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Abstract. Singularly Perturbed Partial Differential Equations are challenging to solve with con-
ventional numerical techniques such as Finite Element Methods due to the presence of boundary
and interior layers. Often the standard numerical solution has spurious oscillations in the vicin-
ity of these layers. Stabilization techniques are employed to eliminate these spurious oscillations
in the numerical solution. The accuracy of the stabilization technique depends on a user-chosen
stabilization parameter, where an optimal value is challenging to find. In this work, we focus on
predicting an optimal value of the stabilization parameter for a stabilization technique called the
Streamline Upwind Petrov Galerkin technique for solving singularly perturbed partial differential
equations. This paper proposes SPDE-ConvNet, a convolutional neural network for predicting
stabilization parameters by minimizing a loss based on the cross-wind derivative term. The
proposed technique is compared with the state-of-the-art variational form-based neural network
schemes.

1 Introduction

1.1 Singularly Perturbed Partial Differential Equations

We use Singularly Perturbed Partial Differential Equations (SPPDEs) to model many scien-
tific phenomena [2] such as chromatography, fluid flow and continuity of electrons in semiconduc-
tors. The significant characteristic of these equations is the diffusion parameter ϵ > 0 multiplied
by the second order derivative term. Solving these equations with finite element or finite volume
method is challenging as it will possess boundary and interior layers, and often we get spurious
oscillations in the numerical solution. Thus stabilization techniques are proposed to eliminate
these spurious oscillations in the numerical solution [22, 23]. The accuracy of these stabilization
techniques depends on a user-chosen stabilization parameter (τ). Finding τ is challenging since
any generalized expression for τ doesn’t exist. This work attempts to solve SPPDEs with the
neural network by leveraging its function approximation capabilities by predicting τ .

Recently, deep learning has made its way into scientific computing [3]. Its universal approxi-
mation capabilities [4] are utilized for designing alternate methods of solving partial differential
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equations (PDE). Unlike image classification or segmentation, PDE solving is an unsupervised
task as we do not have access to the analytical solution of the given PDE at the training time.
Thus implicit information from the equation itself is used to solve the equation. One such method
is Physics Informed Neural Networks (PINN) which minimizes the residual of the equation [5].
PINNs show limited accuracy for solving SPPDEs; thus, we attempt to aid conventional FEM
with deep learning-based τ prediction.

1.2 Outline

The paper is organized as follows: In section 1, we introduce a SPPDE and the challenges
associated with solving them. In section 2, a brief description of a few contemporary deep
learning-based techniques for solving PDEs is given, followed by stabilization techniques such as
SUPG. Section 3 provides the mathematical preliminaries required to understand the proposed
technique. In section 4, we provide details of the proposed method with network architecture
and the loss function. We discuss two major neural network-based PDE solvers in the following
section. Finally, the work is concluded in section 5.

2 Literature Review

SPPDEs are a particular class of PDEs; therefore, any technique developed for general PDEs
can be modified for SPPDEs. Keeping this in mind, we shall first discuss the available deep
learning solvers for PDEs and how we can modify these solvers for SPPDEs. Much research has
been done on solving PDEs with deep learning in recent years [24]. Deep learning can be used in
two ways, either as a direct PDE solver or as a helper for conventional PDE solving techniques
such as FEM, FDM, and FV. While using DL as a PDE solver, the given problem is modelled
as an optimization problem since the labelled data is unavailable for supervised training.

2.1 Physics-Informed Neural Network (PINN)

PINN is a standard neural network-based PDE solving technique. In this subsection, we
elaborate on the methodology of PINN [5]. Unlike neural network-based supervised learning,
where we have access to the ground truth, PINN uses a data-driven approach that considers the
physical laws of the data for computing loss function for training the neural network. The PINN
approximate the numerical solution by minimizing the residual of the equation constrained with
boundary conditions. For example, let us say we are given the following PDE defined on a
bounded domain Ω ∈ Rd for d = 1, 2 with boundary conditions as given below:

D(u(x)) = 0 x ∈ Ω

B(u(x)) = 0 x ∈ ∂Ω
(1)

where u is the unknown solution, ∂Ω is the domain boundary, D denotes a linear or nonlinear
differential operator, the operator B denotes the boundary condition of the given PDE(e.g.,
Dirichlet, Neumann and Robin boundary condition). In PINN, an approximate solution û to
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equation (1) is estimated by a feed-forward network M as follows:

û : = M(x; θ)

Loss(θ) = MSEu +MSEf ,

MSEu =
1

Nu

Nu∑
i=1

|ûi − u(xiu)|2,

MSEf =
1

Nf

Nf∑
i=1

|f(xif )|2

(2)

where xiu, x
i
f are the spatially collocated points in Ω and ∂Ω respectively, Nf , Nu is the number

of boundary and interior points, respectively. Loss(2) is minimized to obtain an optimal θ. PINN
was the foremost neural network architecture proposed for solving PDEs, but its accuracy was
limited; hence, many advancements have been made after PINN. One such advancement is
Variational Neural Networks(VarNet)[1] for the solution of PDEs which will be explained in the
next section.

2.2 Variational Neural Networks for the Solution of Partial Differential Equa-
tions (VarNet)

VarNet [1] is a neural network-based PDE solver. Its novel loss function depends on PDE’s
variational (integral) form rather than its differential form used in PINN. This loss function
effectively approximates the solution as it uses lower-order derivatives. The performance of
both PINNs and VarNet is limited for SPPDEs, so we attempt to add the classical stabilization
technique in the loss function of the neural-network-based PDE solvers to enhance its accuracy
for solving SPPDEs. We present the SUPG stabilization technique in the next section.

2.3 Stabilization technique: Streamline Upwind Petrov Galerkin

Many stabilization techniques exist in the literature; one widely used technique is the stream-
line upwind Petrov–Galerkin(SUPG) technique [6, 7]. It stabilizes the given weak form of the
PDE by adding the extra diffusion in the upwind direction. In SUPG, the amount of stabiliza-
tion is controlled by the value of a user-chosen stabilization parameter (τ). A significant value
of τ can smear the oscillations, whereas a small value will not remove the oscillation adequately.
Thus finding an optimal value of τ is essential for good performance with the SUPG technique.
In this paper, we propose to predict the value of τ with a convolutional neural network by
minimizing an error functional proposed in [15]. It will enhance its accuracy for SPPDEs.

2.4 Contributions

The major contributions are:

• A convolutional neural network for predicting stabilization parameters for SUPG for two-
dimensional SPPDEs is proposed.

• We effectively use an error functional proposed in [15] based on cross-wind derivative term
as the loss function for the proposed SPDE-ConvNet.
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• The proposed technique is compared with the following contemporary ideas:

– VarNet [13]

– SUPG Stabilized Finite Element Method [14]

3 Mathematical Preliminaries

3.1 Singularly Perturbed Partial Differential Equation (SPPDE)

SPPDEs are a class of differential equations with a small diffusion parameter (ϵ > 0) multi-
plied with the second order differential term. A small value of ϵ often induces spurious oscillations
in the standard Galerkin solution. For a given bounded domain Ω ⊂ Rd, where d ∈ N, an SPPDE
is given as follows:

−ϵ∆u+ b.∇u = f(x), x ∈ Ω ⊂ Rd,

u = g, on∂Ω
(3)

ϵ > 0 is the diffusion coefficient and is called perturbation parameter, b = [b1, b2]
T is the

convective velocity, f ∈ L2(Ω) is the external source term, u is the unknown scalar term, g is
the Dirichlet boundary value. For smooth b and f(x), equation (3) has a unique solution. We
will consider the convection-dominated problems where ϵ << |b|.

3.2 Weak Formulation

In this work, we use FEM, and the first step in FEM is to derive the weak form for the
given equation. The weak form equation of (3) is derived by multiplying it by a function
v ∈ V := H1

0 (Ω), followed by integrating on Ω and subsequently applying integration by parts.
Now, we find u ∈ H1(Ω) such that for all v ∈ V

a(u, v) = (f, v) (4)

where, the bilinear form a(·, ·) : H1(Ω)×H1
0 (Ω) → R and the linear form f(v) : H1

0 (Ω) → R are
defined as:

a(u, v) =

∫
Ω
ϵ∇u · ∇v dx+

∫
Ω
b · ∇uv dx (5)

f(v) =

∫
Ω
fv dx (6)

Let Ωh be an admissible decomposition of Ω and let K represent a single cell in Ωh. The weak
formulation for this discretized domain requires choosing a finite-dimensional space Vh ⊂ H1

0 (Ω)
comprising continuous piece-wise polynomials and finding uh ∈ H1(Ω) such that for all vh ∈ Vh

we have

ah(uh, vh) = (f, vh),

ah (uh, vh) := ε (∇uh,∇vh) + (b · ∇uh, vh) = (f, vh)
(7)
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3.3 Stabilized weak formulation of the SPPDE using SUPG

In SUPG, we add a residual term to the weak form in the direction of streamline. Let R(u)
be the residual of the equation (3) defined as:

R(u) = −ϵ∆u+ b · ∇u− f (8)

The term R(u) is added to the discretized weak formulation given in equation (7). Now, the
modified discrete weak form is to find uh ∈ Vh such that:

a (uh, vh) + (Rh (uh) , τb · ∇vh) = (f, vh) ,

a(uh, vh) = ϵ(∇uh,∇vh) + (b · ∇uh, vh)

+
∑

K∈Ωh

τK(−ϵ∆uh + b · ∇uh − fh,b · ∇vh)Ωh

= fh(vh)

(9)

τK is a non-negative stabilization parameter. Its value plays an essential role in the quality of
the approximated solution; hence, it is the focus of this work. A very large value can show
unexpected smearing, whereas a very small value will not remove the spurious oscillations. We
aim to predict τ with a convolutional neural network.

3.4 Standard stabilization parameter

In literature, a few expressions exist for stabilization parameter (τ) given as follows:

PeK =
bh

2ϵ
,

τstd|K =
hK
2|b|

(coth (PeK)− 1

PeK
)

where coth =
exp(x) + exp(−x)

exp(x)− exp(−x)

(10)

where hK is the diameter of the cell K, PeK is the local Peclet number. The numerical accu-
racy of τstd is inadequate for all the SPPDEs, and this expression is not extendable to higher
dimensional problems. Thus we attempt to develop a generalizable τ prediction technique using
convolutional neural networks wherein we aim to get a lower numerical error in the solution
than what is provided by standard τ .

4 Proposed Method: SPDE-ConvNet

We propose SPDE-ConvNet, a convolutional neural network for predicting the value of τ .
The loss of the neural network is inspired by the error indicators proposed in [15]. It consists
of SUPG stabilized weak form(equation (9)) of the equation.
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Figure 1: Network Architecture of SPDE-ConvNet

τK(θ) = SPDE-ConvNet(ϵK , bK1 , bK2 , hK , ||∇uKh ||) whereK ∈ Ωh

Loss(τ(θ)) = [−ϵ∆uh + b · ∇uh − f ]2 + q(b⊥ · ∇uh)

where, q(s) =

{√
s s > 1

2.5s2 − 1.5s3 otherwise

and, b⊥(x) =


[b2(x),−b1(x)]

|b(x)|
if |b(x)| ≠ 0

0 else |b(x)| = 0

θ∗ = argmin
θ

(Loss(τ(θ)))

(11)

uh is the numerical solution of equation (9) with predicted τK , the function q(s) represents
the cross-wind derivative term. SPDE-ConvNet consists of three one-dimensional convolutional
layers of size [64, 32, 32]. Each layer consists of a convolutional filter which strides by 1.
The input to the network consists of diffusion coefficient (ϵ), convective velocity in x and y
direction (b1, b2), mesh size (h) and the norm of the gradient of the Galerkin solution. It is
implemented from scratch using PyTorch [16] and FEniCS [17], [18]. The network is shown
schematically in figure 1.

4.1 Example :

For testing the accuracy of SPDE-ConvNet, we consider the convection-diffusion equation (3)
with following equation coefficients and boundary conditions. This example is taken from [21]:

ϵ = 10−8, b = (2, 3)T , Ω = (0, 1)2,

u = 0 on ∂Ω
(12)
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Figure 2: (a) Exact Solution, (b) Solution with standard τ , (c) Solution from SPDE-ConvNet

Source term f is calculated by substituting the following analytical solution(uexact) in equation
(12).

uexact(x, y) = xy2 − x exp

(
3(y − 1)

ϵ

)
− y2 exp

(
2(x− 1)

ϵ

)
+ exp

(
2(x− 1) + 3(y − 1)

ϵ

) (13)

It contains two boundary layers near x = 1.0 and y = 1.0 as shown in figure 2(a) and hence
makes a suitable test case for checking the performance of the SPDE-ConvNet as mentioned
in [21]. The τ(x) predicted from SPDE-ConvNet is shown in figure 2.
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4.2 Error Metrics

We use the following metrics to calculate numerical errors in the solution obtained with the
τ predicted from SPDE-ConvNet. We use them for comparison against the standard τ(equation
(10)) and VarNet as explained in section 2.

L2 error: ||eh||L2(Ω) = ||û(τ̂)− uexact||L2(Ω) =

(∫
Ω
(û(τ̂)− uexact)

2dx

) 1
2

Relative l2 error:

i=Nd∑
i=1

||ûτ̂ (xi)− uexact(xi)||2
||u||2

H1 error: ||e||H1(Ω) =
∑

|α|<=1

(Dα(û(τ̂)− uexact), D
α(û(τ̂)− uexact))

=
∑
α<=1

∫
Ω
Dα(û(τ̂)− uexact)D

α(û(τ̂)− uexact)dx

L∞ error: ||e||L∞(Ω) = ess sup{|û(τ̂)− uexact| : x ∈ Ω}

(14)

Here Nd is the number of degrees of freedom,Dα is the weak derivative upto order α, τ̂ is the
stabilization parameter predicted by SPDE-NetII, uexact is the analytical solution, û(τ̂) is the
SUPG solution calculated with τ̂ .

4.3 Performance

We compare the error metrics given by SPDE-ConvNet, VarNet and standard τstd. The
results are shown in table 1. All the error metrics for SPDE-ConvNet is less than VarNet and

Table 1: Comparison of SPDE-ConvNet with other techniques

L2 Error Relative l2 error H1 error l∞ error

Standard τ 6.77e-6 1.36e-1 6.74e-4 7.29e-5
VarNet 2.37e-4 1.62e+0 1.87e-3 3.55e-4
SPDE-ConvNet 3.04e-6 8.36e-2 3.20e-4 4.03e-5

standard τstd. It shows it performs better than the other two techniques.

5 Summary

We proposed SPDE-ConvNet, a convolutional neural network for predicting stabilization
parameters for solving two-dimensional SPPDEs with the SUPG technique. The proposed tech-
nique is tested in terms of four different error metrics. The comparison shows that the proposed
CNN-based SPDE-ConvNet technique outperforms both VarNet and the standard τstd.
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