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Chákṣu: A glaucoma specific fundus 
image database
J. R. Harish Kumar1 ✉, Chandra Sekhar Seelamantula2 ✉, J. H. Gagan   1, Yogish S. Kamath3,7, 
Neetha I. R. Kuzhuppilly3,7, U. Vivekanand4,7, Preeti Gupta5,7 & Shilpa Patil6,7

We introduce Chákṣu–a retinal fundus image database for the evaluation of computer-assisted 
glaucoma prescreening techniques. The database contains 1345 color fundus images acquired using 
three brands of commercially available fundus cameras. Each image is provided with the outlines for 
the optic disc (OD) and optic cup (OC) using smooth closed contours and a decision of normal versus 
glaucomatous by five expert ophthalmologists. In addition, segmentation ground-truths of the 
OD and OC are provided by fusing the expert annotations using the mean, median, majority, and 
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. The performance indices 
show that the ground-truth agreement with the experts is the best with STAPLE algorithm, followed 
by majority, median, and mean. The vertical, horizontal, and area cup-to-disc ratios are provided based 
on the expert annotations. Image-wise glaucoma decisions are also provided based on majority voting 
among the experts. Chákṣu is the largest Indian-ethnicity-specific fundus image database with expert 
annotations and would aid in the development of artificial intelligence based glaucoma diagnostics.

Background & Summary
Glaucoma is a chronic, irreversible, and slowly progressing optical neuropathy that damages the optic nerve1,2. 
Depending on the extent of damage to the optic nerve, glaucoma can cause moderate to severe vision loss. 
Glaucoma is asymptomatic in the early stages. It is not curable, and the lost vision cannot be restored. However, 
by early screening and detection, the progression of the disease could be slowed down. Color fundus imaging 
is the most viable non-invasive means of examining the retina for glaucoma2. The widest application of fundus 
imaging is in optic nerve head or optic disc examination for glaucoma management. Fundus imaging is widely 
used due to the relative ease of establishing a digital baseline for assessing the progression of the disease and the 
effectiveness of the treatment. Fundus imaging technology is developing rapidly and several exciting products 
with fully automated software applications for retinal disease diagnosis are on the horizon2–5. State-of-the-art 
tools based on image processing and deep learning algorithms are becoming increasingly useful and relevant. 
However, before deploying them in a clinical setting, a thorough validation over benchmark datasets is essential. 
The development of a large database with multiple expert annotations is a laborious and tedious task. A large 
annotated glaucoma-specific fundus image database is lacking, which is a gap that the Chákṣu database reported 
in this paper attempts to fill. Several retinal fundus image databases are publicly available to facilitate research 
and performance comparison of segmentation and classification algorithms. The salient features of various data-
bases are explained in the following and also highlighted in Table 1.

Databases such as the one available with Kaggle6 (provided by EyePACS) and Indian Diabetic Retinopathy 
Image Dataset (IDRiD)7,8 are part of image analysis competitions for diabetic retinopathy (DR) detection. 
Drishti-GS9–11 and Retinal Fundus Glaucoma Challenge (REFUGE)12,13 are glaucoma-specific databases and 
provide expert annotations of both OD and OC boundaries and binary decisions on glaucoma. REFUGE was 
the first and largest publicly available glaucoma-specific database (1200 images) with OD and OC ground-truth 
annotations for 800 images and glaucoma binary decisions for 400 images.
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Automatic Retinal Image Analysis (ARIA) database14 contains 143 color fundus images of size 768 × 576. 
ARIA provides OD segmentation and blood vessel masks created by trained experts and also annotation of the 
fovea center. OC segmentation mask and glaucoma decisions are not available.

The Digital Retinal Images for Optic Nerve Segmentation Database (DRIONS-DB)15 has 110 fundus images. 
The image resolution is 600 × 400 pixels and is accompanied by OD ground truth contours from two experts. 
The average age of the subjects is 53 years, all of them belonging to Caucasian ethnicity, with the gender distri-
bution of the subjects being 54% female and 46% male. About 23% of the patients had chronic glaucoma and 
77% ocular hypertension.

Drishti-GS database9,11 consists of 101 fundus images of the Indian population. Each image has a resolution 
of 2896 × 1944 pixels. The dataset is divided into train and test subsets. The training subset has 50 images with 
OD and OC segmentation ground truths and notching information. The test set has 51 images for which the 
ground truth is available. The subjects were in the range of 40–80 years with a nearly equal number of females 
and males. Ground truth was collected from four experts with varying clinical experience of 3, 5, 9, and 20 years. 
The database provides OD and OC segmentation soft-maps fused on one binary image, average OD and OC 
boundaries, and cup-to-disc ratio (CDR) values from four expert markings. It also provides image-level normal 
or glaucomatous decisions based on the majority opinion (3 out of 4) of experts and a decision on the occur-
rence of notching in the superior, inferior, nasal, and temporal sectors assessed by a single expert.

The IDRiD database7,8 contains 516 fundus images and has a mixture of disease stratification representatives 
of diabetic macular edema and diabetic retinopathy (DR). The images have a resolution of 4288 × 2848 pixels. 
The dataset provides expert DR lesion marking and normal retinal structures. The severity level of DR and 

Database
# Cameras/
FoV

Image resolution 
in pixels # Images Objective Ground-truth labels

ARIA14 One/50 768 × 576 143 Age-related macular 
degeneration assessment OD, retina vessels, fovea center

DRIONS-DB15 One/− 600 × 400 110 OD segmentation OD boundary

Drishti-GS9,11 One/30 2896 × 1944 101 Glaucoma classification OD and OC boundary, CDR values, 
glaucoma decision

IDRiD7,8 One/50 4288 × 2848 516 Diabetic retinopathy analysis Hard and soft exudates, microaneurysms, 
hemorrhages, OD boundary

LES-AV16 One/60 1622 × 1444 22 Glaucoma classification  
Vessel analysis Glaucoma decision, Retinal vessels

Messidor17,18 One/45
2304 × 1536, 
2240 × 1488, 
1440 × 960

1200 OD analysis OD boundary, fovea center

ONHSD19,20 One/45 640 × 480 99 OD segmentation OD boundary

ORIGA21 −/− — 650 Glaucoma classification OD and OC boundary, glaucoma 
decision

REFUGE12,13 Two/45 2124 × 2056, 
1634 × 1634 1200 Glaucoma classification OD and OC boundary, glaucoma 

decision, fovea center

RIGA23 −/−

2304 × 1536, 
2240 × 1488, 
1440 × 960, 
2743 × 1936, 
2376 × 1584

750 OD analysis OD and OC boundary

RIM-ONE24 One/45 2144 × 1424 169 Glaucoma classification OD boundary, glaucoma decision

STARE25,26 One/35 605 × 700 400 OD localization OD location

Chákṣu 
IMAGE (Ours) Three/40

2448 × 3264, 
2048 × 1536, 
1920 × 1440

1345 OD and OC segmentation 
Glaucoma classification

OD and OC boundary, glaucoma 
decision

Table 1.  Comparison of Chákṣu IMAGE with benchmark fundus image databases. The symbol “—” indicates 
‘information not reported’ by the authors.

Fig. 1  Vertical CDR (VCDR), horizontal CDR (HCDR), and area CDR (ACDR) from the segmented OD and OC.
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diabetic macular edema are provided for each image based on internationally accepted and clinically relevant 
standards. The OD segmentation ground truth, OD and fovea center locations are also provided. This dataset  
also contains 81 fundus images with signs of DR. Precise pixel-level annotations of microaneurysms, soft  
exudates, hard exudates, and hemorrhages are provided as binary masks.

The LES-AV dataset16 comprises 22 fundus images with corresponding manual annotations for the blood 
vessels, marked as arteries and veins. The images include labels for glaucomatous and healthy conditions.

Les Méthodes d Evaluation de Systèmes de’Segmentation et d’Indexation Dédiées à l’Ophtalmologie 
Rétinienne (Messidor)17,18 stands for methods to evaluate segmentation and indexing techniques in the field 
of retinal ophthalmology. The Messidor database contains 1200 colour fundus images with resolutions of 
2304 × 1536, 2240 × 1488, and 1440 × 960 pixels. 800 images were acquired with pupil dilation and 400 without 
dilation. The 1200 images are made available in three subsets of 400 images each. The database provides OD 
ground truth and fovea center annotation by a single clinician.

The Optic Nerve Head Segmentation Dataset (ONHSD)19,20 contains 99 fundus images taken from 50 patients. 
The subjects are from various ethnic backgrounds (Asian - 20%, Afro-Caribbean - 16%, Caucasian - 50%,  
Unknown - 14%). The images are of 640 × 480 resolution. The OD outline is marked by four clinicians.

The Online Retinal Fundus Image Database for Glaucoma Analysis and Research (ORIGA) database21 con-
tains 650 images with OD and OC segmentation and glaucoma severity grading information. However, the 
database is not publicly available.

The REFUGE database12,13 consists of 1200 images acquired from subjects of Chinese ethnicity using two 
devices–a Zeiss Visucam 500 fundus camera with a resolution of 2124 × 2056 pixels (400 images); and a Canon 
CR-2 device with a resolution of 1634 × 1634 pixels (800 images). Each image in the database includes a normal/
glaucomatous label. 90% of the database (1080 images) corresponds to normal subjects, while the remaining 
10% (120 images) corresponds to glaucomatous subjects. The database is divided into three subsets: training, 
offline, and online test sets. The training set contains higher-resolution images acquired with Zeiss Visucam 500 
camera, while the offline and online test sets include the lower-resolution images captured with Canon CR-2 
device. OD and OC manual annotations using tilted ellipses were provided by seven independent glaucoma spe-
cialists with an average experience of 8 years. The ground-truth for each image was obtained by a majority voting 
of the expert annotations. Information pertaining to localization of Fovea (the center of the macula) is provided 
for 400 images. The second version of the Retinal Fundus Glaucoma Challenge (REFUGE2) was organized in the 
year 202022 with the objective of evaluating and comparing automated algorithms for OD and OC segmentation 
and glaucoma detection. REFUGE2 dataset has 800 new fundus images on top of 1200 images from REFUGE.

Retinal fundus images for glaucoma analysis (RIGA) dataset23 contains 750 fundus images with OD and OC 
segmentation ground truth but there are no labels indicating glaucoma severity.

The Retinal Image Database for Optic Nerve Evaluation (RIM-ONE) database24 contains 169 images, of 
which, 118 are classified as normal, 12 as early glaucoma, 14 as moderate glaucoma, 14 as deep glaucoma, and 
11 as ocular hypertension.

The Structured Analysis of Retina (STARE) database25,26 consists of 400 fundus images acquired using a 
Topcon TRV-50 fundus camera with a resolution of 605 × 700 pixels. Out of the 400 images, 81 have OD local-
ization ground-truth, and are comprised of 31 images of healthy retinas and 50 images of retinas with a disease.

The review of the existing databases shows that only Drishti-GS9,11 and REFUGE12,13,22 databases provide 
both OD and OC segmentation ground-truth and glaucoma decisions along with a clear split of training and 
testing sets. Drishti-GS provides fused OD and OC segmentation ground-truth using annotations from four 
experts. However, the individual expert OD and OC segmentation ground-truths are not provided. REFUGE 

Fig. 2  Examples of optic disc, and optic cup annotation provided by an expert using the ImageJ annotation tool.
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provides a ground-truth by a majority voting across seven experts who provided the manual annotation, but 
doesn’t provide the individual expert annotations. Further, OD and OC ground-truth are marked only on 800 
images (400 in training set and 400 in validation set) using an oriented ellipse. The shape-specific outline is a 
potential source of bias in the computation of parameters relevant to glaucoma. Ground-truth outlines that rely 
on elliptical templates would naturally be biased in favor of ellipse-fitting algorithms. ARIA14, DRIONS-DB15, 
IDRiD7,8, ONHSD19,20, and Messidor17,18 provide OD segmentation outlines/ground-truth. However, OC seg-
mentation ground-truth and glaucoma decisions are not provided. LES-AV16 provides glaucoma decisions, but 
not OD and OC segmentation ground-truth. RIGA23 provides OD and OC segmentation ground-truth but not 
glaucoma decisions. RIM-ONE24 provides OD ground truth and glaucoma decisions but not OC segmentation 
ground truth. ORIGA21 is not yet publicly available. STARE25,26 provides only OD localization ground-truth. 
None of the publicly available fundus image databases provide the OD height/width/area, OC height/width/
area, and neuroretinal rim, which are crucial in the computation of clinically relevant glaucoma parameters such 
as vertical cup-to-disc ratio (VCDR), which is the ratio of vertical height of OC to OD; horizontal cup-to-disc 
ratio (HCDR), which is the ratio of horizontal width of OC and OD; and area cup-to-disc ratio (ACDR), 
which is the ratio of areas of OC and OD from the expert annotations (cf. Fig. 1). There is a lack of a sizeable 
glaucoma-specific database with multi-expert annotations and ground-truths.

Fig. 3  OD (Row 1) and OC (Row 3) segmentation by experts, and their binary representations (Row 2 and Row 4, 
respectively). Row 5 shows the combined OD and OC annotations.
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Methods
We introduce a new database namely Chákṣu IMAGE to aid the evaluation of computer-assisted glaucoma pre-
screening techniques for OD and OC segmentation, computation of VCDR, HCDR, and ACDR, glaucoma 
decisions, etc. The word Chákṣu refers to the eye in Sanskrit. Minor variations of this word, all referring to the 
eye, exist in several Indo-European languages. IMAGE is an acronym for IISc-MAHE Glaucoma Evaluation 
database. This database is the result of an interdisciplinary collaboration between the Indian Institute of Science 
(IISc), Bangalore and Manipal Academy of Higher Education (MAHE), Manipal, India.

Subject recruitment and image acquisition.  The subjects were recruited at the out-patient depart-
ment (OPD) of the Department of Ophthalmology, Kasturba Medical College (KMC), Manipal and at vari-
ous departments of Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), 
Manipal, Karnataka, India after obtaining necessary approvals from MAHE Institutional Review Board and 
Ethics Committee. The study adhered to the tenets of the Declaration of Helsinki27. The subjects are in the age 
group of 18 to 76 years and gave informed consent for data acquisition. The subjects are of Indian ethnicity–a 
demography that has not been covered adequately in the state-of-the-art fundus image databases. The subjects 
underwent an undilated fundus examination by an experienced ophthalmologist with the support of a technician 
as part of the standard clinical workflow. The data collection drive was carried out over a period of two years.

Particulars Training set Test set

Total number of images (1345) 1009 336

Fundus imaging devices used and number of images acquired per device:

Remidio (nonmydriatic type; image resolution: 2448 × 3264) 810 264

Bosch (nonmydriatic type; image resolution: 1920 × 1440) 104 41

Forus (nonmydriatic type; image resolution: 2048 × 1536) 95 31

Number of experts participated in manual annotations 5 5

OD/OC outlining provided by each expert ✓ ✓

Single mean OD/OC ground truth generated out of 5 manual annotations ✓ ✓

Single median OD/OC ground truth generated out of 5 manual annotations ✓ ✓

Single majority OD/OC ground truth generated out of 5 manual annotations ✓ ✓

Single STAPLE algorithm based OD/OC ground truth generated out of 5 manual annotations ✓ ✓

Parameters computed from expert annotations: ✓ ✓

OD, OC, and neuroretinal rim area ✓ ✓

Vertical cup-to-disc ratio (VCDR) ✓ ✓

Horizontal cup-to-disc ratio (HCDR) ✓ ✓

Area cup-to-disc ratio (ACDR) ✓ ✓

Glaucoma decision provided by each expert ✓ ✓

Single glaucoma decision generated by a majority vote ✓ ✓

Table 2.  Features of the Chákṣu IMAGE database.

Fig. 4  Median ground-truth computation using the x and y coordinates of the expert outlines as a function of 
the polar angle θ.
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The database consists of 1345 retinal color fundus images acquired using three brands of commercially 
available fundus imaging devices. The images acquired are 32-bit RGB and stored in JPEG/PNG format. The 
images acquired are approximately OD-centered and the acquisition devices used are: Remidio28 non-mydriatic 
Fundus-on-phone (FoP) camera with a resolution of 2448 × 3264 pixels (1074 images), Forus 3Nethra Classic29 
non-mydriatic fundus camera with a resolution of 2048 × 1536 pixels (126 images), and a Bosch30 handheld 
fundus camera with a resolution of 1920 × 1440 pixels (145 images). The patient’s personal information was 
anonymized. The database of 1345 fundus images is divided into training and test subsets comprising 1009 
images and 336 images, respectively, approximately in the ratio of 3:1.

Fig. 5  Fusion of binary annotations of experts’ OD (from Row 2 of Fig. 3) and OC (from Row 4 of Fig. 3) 
segmentation along with the mean, median, majority, and STAPLE ground-truths.

Experts’ annotation vs. Mean ground-truth

Se Sp Ac Ep J D

Expert 1 0.9439 1.0000 0.9991 0.0009 0.9439 0.9696

Expert 2 0.9050 1.0000 0.9983 0.0017 0.9050 0.9486

Expert 3 0.9208 1.0000 0.9986 0.0014 0.9208 0.9583

Expert 4 0.8838 1.0000 0.9978 0.0022 0.8838 0.9365

Expert 5 0.8869 1.0000 0.9979 0.0021 0.8869 0.9383

Average 0.9081 1.0000 0.9983 0.0017 0.9081 0.9503

Experts’ annotation vs. Median ground-truth

Expert 1 0.9878 0.9404 0.9989 0.0011 0.9404 0.9692

Expert 2 0.9689 1.0000 0.9989 0.0011 0.9440 0.9709

Expert 3 0.9794 0.9995 0.9989 0.0011 0.9472 0.9718

Expert 4 0.9571 0.9998 0.9989 0.0011 0.9431 0.9706

Expert 5 0.9586 0.9998 0.9989 0.0011 0.9428 0.9704

Average 0.9704 0.9879 0.9989 0.0011 0.9435 0.9706

Experts’ annotation vs. Majority ground-truth

Expert 1 0.9902 0.9991 0.9989 0.0011 0.9425 0.9702

Expert 2 0.9735 1.0000 0.9990 0.0010 0.9503 0.9742

Expert 3 0.9825 0.9995 0.9991 0.0009 0.9513 0.9737

Expert 4 0.9617 0.9999 0.9990 0.0010 0.9496 0.9740

Expert 5 0.9633 0.9998 0.9990 0.0010 0.9494 0.9739

Average 0.9742 0.9997 0.9990 0.0010 0.9486 0.9732

Experts’ annotation vs. STAPLE ground-truth

Expert 1 0.9976 0.9989 0.9989 0.0010 0.9397 0.9686

Expert 2 0.9875 0.9994 0.9991 0.0008 0.9550 0.9763

Expert 3 0.9939 0.9992 0.9991 0.0008 0.9535 0.9746

Expert 4 0.9840 0.9996 0.9993 0.0006 0.9628 0.9809

Expert 5 0.9843 0.9997 0.9993 0.0006 0.9652 0.9820

Average 0.9894 0.9993 0.9991 0.0007 0.9552 0.9764

Table 3.  Performance comparison of experts’ OD segmentation vs. mean, median, majority, and STAPLE OD 
ground-truth. The best performance indices overall are for the STAPLE algorithm, followed by the majority, 
median, and mean ground-truths.
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Expert annotations.  Five expert Indian ophthalmologists provided the OD and OC segmentation 
ground-truth and a binary decision on whether the subject is glaucomatous or not. Two of the experts are expe-
rienced Professors, two Associate Professors, and one is a clinical practitioner. Three of the experts are glaucoma 
specialists and two are general ophthalmologists, with experience ranging from 5 to 15 years. They are also coau-
thors of this paper. In order to overcome bias due to shape-specific (for instance, the tilted-ellipse) OD and OC 
annotation in some of the existing databases, our experts used smooth closed contours for manual delineation of 
the OD and OC. The annotation tool is based on ImageJ31,32, which is a widely used Java-based image processing 
program developed at the National Institutes of Health, USA. The experts specify several knot points (greater 
than 10) on the boundary of the OD/OC using ImageJ’s polygon selection tool. The points are connected using 
cubic B-spline interpolation. We used the cubic B-spline kernel as it possesses the minimum-curvature interpo-
lation property33. The experts were given the flexibility to edit the knot locations, update the contour, and save 
the final outline. An illustration of the contours is provided in Fig. 2, wherein the OD and OC are shown in green 
and blue contours, respectively. The contours are used to arrive at a binary decision mask, which serves as the 
ground-truth for the OD and OC segmentation. Figure 3 shows the OD and OC outlines provided by the experts 
on a cropped fundus image together with their binary representations and fusion of expert OD and OC segmenta-
tion. In addition to the outline, the experts also provide binary glaucomatous/nonglaucomatous decisions, which 
are decided by a majority vote to arrive at a single decision per image.

Table 2 summarizes the key features of the database.

OD and OC segmentation ground-truth.  Annotation by several experts is essential to account for 
inter-expert variability. However, to quantify the performance of a technique, it would be useful to have a single 
ground-truth. We consider the fusion of the expert annotations based on the mean, median, majority, and 
STAPLE algorithms. The mean segmentation ground-truth is the region agreed upon by all the experts and is 
determined by the intersection of all five annotations. We also propose a novel median-based fusion technique. 
Consider the parametrization of the x and y coordinates of the OD and OC outlines in terms of the polar  
angle [0, 2 )θ π∈  as shown in Fig.  4. We compute the median coordinates θx( ) and y ( )θ  as follows: 
x x x x x x( ) median( ( ), ( ), ( ), ( ), ( ))1 2 3 4 5θ θ θ θ θ θ= ; and θ θ θ θ θ θ=y y y y y y( ) median( ( ), ( ), ( ), ( ), ( )) ,1 2 3 4 5  where xi(θ) 
and yi(θ) denote the x and y coordinates, respectively, at angle θ, of the annotation given by Expert i. The closed 

Experts’ annotation vs. Mean ground-truth

Se Sp Ac Ep J D

Expert 1 0.7556 1.0000 0.9988 0.0012 0.7556 0.8537

Expert 2 0.6202 1.0000 0.9977 0.0023 0.6202 0.7507

Expert 3 0.6709 1.0000 0.9983 0.0017 0.6709 0.7919

Expert 4 0.6100 1.0000 0.9977 0.0023 0.6100 0.7446

Expert 5 0.7890 1.0000 0.9990 0.0010 0.7890 0.8714

Average 0.6891 1.0000 0.9983 0.0017 0.6891 0.8025

Experts’ annotation vs. Median ground-truth

Expert 1 0.9450 0.9994 0.9990 0.0010 0.8092 0.8906

Expert 2 0.8407 0.9998 0.9987 0.0013 0.7894 0.8787

Expert 3 0.9014 0.9997 0.9990 0.0010 0.8328 0.9067

Expert 4 0.8466 0.9999 0.9989 0.0011 0.8112 0.8932

Expert 5 0.9460 0.9992 0.9989 0.0011 0.7803 0.8730

Average 0.8959 0.9996 0.9989 0.0011 0.8046 0.8884

Experts’ annotation vs. Majority ground-truth

Expert 1 0.9561 0.9993 0.9991 0.0009 0.8184 0.8950

Expert 2 0.8546 0.9998 0.9988 0.0012 0.8039 0.8866

Expert 3 0.9284 0.9996 0.9992 0.0008 0.8557 0.9196

Expert 4 0.8672 0.9999 0.9991 0.0009 0.8376 0.9086

Expert 5 0.9589 0.9992 0.9990 0.0010 0.7931 0.8792

Average 0.9130 0.9996 0.9990 0.0010 0.8217 0.8978

Experts’ annotation vs. STAPLE ground-truth

Expert 1 0.9900 0.9988 0.9987 0.0012 0.7782 0.8666

Expert 2 0.9545 0.9995 0.9992 0.0007 0.8742 0.9280

Expert 3 0.9822 0.9991 0.9990 0.0009 0.8313 0.9015

Expert 4 0.9591 0.9995 0.9993 0.0006 0.8853 0.9364

Expert 5 0.9957 0.9985 0.9985 0.0014 0.7460 0.8450

Average 0.9763 0.9990 0.9989 0.0009 0.8230 0.8955

Table 4.  Performance comparison of experts’ OC segmentation vs. mean, median, majority, and STAPLE OC 
ground-truth. The performance indices are the best for the STAPLE algorithm, followed by majority, median, 
and mean ground-truths.
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contour formed by θx( ) and y ( )θ  represents the median ground-truth boundary. The median is proposed as a 
reliable fusion technique as it is robust to outliers. The majority ground-truth is obtained as the union of the 
regions agreed upon by at least three experts out of five. Finally, the STAPLE algorithm34 based ground-truth 
boundary is also obtained. STAPLE stands for “Simultaneous Truth and Performance Level Estimation” and is an 
iterative weighted voting algorithm. It is widely used in the validation of medical image segmentation algorithms 
due to its robustness and high accuracy. The fusion of the OD and OC segmentations together with various fused 
ground-truth outlines is illustrated in Fig. 5. One could leverage the multi-expert annotations and several fused 
ground-truths to perform data augmentation for training machine learning algorithms.
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Fig. 6  Comparison of robust linear regression plots for Dice index. Column 1: optic disc; Column 2: optic cup.
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Data Records
Chákṣu IMAGE35 is available at the public figshare repository: https://doi.org/10.6084/m9.figshare.20123135 
and has the following directory/file structure:

The folder 1.0_Original_Fundus_Images in the Train set contains 104, 95, and 810 color fundus 
images acquired using Bosch, Forus, and Remidio devices, respectively. The folder 1.0_Original_Fundus_
Images in the Test set contains 41, 31, and 264 color fundus images acquired using Bosch, Forus, and 
Remidio devices, respectively. The folder 2.0_Doctors_Annotations in the Train/Test set con-
tains the expert annotations of OD and OC. The binary segmentation of OD and OC is contained in the folder 
3.0_Doctors_Annotations_binary_OD_OC in the Train/Test set. The folder 4.0_OD_OC_
Fusion_Images in the Train/Test set contains binary images of OD and OC fused into one. The folder 
5.0_OD_OC_Mean_Median_Majority_STAPLE in the Train/Test set contains the overlay, mean, 
median, majority, and STAPLE algorithm-based binary ground-truths. The folder 6.0_Glaucoma_Decision 
in the Train/Test set contains glaucoma decisions of the experts and also a majority voting-based decision.

Technical Validation
For analyzing the experts’ annotations and ground-truths, we consider a subset of the training set containing 
810 fundus images captured by the Remidio device. The mean, median, majority, and STAPLE ground-truth OD 
and OC images were derived from the expert annotations. Sensitivity (Se), specificity (Sp), accuracy (Ac), error 
(Ep), Jaccard (J), and Dice (D) similarity indices are standard objective measures that are used to quantify image 
segmentation performance36,37. These indices are computed based on the true positives (TP), false positives (FP), 
false negatives (FN), and true negatives (TN). Sensitivity (or true positive rate) is defined as the proportion of 
positives that are correctly identified as positives. Specificity (or true negative rate) is defined as the proportion 
of negatives that are correctly identified as negatives. Accuracy measures the degree of closeness of algorithm 
segmentation to that of the expert. The performance indices are computed as shown below:

=
+

S TP
TP FN

Sensitivity ( )
( )

,e

=
+( )S TN

TN FP
Specificity

( )
,p

A TP TN
TP TN FP FN

Accuracy ( ) ( )
( )

, andc = +
+ + +

= − .E AError ( ) (1 )r c
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Sensitivity could be unity for a poor segmentation much larger than the ground truth. Specificity is therefore the 
necessary counterpart of Sensitivity, but it could equal one even for a poor segmentation that does not detect the 
region of interest. Jaccard similarity index (J) is the ratio between the intersection and union. Dice similarity index (D) 
is closely related to the Jaccard similarity index and one could be deduced from the other. They are given as follows:

J
A M
A M

Jaccard index ( ) ,∩
∪

=

D
A M

A M
Dice index ( )

2
,∩=

+

where A and M represent the region of interest segmented by the algorithm and the medical expert, respectively. 
By definition, 0 ≤ J ≤ 1 and 0 ≤ D ≤ 1.

0.2

0.4

0.6
0.

3

0.
4

0.
5

0.
6

0.
7

Majority

M
ed

ia
n

VCDR  Majority vs. Median Image

Median = 0.9616 x Majority + 0.0216

0.2

0.4

0.6

0.
1

0.
2

0.
3

0.
4

0.
5

Majority

M
ed

ia
n

ACDR  Majority vs. Median Image

Median = 0.9728 x Majority + 0.0105

0.3

0.4

0.5

0.6

0.7

0.8

0.
3

0.
4

0.
5

0.
6

0.
7

Majority

M
ed

ia
n

HCDR  Majority vs. Median Image

Median = 0.9608 x Majority + 0.0279

0.2

0.4

0.6

0.
25

0.
50

0.
75

1.
00

Majority

M
ea

n

VCDR  Majority vs. Mean Image

Mean = 0.6855 x Majority + 0.2030

0.2

0.4

0.6

0.
00

0.
25

0.
50

0.
75

Majority

M
ea

n

ACDR  Majority vs. Mean Image

Mean = 0.7963 x Majority + 0.1142

0.3

0.4

0.5

0.6

0.7

0.8

0.
25

0.
50

0.
75

1.
00

Majority

M
ea

n

HCDR  Majority vs. Mean Image

Mean = 0.5739 x Majority + 0.2860

0.2

0.4

0.6

0.
3

0.
4

0.
5

0.
6

0.
7

Majority

S
TA

P
LE

VCDR  Majority vs. STAPLE Image

STAPLE = 0.9702 x Majority - 0.0052

0.2

0.4

0.6

0.
2

0.
4

0.
6

Majority

S
TA

P
LE

ACDR  Majority vs. STAPLE Image

STAPLE = 0.9726 x Majority - 0.0201

0.3

0.4

0.5

0.6

0.7

0.8

0.
4

0.
5

0.
6

0.
7

0.
8

Majority

S
TA

P
LE

HCDR  Majority vs. STAPLE Image

STAPLE = 0.9730 x Majority - 0.0150

Fig. 7  Robust linear regression analysis and intraclass correlation coefficient (Plots Set - 1). The 45° line is shown 
in dashed black line-style and the robust linear fit, using Huber’s method38, is shown in solid red line-style.
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Expert-wise OD and OC segmentation variability analysis with respect to the mean, median, majority, and 
STAPLE based fusion is presented in Tables 3, 4, respectively, using the aforementioned performance indices. 
The best agreement between the experts’ OD and OC annotations is with the STAPLE algorithm, followed by 
the majority ground-truth, and median ground-truth. The performance indices are the least for mean ground 
truth. To train deep learning algorithms with data augmentation, the median ground-truth could also be con-
sidered as it is close to the STAPLE and majority ground-truths. Figure 6 shows a scatter plot of the Dice index 
for the 810 images under consideration. It is evident from the robust regression plots for Dice index in Fig. 6 
that the experts’ annotations are close to STAPLE, majority, and median ground-truths rather than the mean 
ground-truth.

We present VCDR, HCDR, and ACDR ground-truth computed (cf. Fig. 1) from the various ground-truths. 
We perform a robust regression study with intraclass correlation coefficient (ICC) measurement (cf. Figs. 7, 8).  
Linear least-squares regression is easily affected by outliers and hence, in order to obtain a robust fit, we 
employed robust linear regression using the Huber loss function38. The ICC is a measure of reliability of meas-
urements with 95% confidence interval. The closer the ICC is to +1.0 or −1.0, the greater the strength of the 
linear relationship between two methods for the same measurement. We found a strong linear relationship 
between ACDR–majority and median with ICC of 0.9807, followed by VCDR–majority and median with ICC of 
0.9639 and weak linear relationship between ACDR–mean and STAPLE with ICC of 0.7453. The ICC quantifies 
the degree to which two methods are related.
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Fig. 8  Robust linear regression analysis and intraclass correlation coefficient (Plots Set - 2). The 45° line is shown 
in dashed black line-style and the robust linear fit, using Huber’s method38, is shown in solid red line-style.
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We use Bland-Altman plots (cf. Figs. 9, 10) to quantify the agreement between different ground-truths for 
the measurement of VCDR, HCDR, and ACDR. The Bland-Altman plot is a graphical way of comparing two 
measurement methods. It is a plot of the differences between the two methods against their average. Horizontal 
lines (in colour) are drawn at the mean difference (bias), and at the limits of agreement (LoA), which is defined 
as the mean difference ± 1.96 times the standard deviation (SD) of the differences. We observed a minimum 
bias of 0.0016 and 0.0028 for VCDR–majority vs. median and ACDR–majority vs. median, respectively, and a 
maximum bias of 0.1256 for HCDR–mean vs. STAPLE. The Bland-Altman plots show less than 5% of the 810 
images as outliers for not being in the respective LoA. The majority and median Bland-Altman plots show the 
best agreement with minimum bias and narrower LoA.

Figure 11 shows adjusted box plots that depict the distribution of VCDR, HCDR, and ACDR computed from 
the experts’ annotations and various ground-truths. The adjusted box plots are more robust than the standard 
box plots as they account for skew and outliers in the data distribution39. The adjusted box plots of VCDR, 
HCDR, and ACDR computed using the STAPLE algorithm ground-truth have a large overlap with those com-
puted from the outlines of several experts. This is closely followed by the majority and median ground-truth 
based VCDR, HCDR, and ACDR.
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Fig. 9  Bland-Altman plots (Set - 1) for VCDR, HCDR, and ACDR computed from mean, median, majority, 
and STAPLE ground-truths with limits of agreement ± 1.96 SD (standard deviation). The coloured shaded areas 
represent confidence interval limits for mean (blue) and agreement limits (green and red).
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Fig. 10  Bland-Altman plots (Set - 2) for VCDR, HCDR, and ACDR computed from mean, median, majority, 
and STAPLE ground-truths with limits of agreement ± 1.96 SD (standard deviation). The coloured shaded areas 
represent confidence interval limits for mean (blue) and agreement limits (green and red).
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Fig. 11  Adjusted box plots showing the distribution of VCDR, HCDR, and ACDR computed from the 
individual expert’s annotations and those computed from the mean, median, majority, and STAPLE ground-
truths. The adjusted/robust box plots were generated using litteR package39.
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