bi−1, ci−1, d) is a strict F1-switching path. Then by Corollary 1, we have that a 
= bi and d 
= ci . Now the alternating F1-
circuits bi, ci, bi−1, a, d, ci−1, bi and ci, bi, ci−1, d, a, bi−1, ci imply that bia, cid ∈ F2. The case where i is even is symmetric 
and hence the claim.

By the above claim, bka, ckd ∈ F2. Since bkck ∈ F1, we now have that (a, bk, ck, d) is a strict F2-switching path. Since 
bkck < bc, we have that {a, bk, ck, d} < {a, b, c, d}, which is a contradiction to our assumption that (a, b, c, d) is the lexico-
graphically smallest strict switching path in G . This proves the claim.

By the above claim, we have that (a, b, c, d) is a strict F2-switching path. By the symmetry between a and d, we can 
assume without loss of generality that a < d.

As bc ∈ F1, the vertex bc belongs to a non-trivial component of G∗ . Then there exists a neighbor uv of bc in G∗ such 
that bv, uc ∈ E(G). As bc ∈ F1, we have uv ∈ F2. By Corollary 1, we have that u 
= a. Then a, b, v, u, c, d, a is an alternating 
F2-circuit, implying that au ∈ F1. As ab ∈ F2, we know that ab is not the lexicographically smallest vertex in its component. 
Let a0b0, a1b1, . . . , akbk be a path in G∗ between ab and the lexicographically smallest vertex akbk in its component, where 
a0 = a, b0 = b, and for 0 ≤ i < k, aibi+1, ai+1bi ∈ E(G). Note that for 0 ≤ i ≤ k, aibi ∈ F2 if i is even and aibi ∈ F1 if i is odd. 
Since akbk ∈ F1 (as it is the lexicographically smallest vertex in its component in G∗), this implies that k is odd.

We claim that for 0 ≤ i ≤ k, aiu, bic ∈ F1 if i is even and aiu, bic ∈ F2 if i is odd. We prove this by induction on i. The base 
case when i = 0 is trivial, since au, bc ∈ F1. Let i > 0 be odd. By the induction hypothesis we have that ai−1u, bi−1c ∈ F1. 
Since ai−1bi−1 ∈ F2 we can observe that (u, ai−1, bi−1, c) is a strict F1-switching path. Therefore by Corollary 1, we have that 
ai 
= u and bi 
= c. Then we have alternating F1-circuits ai, bi, ai−1, u, c, bi−1, ai and bi, ai, bi−1, c, u, ai−1, bi , implying that 
aiu, bic ∈ F2. The case when i is even is symmetric. This proves our claim. Since k is odd, we now have that aku, bkc ∈ F2. 
Note that now (c, bk, ak, u) is a strict F2-switching path.

Suppose that d < b. Then we have that a < d < b, where ad ∈ E(G) and ab ∈ E(G). Therefore by Observation 2, there 
exists x < a such that xd ∈ E(G) and xb ∈ E(G). Then x, d, a, b, x is an alternating 4-cycle in which ab ∈ F2, implying that 
xd ∈ F1. Then we have a strict F1-switching path (x, d, c, b) such that {x, d, c, b} < {a, b, c, d}, which is a contradiction to the 
choice of (a, b, c, d). Therefore we can assume that b < d. Since akbk < ab and a, b < d, we have that {c, bk, ak, u} < {a, b, c, d}. 
As (c, bk, ak, u) is a strict switching path, this contradicts the choice of (a, b, c, d). �
4. Proof of Theorem 1 for split graphs

Let G be any graph such that G∗ is bipartite. Let (F0, F1, F2) be a valid 3-partition of E(G) obtained by running the 
algorithm of Section 3 on the graph G .

Lemma 5. If there are no pentagons in G with respect to (F0, F1, F2), then there are no switching paths or switching cycles in G with 
respect to (F0, F1, F2).

Proof. Suppose not. Let (a, b, c, d) be a switching path in G with respect to (F0, F1, F2). Let i ∈ {1, 2} such that (a, b, c, d)

is an Fi -switching path. Then we have ad ∈ E(G), ab, cd ∈ Fi ∪ F0, and bc ∈ F3−i . Since bc ∈ F3−i , there exists uv ∈ E(G)
6
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such that bv, cu ∈ E(G). Since there are no pentagons in G , by Corollary 1 we have that a 
= u and d 
= v . Notice that as 
bc ∈ F3−i and b, c, u, v, b is an alternating 4-cycle, we have uv ∈ Fi . Then d, c, u, v, b, a, d and a, b, v, u, c, d, a are alternating 
Fi -circuits, implying that dv, au ∈ F3−i and ab, cd ∈ Fi . This further implies that (a, b, c, d) is a strict Fi -switching path 
which is a contradiction to Lemma 4. This proves that there are no switching paths in G with respect to (F0, F1, F2).

Suppose that (a, b, c, d) is a switching cycle in G with respect to (F0, F1, F2). Let i ∈ {1, 2} such that (a, b, c, d) is an Fi -
switching cycle. Then we have ab, cd ∈ Fi ∪ F0 and ad, bc ∈ F3−i . As bc ∈ F3−i , there exists uv ∈ E(G) such that bv, cu ∈ E(G). 
Since b, c, u, v, b is an alternating 4-cycle and bc ∈ F3−i , we have that uv ∈ Fi . If u = a and v = d, then b, (a = u), c, (d = v), b
is an alternating 4-cycle in which both the opposite edges belong to Fi ∪ F0, which is a contradiction. Therefore, either u 
= a
or v 
= d. Because of symmetry, we can assume without loss of generality that u 
= a (by renaming (a, b, c, d) as (d, c, b, a)

and interchanging the labels of u and v if necessary). Then a, b, v, u is an alternating Fi -path, implying that au ∈ E(G). If 
au ∈ Fi ∪ F0 then (c, d, a, u) is an Fi -switching path, and if not, then au ∈ F3−i , in which case (b, a, u, v) is an Fi -switching 
path. In both cases, we have a contradiction to our observation above that there are no switching paths in G with respect 
to (F0, F1, F2). �
Corollary 2. If there are no pentagons in G with respect to (F0, F1, F2), then th(G) ≤ 2.

Proof. The proof follows from Lemma 2 and Lemma 5. �
A paraglider is the graph P3 ∪ K2. Note that the subgraph induced by the vertices of a pentagon in a graph is a paraglider. 

A graph is said to be paraglider-free if it contains no induced subgraph isomorphic to a paraglider. Thus, paraglider-free 
graphs cannot contain any pentagons with respect to any valid 3-partition its edge set. We then have the following theorem 
from Lemma 1 and Corollary 2.

Theorem 2. If G is a paraglider-free graph, then χ(G∗) ≤ 2 if and only if th(G) ≤ 2.

A graph G = (X, Y , E) is said to be a split graph if X is a clique in G , Y is an independent set in G and V (G) = X ∪ Y . It is 
also known that split graphs are precisely (2K2, C4, C5)-free graphs. As the paraglider contains an induced C4, split graphs 
are paraglider-free.

Corollary 3. If G is a split graph, then χ(G∗) ≤ 2 if and only if th(G) ≤ 2.

Ibaraki and Peled [6] were the first to show that if G is a split graph, then G has a 2-threshold cover if and only if G∗ is 
bipartite. We believe that our proof of Theorem 1 for the case of split graphs is much simpler than the proofs in [6] or [9].

Note. Suppose that G is a split graph such that G∗ is bipartite. Then clearly by the proof of Theorem 2, the algorithm from 
Section 3 can be used to obtain two threshold graphs that cover G . In fact, as we show below, for the case of split graphs 
we can additionally also skip Phase I of our algorithm.

Let G = (X, Y , E) be a split graph such that G∗ is bipartite. We start with an arbitrary ordering < of the vertices of G , and 
once we get the valid 3-partition (F0, F1, F2) after running Phase II of the algorithm, we can output H1 = (V (G), F1 ∪ F0)

and H2 = (V (G), F2 ∪ F0) as the two threshold graphs that form a 2-threshold cover of G . We follow the same proof as 
the one for paraglider-free graphs, with the only change being made to the last paragraph of the proof of Lemma 4, where 
Observation 2 is used (note that Observation 2 no longer holds as < is not necessarily a Lex-BFS ordering of G). We replace 
this paragraph with the following:

Recall that a0b0, a1b1, . . . , akbk is a path in G∗ , such that for any i ∈ {0, 1, . . . , k − 1}, aibi+1 ∈ E(G) and biai+1 ∈ E(G). 
Let i ∈ {0, 1, . . . , k − 1}. If ai and bi+1 both belong to one of X or Y , then it should be the case that ai, bi+1 ∈ Y (recall 
that X is a clique in G). Since aibi, ai+1bi+1 ∈ E(G) and Y is an independent set in G , we then have bi, ai+1 ∈ X . Since X
is a clique, this contradicts the fact that biai+1 ∈ E(G). Therefore we can conclude that for each i ∈ {0, 1, . . . , k − 1}, one 
of ai, bi+1 belongs to X and the other to Y . By the same argument, we can also show that for each i ∈ {0, 1, . . . , k − 1}, 
one of bi, ai+1 belongs to X and the other to Y . Since k is odd, it now follows that one of (a = a0), bk belongs to X and 
the other to Y , and similarly, one of (b = b0), ak belongs to X and the other to Y . We can therefore conclude that a 
= bk
and b 
= ak . Recall that akbk < ab, a < d, (c, bk, ak, u) is a strict F2-switching path, and ai u, bic ∈ F1 (resp. aiu, bic ∈ F2) 
for each even i (resp. odd i). Then we have aku, bkc ∈ F2 and au, bc ∈ F1, which implies that ak 
= a and bk 
= b. We 
now have {a, b} ∩ {ak, bk} = ∅, and therefore min{ak, bk} < min{a, b}. But then as a < d, we have {c, bk, ak, u} < {a, b, c, d}, 
which is a contradiction to the choice of (a, b, c, d).

Thus, the algorithm to construct a 2-threshold cover of a split graph (whose auxiliary graph is bipartite) does not even 
require a Lex-BFS to be run on the input graph. We believe that this algorithm for generating a 2-threshold cover of a 
split graph, if one exists, is much simpler and more direct than algorithms for this task that are known in the literature 
(see [6], [9]). Also, as noted before, this algorithm can be easily adapted to make a simple and straightforward algorithm 
that constructs a 2-chain subgraph cover for an input bipartite graph, if one exists.
7
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5. Proof of Theorem 1 for general graphs

Let G be any graph such that G∗ is bipartite. Let (F0, F1, F2) be a valid 3-partition of E(G) that we obtained at the 
end of Phase I and Phase II as defined before. In order to extend our approach to general graphs, first we shall prove the 
following lemma.

Lemma 6. There are no strict pentagons in G (with respect to (F0, F1, F2)).

5.1. Proof of Lemma 6

Let {F , F } = {F1, F2}. Let (a, b, c, d, e) be a strict F -pentagon and c0d0, c1d1, . . . , ckdk be a path in G∗ , where c0 = c, 
d0 = d, k ≥ 0, and for each i ∈ {0, 1, . . . , k − 1}, cidi+1, dici+1 ∈ E(G). Since cd = c0d0 ∈ F , it follows that cidi ∈ F for all even 
i and cidi ∈ F for all odd i.

Observation 3. For each i ∈ {0, 1, . . . , k}, the edges cib, cie, dib, die exist and they belong to F when i is odd and to F when i is even.

Proof. We prove this by induction on i. This is easily seen to be true when i = 0. Suppose that i > 0. We shall 
assume without loss of generality that i is odd as the other case is symmetric. Then by the induction hypothesis, 
ci−1b, di−1b, ci−1e, di−1e ∈ F . Then ci, di, ci−1, b, e, di−1, ci is an alternating F -circuit (note that ci 
= b as di−1 ∈ N(b) \ N(ci)), 
implying that cib ∈ F . By symmetric arguments, we get cie, dib, die ∈ F . �
Remark 1. By the above observation, we have that:

(a) for each i ∈ {0, 1, . . . , k}, ci, di /∈ {b, e},
(b) if {ci, di} ∩ {c j, d j} 
= ∅ for some 0 ≤ i, j ≤ k, then i ≡ j mod 2, and
(c) for each even i ∈ {0, 1, . . . , k}, we have a /∈ {ci, di}.

Observation 4. If c1 
= a, then (d, b, c1, a, e) is a strict F -pentagon. Similarly, if d1 
= a, then (c, b, d1, a, e) is a strict F -pentagon.

Proof. By Observation 3, we have c1b, c1e, d1b, d1e ∈ F . Suppose that c1 
= a. Then c1, b, e, a, c, d, c1 is an alternating F -
circuit, and therefore we have that ac1 ∈ F . It now follows that (d, b, c1, a, e) is a strict F -pentagon. By similar arguments, it 
can be seen that if d1 
= a, then ad1 ∈ F and therefore (c, b, d1, a, e) is a strict F -pentagon. �
Observation 5. Let S0 = {a, c0, d0} and for 1 ≤ i ≤ k, let Si = Si−1 ∪ {ci, di}. Let i ∈ {0, 1, . . . , k}. For each z ∈ {ci, di}, there exist 
xz, yz ∈ Si such that (xz, b, yz, z, e) is a strict F -pentagon when i is even and a strict F -pentagon when i is odd.

Proof. We are given an i ∈ {0, 1, . . . , k} and a vertex z that is either ci or di . First let us consider the case when z = a. 
Since z ∈ {ci, di}, we have by Remark 1(c), that i is odd, which implies that i ≥ 1. Note that we have either c1 
= a or 
d1 
= a. If c1 
= a, we define xz = d, yz = c1 and if d1 
= a, we define xz = c, yz = d1. Clearly, xz, yz ∈ S1 ⊆ Si , since i ≥ 1. By 
Observation 4, we get that (xz, b, yz, z, e) is a strict F -pentagon, and so we are done. Therefore, we shall now assume that 
z 
= a.

We shall now prove the statement of the observation by induction on i. Clearly, when i = 0, z ∈ {c0, d0}, so we can choose 
xz = a, yz ∈ {c, d} \ {z} such that (xz, b, yz, z, e) is a strict F -pentagon (note that xz, yz ∈ S0 as required). So let us assume 
that i ≥ 1. If z ∈ {c j, d j} for some j < i, then by Remark 1(b) we have that j ≡ i mod 2 and by the induction hypothesis 
applied to j and z, there exist xz, yz ∈ S j ⊆ Si (as j < i) such that (xz, b, yz, z, e) is a strict F -pentagon if i is even and a 
strict F -pentagon if i is odd, completing the proof. Therefore, we assume that there is no j < i such that z ∈ {c j, d j}. Since 
we have already assumed that z 
= a, we now have z /∈ Si−1.

Observe that there exists z′ ∈ {ci−1, di−1} such that z′z ∈ E(G). Then by the induction hypothesis, there exist xz′ , yz′ ∈ Si−1
such that (xz′ , b, yz′ , z′, e) is a strict F -pentagon if i − 1 is even and a strict F -pentagon if i − 1 is odd. Define xz = z′ and 
yz = xz′ . Then we have xz, yz ∈ Si−1 ⊆ Si . Since yz ∈ Si−1 and z /∈ Si−1, we also have that yz 
= z. Using Observation 3
and the fact that (xz′ , b, yz′ , z′, e) is a strict F -pentagon (resp. F -pentagon) if i is odd (resp. even), we now have that 
(yz = xz′), b, e, z, z′, yz′ , (xz′ = yz) is an alternating F -circuit (resp. F -circuit). Therefore, yz z ∈ F if i is odd and yz z ∈ F if i
is even. Consequently we get that (xz, b, yz, z, e) is a strict F -pentagon when i is even and a strict F -pentagon when i is 
odd. �

It is easy to see that Observation 5 implies the following.

Remark 2. Let {F , F } = {F1, F2} and let (a, b, c, d, e) be any strict F -pentagon in G with respect to (F0, F1, F2). Let c′d′ be a 
vertex in the same component as cd in G∗ . Then for each z ∈ {c′, d′}, there exist xz, yz ∈ V (G) such that (xz, b, yz, z, e) is a 
strict F -pentagon if c′d′ ∈ F and a strict F -pentagon if c′d′ ∈ F .
8
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Suppose that there is at least one strict pentagon in G with respect to (F0, F1, F2). We say that a pentagon (a, b, c, d, e)
is lexicographically smaller than a pentagon (a′, b′, c′, d′, e′) if {a, b, c, d, e} < {a′, b′, c′, d′, e′}. Consider the lexicographically 
smallest strict pentagon (a, b, c, d, e) in G . Let {F , F } = {F1, F2} such that (a, b, c, d, e) is a strict F -pentagon. Since cd ∈ F , 
it belongs to a non-trivial component C of G∗ . Therefore, there exists uv ∈ E(G) such that cv, du ∈ E(G) (so that {cd, uv} ∈
E(G∗)). Clearly, at least one of u, v is distinct from a. We assume without loss of generality that u 
= a (by interchanging 
the labels of c and d if necessary). By applying Observation 4 to the path (c0d0 = cd), (c1d1 = uv) in G∗ , we get that 
(d, b, u, a, e) is a strict F -pentagon, which implies that au ∈ F . By Observation 3 applied to the same path, we get that 
ub, ue ∈ F .

Observation 6. a > min{c, d}.

Proof. Suppose for the sake of contradiction that a < min{c, d}. If u < c, then (d, b, u, a, e) is a strict F -pentagon that is 
lexicographically smaller than (a, b, c, d, e), which is a contradiction. So we can assume that c < u, which gives us a < c < u. 
As ac ∈ E(G) and au ∈ E(G), by Observation 2, there exists a vertex x such that x < a < c < u, xc ∈ E(G) and xu ∈ E(G). Since 
a, u, x, c, a is an alternating 4-cycle in which au ∈ F , we have that xc ∈ F . Then b, a, c, x, u, e, b is an alternating F -circuit 
(note that b 
= x as u ∈ N(b) \ N(x)), and therefore xb ∈ F . Symmetrically, we also get that xe ∈ F . Then d, b, e, x, u, a, d is 
an alternating F -circuit (note that x 
= d as x < a < min{c, d}), and therefore we have xd ∈ F . Now (u, b, x, d, e) is a strict 
F -pentagon that is lexicographically smaller than (a, b, c, d, e), which is a contradiction. �

Let c′d′ be the lexicographically smallest vertex in C .

Observation 7. min{c′, d′} = min{c, d}.

Proof. We know that c′d′ ≤ cd, and therefore min{c′, d′} ≤ min{c, d}. Suppose that z = min{c′, d′} < min{c, d}. From Re-
mark 2, we have that for each z ∈ {c′, d′}, there exist vertices xz, yz ∈ V (G) such that (xz, b, yz, z, e) is a strict pentagon. 
Since a > min{c, d} by Observation 6, we have a > z. Then (xz, b, yz, z, e) is a lexicographically smaller strict pentagon than 
(a, b, c, d, e) which is a contradiction. �
Observation 8. a > max{c, d}.

Proof. Let {y, y} = {c, d} such that y < y. By Observation 6 it is now enough to show that y < a < y is not possible. Since 
ya ∈ E(G) and y y ∈ E(G), y < a < y implies by Observation 2 that there exists x < y such that xa ∈ E(G) but xy ∈ E(G). 
Then x, a, y, y, x is an alternating 4-cycle, and therefore xa and y y = cd belong to the same component C of G∗ . Thus c′d′ ≤
xa, which implies that min{c′, d′} ≤ min{x, a}. Since min{x, a} = x < y = min{c, d}, we now have min{c′, d′} ≤ min{x, a} <
min{c, d}. This contradicts Observation 7. �

Since c′d′ is the lexicographically smallest vertex in C , our algorithm would have colored it with the color 1. Therefore, 
we have c′d′ ∈ F1. Consider a path c0d0, c1d1, . . . , ckdk in G∗ , where c0 = c, d0 = d, ck = c′ and dk = d′ , in which for each 
i ∈ {0, 1, . . . , k − 1}, cidi+1, dici+1 ∈ E(G). Suppose that cd ∈ F2. Then since ckdk = c′d′ ∈ F1, we have that k is odd. Now by 
Remark 1(b), we have that {c0, d0} ∩ {ck, dk} = ∅. But this contradicts Observation 7. Thus we have that cd ∈ F1. Therefore, 
(a, b, c, d, e) is a strict F1-pentagon, or in other words, F = F1. Then, our earlier observations imply that ub, ue ∈ F1 and 
au ∈ F2.

Since ec, ab, ed and bc, ae, bd are paths in G∗ , it follows that ec, ed lie in one component of G∗ and bc, bd also lie in 
one component of G∗ . Let D be the component containing bc, bd and D ′ the component containing ec, ed in G∗ . Consider 
the lexicographically smallest vertex in D ∪ D ′ . Let us assume without loss of generality that this vertex is in D (we can 
interchange the labels of b and e if required). Define p0 = b, q0 = c. Then in G∗ , there exists a path p0q0, p1q1, . . . , ptqt

between bc and the lexicographically smallest vertex ptqt in D . As before, for 0 ≤ i ≤ t − 1, we have piqi+1, qi pi+1 ∈ E(G)

and for 0 ≤ i ≤ t , we have piqi ∈ F1 when i is odd and piqi ∈ F2 when i is even. Also, since ptqt is the lexicographically 
smallest vertex in its component in G∗ , we know that ptqt ∈ F1, which implies that t is odd.

Observation 9. Let i ∈ {0, 1, . . . , t}. Then if i is odd, we have

(a) pi /∈ {b, e},
(b) qi /∈ {a, c, d},
(c) pib, pie ∈ F1 ,
(d) Either pi = a or pia ∈ F2 , and
(e) Either qic ∈ F2 or qid ∈ F2 ,

and if i is even, we have
9
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(a) qi /∈ {b, e},
(b) pi /∈ {a, c, d},
(c) qib, qie ∈ F2 ,
(d) Either qi = d or qid ∈ F1 , and
(e) Either piu ∈ F1 or pia ∈ F1 .

Proof. We shall prove this by induction on i. If i = 0, then the statement of the lemma can be easily seen to be true. 
Suppose that i > 0. We give a proof for the case when i is odd (the case when i is even is symmetric and can be proved 
using similar arguments). By the induction hypothesis, qi−1b, qi−1e ∈ F2, and therefore since piqi−1 ∈ E(G), we have pi /∈
{b, e}. We now prove the following claim.

Claim 1. For x ∈ {a, u}, if pi = x or pi x ∈ F2 , then pib, pie ∈ F1 .

If pi = x then there is nothing to prove as we already know that ab, ae, ub, ue ∈ F1. So assume that pi x ∈ F2. Let {z, ̄z} =
{b, e}. Then pi, x, d, z, ̄z, qi−1, pi is an alternating F2-circuit (recall that pi /∈ {b, e}), which implies that pi z ∈ F1. We thus get 
that pib, pie ∈ F1. This proves the claim.

By the induction hypothesis we know that either pi−1a ∈ F1 or pi−1u ∈ F1, and also that pi−1 /∈ {c, d}. First suppose that 
pi−1a ∈ F1. This implies that qi 
= a. Let {y, ȳ} = {c, d}. Then we have that pi−1, a, ȳ, y is an alternating F1-path implying 
that pi−1 y ∈ E(G). Thus, pi−1c, pi−1d ∈ E(G). This implies that qi /∈ {c, d}. By the induction hypothesis we also have that 
qi−1 y ∈ F1 for some y ∈ {c, d}. Then qi, pi, qi−1, y, a, pi−1, qi is an alternating F1-circuit, which implies that qi y ∈ F2. If 
pi 
= a, then pi, qi, pi−1, a, y, qi−1, pi is an alternating F1-circuit, implying that pia ∈ F2. Since we have either pi = a or 
pia ∈ F2 we are done by Claim 1.

Therefore we can assume that pi−1a /∈ F1. If i = 1, then we know that pi−1a = ba ∈ F1, so we can assume that i ≥ 2. 
By the induction hypothesis, we have that for some y ∈ {c, d}, qi−2 y ∈ F2. Therefore if pi−1a ∈ E(G), then we have that 
pi−1, a, y, qi−2, pi−1 is an alternating 4-cycle in which qi−2 y ∈ F2, implying that pi−1a ∈ F1 which is a contradiction. Since 
we know that pi−1 
= a by the induction hypothesis, we can assume that pi−1a ∈ E(G). Note that since pi−1a /∈ F1, we have 
by the induction hypothesis that pi−1u ∈ F1. If qi−1 = d, then pi−1, (qi−1 = d), u, a, pi−1 is an alternating 4-cycle whose 
opposite edges both belong to F2, which is a contradiction. Therefore by the induction hypothesis we have qi−1d ∈ F1. 
If qi = a (resp. qi = c) then pi, (qi = a), d, qi−1, pi (resp. pi−1, u, d, (c = qi), pi−1) is an alternating 4-cycle whose opposite 
edges are both in F1, which is a contradiction. Therefore, qi /∈ {a, c}. If pia ∈ F2 then we have that a, pi, qi−1, pi−1, a is an 
alternating 4-cycle whose opposite edges are both in F2, which is a contradiction. This implies that pia /∈ F2 and therefore 
pi 
= u. Then pi, qi, pi−1, u, d, qi−1, pi is an alternating F1-circuit, implying that piu ∈ F2. Therefore by Claim 1, we have 
that pib, pie ∈ F1. Now if a 
= pi , then pi, b, e, a, d, qi−1, pi is an alternating F1-circuit, which implies that pia ∈ F2 which is 
a contradiction. This implies that a = pi , which further implies that qi 
= d. Then qi, pi, qi−1, d, u, pi−1, qi is an alternating 
F1-circuit, which implies that qid ∈ F2 and we are done. �
Observation 10. For each even i ∈ {0, 1, 2, . . . , t}, either api ∈ E(G) or both dqi−1, dqi+1 ∈ E(G).

Proof. Suppose that there exists an even i ∈ {0, 1, 2, . . . , t} and j ∈ {i − 1, i + 1} such that api, dq j /∈ E(G). By Observation 9, 
we know that pi 
= a and q j 
= d. So we have api, dq j ∈ E(G). Now if d 
= qi , then we have by Observation 9 that qid ∈ F1. 
Then p j, q j, d, qi, p j is an alternating 4-cycle whose both opposite edges belong to F1, which is a contradiction. Therefore 
we can assume that d = qi . Then (d = qi), pi, a, u, (d = qi) is an alternating 4-cycle whose opposite edges both belong to F2, 
which is again a contradiction. �

Recall that D ′ is the component containing ec in G∗ .

Observation 11. For any odd i ∈ {0, 1, . . . , t}, if api−1 ∈ E(G), then for each y ∈ {c, d} for which yqi ∈ E(G), we have yqi ∈ D ′ . On 
the other hand, if api−1 /∈ E(G), then dqi ∈ D ′ .

Proof. We prove this by induction on i. When i = 1, we have ap0 = ab ∈ E(G) and for each y ∈ {c, d} such that yq1 ∈ E(G), 
we have that ec, (ab = ap0), yq1 is a path in G∗ . We thus have the base case. We shall now prove the claim for i ≥ 3
assuming that the claim is true for i − 2. Suppose that api−1 ∈ E(G). By Observation 9, there exists y′′ ∈ {c, d} such that 
y′′qi−2 ∈ E(G). By the induction hypothesis, either y′′qi−2 ∈ D ′ or dqi−2 ∈ D ′ (depending upon whether api−3 is an edge 
or not). Thus in any case, we have that there exists y′ ∈ {c, d} such that y′qi−2 ∈ D ′ . Now for each y ∈ {c, d} such that 
yqi ∈ E(G), since y′qi−2, api−1, yqi is a path in G∗ , we get that yqi ∈ D ′ , so we are done. Next, suppose that api−1 /∈ E(G). 
Then by Observation 9, we have upi−1 ∈ E(G) and by Observation 10, we have dqi−2, dqi ∈ E(G). We then have by the 
induction hypothesis that dqi−2 ∈ D ′ . Since dqi−2, upi−1, dqi is a path in G∗ , we have dqi ∈ D ′ . �
10
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Recall that C is the component of G∗ containing the vertex cd.

Observation 12. For each odd i ∈ {0, 1, . . . , t}, if a 
= pi then api ∈ C.

Proof. We prove this by induction on i. The base case when i = 1 is true since if a 
= p1 then by Observation 9, ap1 ∈ E(G), 
and since {ap1, (q0 = c)d} ∈ E(G∗), we have ap1 ∈ C . Assume that i ≥ 3 and the claim is true for i − 2. Suppose that a 
= pi . 
Then we have api ∈ E(G) by Observation 9. If d = qi−1 then we have {api, c(qi−1 = d)} ∈ E(G∗), so we have api ∈ C . So we 
assume that d 
= qi−1. Then by Observation 9, we have that dqi−1 ∈ E(G). By the induction hypothesis, we have that either 
api−2 ∈ C or a = pi−2. If api−2 ∈ C , then since api, dqi−1, api−2 is a path in G∗ , we have api ∈ C . On the other hand, if 
a = pi−2 then we again have api ∈ C as api, dqi−1, u(pi−2 = a), cd is a path in G∗ . �

Recall that t is odd, ptqt ∈ D , and ptqt is the lexicographically smallest vertex in D ∪ D ′ .

Observation 13. pt < min{c, d}

Proof. Let {y, ȳ} = {c, d}, where y < ȳ. Note that pt /∈ {c, d}, since by Observation 9, ptb ∈ F1, but we know that cb, db ∈ F2. 
By the same lemma, we also have that qt /∈ {c, d}. Therefore as min{pt , qt} ≤ min{c, d} (since ptqt < bc, bd), we have that 
min{pt , qt} < min{c, d} = y. Now if pt = min{pt , qt} then we are done. Therefore let us assume that qt = min{pt , qt}, and so 
qt < y.

Suppose that yqt ∈ E(G). If yqt /∈ D ′ , then by Observation 11, we have that apt−1 /∈ E(G) and yqt ∈ D ′ . By Observation 9, 
we know that pt−1 
= a, which implies that apt−1 ∈ E(G). By our choice of ptqt , we now have that ptqt < yqt , which 
implies that pt < y. Now by Observation 8, pt 
= a, which implies by Observation 9 that pta ∈ F2. Then a, pt , qt−1, pt−1, a
is an alternating 4-cycle in which both opposite edges belong to F2, which is a contradiction. We can thus conclude that 
yqt ∈ D ′ . Then by our choice of ptqt , we have that pt < y, and we are done. So we assume that yqt /∈ E(G).

Recall that qt < y (and therefore yqt ∈ E(G)). Now if y < pt then we have qt < y < pt where qt y /∈ E(G) and qt pt ∈ E(G). 
By Observation 2, this implies that there exists x < qt such that xy ∈ E(G) and xpt /∈ E(G) (which means that xpt ∈ E(G)

since x < pt ). Then {xy, ptqt} ∈ E(G∗), which implies that xy ∈ D . But xy < ptqt , which contradicts our choice of ptqt . We 
can thus conclude that pt < y (recall that pt 
= y as pt /∈ {c, d}) and we are done. �

Note that by Observation 13 and Observation 8 we have that a 
= pt . Then by Observation 12, we have apt ∈ C . By 
Observation 13 and Observation 7, pt < min{c′, d′}, which implies that apt < c′d′ . This is a contradiction to our choice of 
c′d′ . This completes the proof of Lemma 6.

By Lemma 6 and Lemma 4, we have the following corollary.

Corollary 4. There are no strict switching paths in G (with respect to (F0, F1, F2)).

Note. Given a 2-coloring of G∗ in which the color classes are denoted by E1 and E2, Raschle and Simon [9] define an “A P6” 
in G to be a sequence v0, v1, . . . , v5, v0 of distinct vertices of G such that v0 v1, v2 v3, v4 v5 ∈ Ei for some i ∈ {1, 2} and 
v1 v2, v3 v4, v5 v0 ∈ E(G). A 2-coloring of G∗ is said to be “A P6-free” if there is no A P6 in G with respect to that coloring. 
Raschle and Simon observe that if G∗ has an A P6-free 2-coloring, then G has a 2-threshold cover and it can be computed 
in time O (|E(G)|2) (using Theorem 3.1, Theorem 2.5, Fact 2 and Fact 1 in [9]). The major part of the work of Raschle 
and Simon is to show that an A P6-free 2-coloring of G∗ always exists if G∗ is bipartite and that it can be computed in 
time O (|E(G)|2) (Sections 3.2 and 3.3 of [9]). It can be seen that any 2-coloring of G∗ obtained by extending the partial 
2-coloring of G∗ computed after Phases I and II of our algorithm is in fact an A P6-free 2-coloring of G∗ as follows. Let E1
and E2 be the color classes of such a 2-coloring of G∗ . We can assume without loss of generality that F1 ⊆ E1 and F2 ⊆ E2. 
Note that F0 ⊆ E1 ∪ E2. Suppose that there is an A P6 v0, v1, . . . , v5, v0 in G with respect to this coloring where the edges 
v0 v1, v2 v3, v4 v5 ∈ Ei , where i ∈ {1, 2}. Note that (∅, E1, E2) is a valid 3-partition of E(G). For each even j ∈ {0, 1, . . . , 5}, 
since v j, v j+1, v j+2, v j+3 (subscripts modulo 6) is an alternating Ei -path, we have that v j v j+3 ∈ E(G). This implies that 
for each even j ∈ {0, 1, . . . , 5}, v j, v j+1, v j+2, (v j+5 = v j−1), v j is an alternating 4-cycle in G (note that from the previous 
observation, we have v j+2 v j+5 ∈ E(G)), from which it follows that v j v j+1 is in a non-trivial component of G∗ . Therefore, 
v0 v1, v2 v3, v4 v5 /∈ F0. Since these edges belong to Ei , it follows that v0 v1, v2 v3, v4 v5 ∈ Fi . Then v0, v1, . . . , v5, v0 is an 
alternating Fi -circuit, and therefore v0 v3 ∈ F3−i . This implies that (v2, v3, v0, v1) is a strict Fi -switching path in G , which 
contradicts Corollary 4. Thus the proof of Theorem 1 can already be completed using the observations in [9]. In the next 
section, we nevertheless give a self-contained proof that shows that G has a 2-threshold cover without using the “threshold 
completion” method used in [6,9]. Also note that since it is clear that Phases I and II of the algorithm, and also the initial 
construction of G∗ , can be done in time O (|E(G)|2), we have an algorithm with the same time complexity that computes 
the 2-threshold cover of a graph G whose auxiliary graph G∗ is bipartite (note however that there is a faster algorithm for 
computing a 2-threshold cover due to Sterbini and Raschle [11]).
11
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5.2. Extending the algorithm

Note that there may be pentagons in G with respect to the valid 3-partition (F0, F1, F2) that is generated after the first 
two phases of the algorithm given in Section 3 (even though there are no strict pentagons). We now introduce a third phase 
for the algorithm so as to eliminate all these pentagons to obtain a new valid 3-partition of E(G) that does not contain any 
pentagons. We then show that there are no switching paths or switching cycles with respect to this valid 3-partition, which 
completes the proof.

Observation 14. There does not exist a1, a2, b1, b2, e1, e2, c, d ∈ V (G) such that (a1, b1, c, d, e1) is an F1-pentagon and (a2, b2, c,
d, e2) is an F2-pentagon.

Proof. Suppose not. Then as b1c, e1c ∈ F2 and b2c, e2c ∈ F1, we have {b1, e1} ∩{b2, e2} = ∅. Then b1, a1, c, b2 and e1, a1, c, e2
are alternating F1-paths, implying that b1b2, e1e2 ∈ E(G). As b1, b2, e2, e1, b1 is an alternating 4-cycle, we have {b1b2, e1e2} ∈
E(G∗). Thus, b1b2 /∈ F0, or in other words, b1b2 ∈ F1 ∪ F2. If b1b2 ∈ F1, then (c, b1, b2, a2) is a strict F2-switching path, which 
contradicts Corollary 4. On the other hand, if b1b2 ∈ F2, then (c, b2, b1, a1) is a strict F1-switching path, which again gives 
a contradiction to Corollary 4. �

We shall now describe a Phase III that can be added to the algorithm of Section 3 to construct a partial 2-coloring of G∗
that can be used to construct a valid 3-partition of E(G) that contains no pentagons.

Phase III. For each i ∈ {1,2}, let

Si = {cd ∈ F0 : ∃a,b, e ∈ V (G) such that (a,b, c,d, e) is an Fi -pentagon in G with
respect to (F0, F1, F2)}.

Color every vertex in S1 with 2 and every vertex in S2 with 1.

Let F ′
0 be the set of vertices of G∗ that are uncolored after Phase III, and for i ∈ {1, 2}, let F ′

i be the set of vertices of G∗
that are colored i. Clearly, F ′

0 = F0 \ (S1 ∪ S2), F ′
1 = F1 ∪ S2 and F ′

2 = F2 ∪ S1. Note that S1, S2 ⊆ F0 and that S1 ∩ S2 = ∅
by Observation 14. It is easy to see that {F ′

0, F
′
1, F

′
2} is a partition of E(G). Further, since F1 ⊆ F ′

1, F2 ⊆ F ′
2 and (F0, F1, F2)

is a valid 3-partition of E(G), it follows that (F ′
0, F ′

1, F
′
2) is also a valid 3-partition of E(G). From here onward, we use the 

terms “pentagons” and “switching paths” with respect to (F ′
0, F ′

1, F
′
2) unless otherwise mentioned.

Lemma 7. There are no pentagons in G with respect to (F ′
0, F

′
1, F

′
2).

Proof. Suppose for the sake of contradiction that (a, b, c, d, e) is a pentagon in G with respect to (F ′
0, F

′
1, F

′
2). Let i ∈

{1, 2} such that (a, b, c, d, e) is an F ′
i -pentagon. Recall that ec, ab, ed and bc, ae, bd are paths in G∗ and hence each of 

ab, ae, bc, bd, ec, ed is in a non-trivial component of G∗ . Thus none of them is in F0. Since ab, ae ∈ F ′
i and bc, bd, ec, ed ∈

F ′
3−i , this implies that ab, ae ∈ Fi and bc, bd, ec, ed ∈ F3−i . Since (a, b, c, d, e) is an F ′

i -pentagon, we have cd ∈ F ′
0 ∪ F ′

i . 
This implies that cd /∈ F ′

3−i and that cd ∈ F0 ∪ Fi . If cd ∈ F0, then (a, b, c, d, e) is an Fi -pentagon in G with respect to 
(F0, F1, F2), which implies that cd ∈ Si , and therefore cd ∈ F ′

3−i . Since this is a contradiction, we can assume that cd ∈ Fi . 
Then (a, b, c, d, e) is a strict Fi -pentagon in G with respect to (F0, F1, F2), contradicting Lemma 6. �
Lemma 8. There are no switching paths in G with respect to (F ′

0, F
′
1, F

′
2).

Proof. Suppose not. Let (a, b, c, d) be a switching path in G with respect to (F ′
0, F

′
1, F

′
2). Let i ∈ {1, 2} such that (a, b, c, d)

is an F ′
i -switching path. Then we have ad ∈ E(G), ab, cd ∈ F ′

i ∪ F ′
0, and bc ∈ F ′

3−i . Suppose that bc belongs to a non-trivial 
component of G∗ . Then there exists uv ∈ E(G) such that bv, cu ∈ E(G). By Lemma 3 and Lemma 7, we have that a 
= u
and d 
= v . Notice that since bc ∈ F ′

3−i and b, c, u, v, b is an alternating 4-cycle, we have uv ∈ F ′
i . Then d, c, u, v, b, a, d and 

a, b, v, u, c, d, a are alternating F ′
i -circuits, implying that dv, au ∈ F ′

3−i and ab, cd ∈ F ′
i . This further implies that (a, b, c, d)

is a strict F ′
i -switching path with respect to (F ′

0, F
′
1, F

′
2). Since b, a, d, v, b and c, d, a, u, c and b, c, u, v, b are alternating 

4-cycles, we also have that ab, cd, bc /∈ F0, which further implies that ab, cd ∈ Fi and bc ∈ F3−i . Then (a, b, c, d) is also a 
strict Fi -switching path with respect to (F0, F1, F2), which is a contradiction to Corollary 4.

Therefore we can assume that bc belongs to a trivial component in G∗ , i.e. bc ∈ F0. Since bc ∈ F ′
3−i , it should be the 

case that bc ∈ Si , which implies that there exists an Fi -pentagon (x, y, b, c, z) in G with respect to (F0, F1, F2). Since 
ab, cd ∈ F ′

i ∪ F ′
0 ⊆ Fi ∪ F0, we know that a, d /∈ {x, y, z}. Since a, b, x, y and d, c, x, z are alternating Fi -paths, we have that 

ay, dz ∈ E(G). Since a, y, z, d, a is an alternating 4-cycle, we know that one of ay, dz is in Fi and the other in F3−i . Because 
of symmetry, we can assume without loss of generality that ay ∈ Fi and dz ∈ F3−i (by renaming (a, b, c, d) as (d, c, b, a) and 
interchanging the labels of y and z if necessary). Then a, y, z, x, c, d, a is an alternating Fi -circuit, implying that ax ∈ F3−i . 
Then (a, x, z, d) is a strict F3−i -switching path in G with respect to (F0, F1, F2), which again contradicts Corollary 4. �
12
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Lemma 9. There are no switching cycles in G with respect to (F ′
0, F

′
1, F

′
2).

Proof. Suppose not. Let (a, b, c, d) be a switching cycle in G with respect to (F ′
0, F

′
1, F

′
2). Let i ∈ {1, 2} such that (a, b, c, d) is 

an F ′
i -switching cycle. Then we have ab, cd ∈ F ′

i ∪ F ′
0 and ad, bc ∈ F ′

3−i . Suppose that bc belongs to a non-trivial component 
of G∗ . Then there exists uv ∈ E(G) such that bv, cu ∈ E(G). Since b, c, u, v, b is an alternating 4-cycle and bc ∈ F ′

3−i , we 
have that uv ∈ F ′

i . If u = a and v = d, then b, (a = u), c, (d = v), b is an alternating 4-cycle in which both the opposite edges 
belong to F ′

i ∪ F ′
0, which is a contradiction. Therefore, either u 
= a or v 
= d. Because of symmetry, we can assume without 

loss of generality that u 
= a (by renaming (a, b, c, d) as (d, c, b, a) and interchanging the labels of u and v if necessary). 
Then a, b, v, u is an alternating F ′

i -path, implying that au ∈ E(G). If au ∈ F ′
i ∪ F ′

0 then (c, d, a, u) is an F ′
i -switching path, and 

if not, then au ∈ F ′
3−i , in which case (b, a, u, v) is an F ′

i -switching path. In both cases, we have a contradiction to Lemma 8.
Therefore we can assume that bc belongs to a trivial component of G∗ , i.e. bc ∈ F0. Since bc ∈ F ′

3−i , it should be the 
case that bc ∈ Si , which implies that there exists an Fi -pentagon (x, y, b, c, z) in G with respect to (F0, F1, F2). Since 
ab, cd ∈ F ′

i ∪ F ′
0 ⊆ Fi ∪ F0, a, d /∈ {x, y, z}. As y, x, b, a and z, x, c, d are alternating Fi -paths, we have that ya, zd ∈ E(G). Now 

if both ya, zd ∈ F ′
i ∪ F ′

0 we have that (y, a, d, z) is an F ′
i -switching path, which is a contradiction to Lemma 8. On the other 

hand, if ya ∈ F ′
3−i or zd ∈ F ′

3−i , then since xy, xz ∈ Fi ⊆ F ′
i , we have that either (x, y, a, b) or (x, z, d, c) is an F ′

i -switching 
path, which again contradicts Lemma 8. �

Now from Lemma 1, Lemma 2, Lemma 8, and Lemma 9, we have Theorem 1.

6. Time complexity of the algorithm

We now show that our overall algorithm consisting of Phases I, II, and III can be implemented to run in time O (|E(G)|2). 
Since Lex-BFS takes only linear time, Phase I of our algorithm takes only time O (|V (G)| + |E(G)|) = O (|E(G)|) (since 
we can assume that the graph G does not contain any isolated vertices). We assume that in addition to the adjacency 
list representation of G , we also have an adjacency matrix representation of G using which we can check in O (1) time 
whether any two given vertices are adjacent or not (since our algorithm needs to run only in time O (|E(G)|2), we can 
just construct this adjacency matrix representation as a preprocessing step). The graph G∗ can be constructed in time 
O (|V (G∗)| + |E(G∗)|) = O (|E(G)|2). It is not hard to see that given an ordering of the vertices generated by Phase I, the 
coloring procedure of Phase II can be implemented as a BFS or DFS through every non-trivial component C of G∗ to find 
the lexicographically smallest vertex in C , and hence can be done in time O (|V (G∗)| + |E(G∗)|) = O (|E(G)|2). Thus, the 
time complexity of our algorithm for paraglider-free graphs (and therefore also split graphs) is O (|E(G)|2). For the case of 
general graphs, we have to implement Phase III as well. We now show that this step can also be implemented to run in 
time O (|E(G)|2). Assume that we have constructed the sets F0, F1 and F2 after Phases I and II have completed, and this 
information is stored in a form such that not only can the sets be enumerated in time proportional to their sizes, given any 
edge, it can be determined in O (1) time which of the sets F0, F1 or F2 it belongs to. We shall be done if we show how for 
each edge cd in F0, we can check in O (|E(G)|) time whether there exists a Fi -pentagon (a, b, c, d, e) in G with respect to 
(F0, F1, F2), for each i ∈ {1, 2}. We shall describe the algorithm only for the case i = 1 as the other case is similar; i.e. we 
describe how, given an edge cd ∈ F0, one can check for the presence of an F1-pentagon (a, b, c, d, e) in G in O (|E(G)|) time.

We first construct the set Q = {b ∈ V (G) : bc, bd ∈ F2}. Since this can be done by just inspecting the edges incident on 
c and the edges incident on d, it can be done in O (|E(G)|) time. We now construct the set P = {a ∈ V (G) : ac, ad /∈ E(G)

and ∃b ∈ Q such that ba ∈ F1}. Clearly, this can be done by inspecting the edges incident on the vertices in Q , and hence 
also takes just O (|E(G)|) time. While doing this, for each vertex b ∈ Q for which we find that the set {a ∈ P : ab ∈ F1} is 
not empty, we store as f (b) an arbitrary vertex in the set. It now only needs to be checked whether there exist b, e ∈ Q
and a ∈ P such that be /∈ E(G) and ab, ae ∈ F1. For each vertex a ∈ P , we construct the set N ′(a) = {b ∈ Q : ab ∈ F1}, which 
also takes time O (|E(G)|) as this can be done by inspecting the edges incident on a. We claim that the following procedure 
now checks if there exists an F1-pentagon (a, b, c, d, e).

1. S ← ∅
2. For each a ∈ P ,
3. For each b ∈ N ′(a),
4. For each e ∈ S ,
5. If be /∈ E(G)

6. If ae ∈ F1
7. Report that (a,b, c,d, e) is an F1-pentagon and stop.
8. Else
9. Report that ( f (e),b, c,d, e) is an F1-pentagon and stop.
10. S ← S ∪ {b}

We shall first analyze the running time of the above procedure. Note that at every point of time during the execution 
of the procedure, the set S is a clique in G . Line 2 gets executed at most O (|P |) = O (|E(G)|) times. Lines 3 and 10 get 
13



M.C. Francis and D. Jacob Discrete Mathematics 346 (2023) 113364
1

2 3

4 5

6

7

14

15

23 24

25 27

35

36

45

46

47

5667

(a) (b)

Fig. 3. (a) The graph G from Fig. 1, with its vertices numbered according to a non-Lex-BFS ordering, and (b) the graph G∗ and its partial 2-coloring after 
Phases II and III.

executed at most O (|Q |) = O (|E(G)|) times. Let t denote the cardinality of the set S after the completion of the procedure. 
Lines 4 and 5 get executed at most O (

(t
2

)
) times. Since the set S constructed by the procedure is a clique in G , we have 

that O (
(t

2

)
) = O (|E(G[S])|) = O (|E(G)|). Clearly, lines 6 to 9 get executed at most once. Thus the total running time of the 

above procedure is O (|E(G)|), as required.
We shall now prove that the procedure is correct, for which the following observation will be useful.

Observation 15. Let a, a′ ∈ P and b, b′ ∈ Q such that ab, a′b′ ∈ F1 and ab′, a′b /∈ F1 . Then bb′ ∈ E(G).

Proof. Suppose that bb′ /∈ E(G). Recall that (F0, F1, F2) is a valid 3-partition of E(G). Suppose that a′b, ab′ /∈ E(G). As 
(a, b, a′, b′) is an alternating F1-path, we have ab′ ∈ E(G), which is a contradiction. So at least one of a′b, ab′ is in E(G). 
We assume that a′b ∈ E(G), as the other case is symmetric. Since a′b /∈ F1, we have a′b ∈ F2 ∪ F0. Now (a′, b, b′, d) is an 
alternating F2-path (recall that as b′ ∈ Q , we have b′d ∈ F2), which implies that a′d ∈ E(G), a contradiction to the fact that 
a′ ∈ P . �

Suppose that the procedure reports that (a, b, c, d, e) is an F1-pentagon in line 7. Then it is clear that ab, ae ∈ F1, 
bc, bd, ec, ed ∈ F2 (since b ∈ N ′(a) ⊆ Q and e ∈ S ⊆ Q ), cd ∈ F0, and ac, ad, be /∈ E(G), which means that the procedure’s 
output is correct. Suppose instead that the procedure reports that ( f (e), b, c, d, e) is an F1-pentagon in line 9. Then as be-
fore, it is clear that cd ∈ F0, ab ∈ F1, bc, bd, ec, ed ∈ F2, and be /∈ E(G). It follows from the definition of f (e) that f (e)e ∈ F1
and that f (e) ∈ P , which further implies that f (e)c, f (e)d /∈ E(G). Since the procedure has reached line 9, we know that 
ae /∈ F1. Now from Observation 15 applied to a, f (e), b, e, we can conclude that f (e)b ∈ F1. Thus ( f (e), b, c, d, e) is indeed 
an F1-pentagon.

Next, suppose that there is an F1-pentagon (a′, b′, c, d, e′) in G , but our procedure fails to detect any pentagon. Clearly, 
we have a′ ∈ P and b′, e′ ∈ N ′(a′) ⊆ Q . As the procedure never detects any pentagon, every vertex in N ′(a′) gets added to 
S at some point during the execution of the procedure. We shall assume without loss of generality that e′ gets added to S
before b′ . Then it is clear that line 5 eventually gets executed with b = b′ and e = e′ , and since b′e′ /∈ E(G), the procedure 
will report a pentagon, which contradicts our assumption that it did not find any pentagon.

7. Conclusion

Would running just Phases II and III of our algorithm always produce a valid 2-threshold cover of G for any graph G? 
That is, could we have started with an arbitrary ordering of the vertices of G instead of a Lex-BFS ordering? We show that 
the algorithm may fail to produce a 2-threshold cover of the graph G shown in Fig. 1 if the algorithm starts by taking 
an arbitrary ordering of vertices in Phase I. Suppose that the vertices of the graph are ordered according to their labels 
as shown in Fig. 3(a). Clearly, it is not a Lex-BFS ordering, as since the vertex in the second position is not a neighbor of 
the vertex in the first position, it is not even a BFS ordering. The sets F ′

0, F
′
1, F

′
2 computed by our algorithm after Phases II 

and III will be as shown in Fig. 3(b)—the vertices of G∗ in the set F ′
1 are shown as black, the ones in F ′

2 as gray and the 
ones in F ′

0 as white. In Fig. 3(a), the black edges form the graph H1 and the gray edges form the graph H2. Clearly, neither 
is a threshold graph (for example, both contain a C4). On the other hand, Fig. 4 shows the 2-threshold cover of G computed 
by our algorithm if it starts with the Lex-BFS ordering of the vertices of G as indicated by the labels of the vertices in 
Fig. 4(a). Note that starting with a BFS ordering instead of a Lex-BFS ordering will also not work, since we can always add 
a universal vertex to the graph G shown in Fig. 3(a) and number it 0, so that the vertex ordering is now a BFS ordering. It 
is not difficult to see that the graphs H1 and H2 computed in this case also fail to be threshold graphs (in fact, the edges 
incident on the vertex labelled 0 are all isolated vertices in the auxiliary graph, and none of them belong to any pentagons; 
hence they all belong to F ′

0, and the sets F ′
1 and F ′

2 will be exactly the same as before).
Thus the graph G shown in Fig. 1 demonstrates that even though Phase I is optional for split graphs, for general graphs, 

our algorithm may not produce a 2-threshold cover of the input graph if Phase I is skipped. Note that the graph G is not a 
14
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Fig. 4. (a) The graph G from Fig. 1, with its vertices numbered according to a Lex-BFS ordering, and (b) the graph G∗ and its partial 2-coloring after 
Phases II and III.

paraglider-free graph. We have not found an example of a paraglider-free graph for which our algorithm will fail if Phase I 
is skipped.
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