ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Water level status of Indian reservoirs: A synoptic view from altimeter observations

Thakur, PK and Garg, V and Kalura, P and Agrawal, B and Sharma, V and Mohapatra, M and Kalia, M and Aggarwal, SP and Calmant, S and Ghosh, S and Dhote, PR and Sharma, R and Chauhan, P (2021) Water level status of Indian reservoirs: A synoptic view from altimeter observations. In: Advances in Space Research, 68 (2). pp. 619-640.

[img] PDF
adv_spa_res_68-2_619-640_2021.pdf - Published Version
Restricted to Registered users only

Download (7MB) | Request a copy
Official URL: https://doi.org/10.1016/j.asr.2020.06.015

Abstract

Most of the part of India is already under water-stressed condition. In this regard, the continuous monitoring of the water levels (WL) and storage capacity of reservoirs, lakes, and rivers is very important for the estimation and utilization of water resources effectively. The long term ground observed WL of many of the water bodies is not easily available, which may be very critical for proper water resources management. Satellite radar altimetry is the remote sensing technique, which is being used to study sea surface height for the last three decades. The advancement in radar technology with time has provided the opportunity to exploit the technique to retrieve the WL of inland water bodies. In the current study, an attempt has been made to generate long term time series on WL of around 29 geometrically complicated inland water bodies in India. These water bodies are mainly large reservoirs namely Ban Sagar, Balimela, Bargi, Bhakra, Gandhi Sagar, Hasdeo, Indravati, Jalaput, Kadana, Kolab, Mahi Bajaj, Maithon, Massanjore, Pong, Ramganga, Ranapratap Sagar, Rihand, Sardar Sarovar, Shivaji Sagar, Tilaiya, Ujjani, and Ukai. The WL of these water bodies was retrieved for around two decades using the European Remote-Sensing Satellite – 2 (ERS-2), ENVISAT Radar Altimeter – 2 (ENVISAT RA-2), and Saral-AltiKa altimeters data through Ice-1 retracking algorithm. Further, an attempt has also been made to estimate the WL of gauged/ungauged lakes namely Mansarovar, Pangong, Chilika, Bhopal, and Rann of Kutch over which Saral-AltiKa pass was there. As after July 2016, the SARAL-AltiKa is operating in the drifting orbit, systematic repeated observation of WL data of all reservoirs was not possible. The data of drifted tracks of Saral-AltiKa were tested for WL estimation of Ban Sagar reservoir. As the ERS-2, ENVISAT RA-2 and Saral-AltiKa all were having almost the same passing tracks, a long term WL series of these lakes could be generated from 1997 to 2016. However, at present only Sentinel – 3 is in orbit, the continuous altimeter based WL monitoring of some of these reservoirs (Gandhi Sagar, Nathsagar, Ranapratap, Ujjani, and Ukai) was attempted through Sentinel-3A satellite data from 2016 to 2018. The accuracy of the retrieved WL was than validated against the observed WL. In most of the reservoirs, a systematic bias was found due to the different characteristics and geoid height of each reservoir. The coefficient of determination, R2, value for a majority of reservoirs was as good as 0.9. In the case of ERS-2, the values of R2 varied for 0.44–0.97 with root mean square error (RMSE) in the range of 0.63–2.72 m. These statistics improved with the ENVISAT RA-2 data analysis, the R2 value reached more than 0.90 for around 11 reservoirs. The highest, 0.99, for Hasdeo and Shivaji Sagar Reservoirs with RMSE of 0.44 and 0.56, respectively. Further, the accuracy improved with the analysis of Saral-AltiKa data. The R2 was always more than 0.9 for each reservoir and the lowest RMSE reduced to 0.03. Therefore, it can be said that the accuracy and consistency of WL retrieval through satellite altimetry has improved with time. Furthermore, the altimeter based retrieved WL may be used in hydrological studies and can contribute to better water resources management.

Item Type: Journal Article
Publication: Advances in Space Research
Publisher: Elsevier Ltd
Additional Information: The copyright for this article belongs to Elsevier Ltd.
Keywords: Aneroid altimeters; Digital storage; Error statistics; Geodetic satellites; Lakes; Mean square error; Meteorological instruments; Orbits; Remote sensing; Space-based radar; Surface water resources; Water levels, Coefficient of determination; Continuous monitoring; European remote sensing satellites; Remote sensing techniques; Retracking algorithms; Root mean square errors; Satellite radar altimetry; Water resources management, Reservoirs (water)
Department/Centre: Division of Mechanical Sciences > Civil Engineering
Date Deposited: 22 Feb 2023 04:10
Last Modified: 22 Feb 2023 04:10
URI: https://eprints.iisc.ac.in/id/eprint/80469

Actions (login required)

View Item View Item