
RESEARCH ARTICLE

Stimulus-induced narrow-band gamma

oscillations in humans can be recorded using

open-hardware low-cost EEG amplifier

Srividya PattisapuID, Supratim RayID*

Centre for Neuroscience, Indian Institute of Science, Bengaluru, India

* sray@iisc.ac.in

Abstract

Stimulus-induced narrow-band gamma oscillations (30–70 Hz) in human electro-encephalo-

graph (EEG) have been linked to attentional and memory mechanisms and are abnormal in

mental health conditions such as autism, schizophrenia and Alzheimer’s Disease. However,

since the absolute power in EEG decreases rapidly with increasing frequency following a “1/

f” power law, and the gamma band includes line noise frequency, these oscillations are

highly susceptible to instrument noise. Previous studies that recorded stimulus-induced

gamma oscillations used expensive research-grade EEG amplifiers to address this issue.

While low-cost EEG amplifiers have become popular in Brain Computer Interface applica-

tions that mainly rely on low-frequency oscillations (< 30 Hz) or steady-state-visually-

evoked-potentials, whether they can also be used to measure stimulus-induced gamma

oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier

(OpenBCI) and a traditional, research-grade amplifier (Brain Products GmbH), both con-

nected to the OpenBCI cap, in male (N = 6) and female (N = 5) subjects (22–29 years) while

they viewed full-screen static gratings that are known to induce two distinct gamma oscilla-

tions: slow and fast gamma, in a subset of subjects. While the EEG signals from OpenBCI

were considerably noisier, we found that out of the seven subjects who showed a gamma

response in Brain Products recordings, six showed a gamma response in OpenBCI as well.

In spite of the noise in the OpenBCI setup, the spectral and temporal profiles of these

responses in alpha (8–13 Hz) and gamma bands were highly correlated between OpenBCI

and Brain Products recordings. These results suggest that low-cost amplifiers can poten-

tially be used in stimulus-induced gamma response detection.

Introduction

Gamma rhythms are narrow-band oscillations in the 30–70 Hz range of the brain’s electrical

activity [1]. They are associated with higher cognitive processes like attention [2–4], working

memory [5] and feature binding [6], and are also found to be abnormal in mental health con-

ditions like schizophrenia [7,8], autism [9] and Alzheimer’s Disease (AD) [10]. Gamma oscilla-

tions can be induced in the occipital region of the brain when appropriate visual stimuli such
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as bars and gratings are presented to the subjects [11,12], and such stimulus-induced gamma

oscillations have been shown to decrease with healthy ageing [13] and with onset of AD [14].

Further, some studies have suggested a neuroprotective effect of entraining brain oscillations

in the gamma range using sensory stimuli in rodent models of AD [15–17].

Recording gamma oscillations using EEG is fraught with difficulty. Cranial muscle activity

from the scalp electrodes, high voltage activity from distant muscles such as the neck, and ocu-

lar muscular activity in the form of microsaccades can cause EEG artefacts in the gamma

range [18–20]. One solution is to use Magnetoencephalogram (MEG), which has been shown

to better capture gamma oscillations as compared to EEG [21,22], although such recording set-

ups are bulky and expensive. Further, power of MEG/EEG signals falls rapidly with frequency,

following a “1/f” power-law distribution [23]. Therefore, higher frequencies have much lower

absolute power and are more susceptible to instrument noise. Mains (line) noise (50 or 60 Hz

depending on the local power-line frequency) also lies within the gamma range. These factors

make detection of gamma band oscillations using EEG difficult. These issues can be partially

addressed by using research-grade amplifiers which have low input referred noise (noise gen-

erated by the internal circuitry of the amplifier in the absence of signals), high Common Mode

Rejection Ratio (which amplifies the differential voltage while attenuating the common voltage

between the positive and negative inputs), high input impedance to minimise the effect of high

electrode impedance, and proper shielding of the electrical components of the amplifiers to

reduce electromagnetic interference [24]. However, such amplifiers are generally bulky, expen-

sive and often require proprietary software for usage. Several low-cost EEG acquisition systems

have been developed in recent years (e.g. Emotiv (Emotiv Inc., San Francisco, California, U.S.

A), NeuroSky TGAM, OpenBCI (OpenBCI, Inc., Brooklyn, New York, USA, www.openbci.

com)), and their signal quality and performance has been studied in various contexts such as

P-300 spelling task [25,26], Motor imagery based BCI paradigm [27], drowsiness detection

[28], motor tasks [29] and Steady State Visually Evoked Potentials (SSVEP) [30]. However,

these studies involve assessment of signals present at frequencies lower than 40Hz. To the best

of our knowledge, no study has tested whether stimulus-induced narrowband gamma rhythms

can be detected using low-cost EEG amplifier systems.

We assessed the performance of OpenBCI, a popular affordable amplifier which provides a

good cost-effectiveness [31], in the detection of gamma rhythms when static full-field gratings

known to elicit gamma rhythms [12] were presented to healthy human subjects. OpenBCI

recordings were compared to the recordings obtained using Brain Products GmbH, a popular

research-grade amplifier, under identical experimental conditions on the same subjects. The

same electrode cap, stimulus presentation software, and downstream analyses were used in

both cases so that any difference was attributable only to the amplifiers. Full-screen gratings

induce two distinct bands in the gamma range [12], termed slow gamma (20–34 Hz) and fast

gamma (35–66 Hz) bands, which have characteristic spectral and temporal profiles [32].

Therefore, in addition to comparing the amplitude of change in band powers between stimulus

and baseline, we also compared the spectral pattern and temporal evolution of the gamma

bands between the two recording systems. In addition to the gamma bands, we also compared

the alpha band (8–13 Hz) power and temporal profiles.

Methods

Subjects

Eleven human subjects (6 males, 5 females, aged between 22–29 years) were recruited from the

student community of the Indian Institute of Science, Bengaluru for the study on a voluntary

basis against monetary compensation. Informed consent was obtained from all the subjects
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prior to performing the experiment. All procedures were approved by the Institute Human

Ethics Committee of the Indian Institute of Science.

Data acquisition

For every subject, EEG signals were recorded using two amplifiers: BrainAmp DC EEG acquisi-

tion system (Brain Products GmbH, Gilching, Germany) and OpenBCI Cyton Biosensing

Board. For proper comparison, both were connected to the same electrode cap, OpenBCI EEG

Electrode Cap, a 21-channel setup with sintered Ag/AgCl electrodes (https://docs.openbci.com/

AddOns/Headwear/ElectrodeCap/). We used 8 of these passive, gel-based electrodes at the fol-

lowing locations using the internationally recognised 10–20 system [33]: O1, O2, P7, P3, Pz, P4,

P8, CPz. During acquisition, the EEG signals were referenced to Cz (unipolar reference scheme

[34]). If the impedance of any electrode exceeded 25 kO, it was rejected offline during analysis.

In the Brain Products setup, raw signals were recorded at 5 kHz native sampling rate in AC

coupled mode, filtered online between 0.016 Hz (passive R-C hardware filter) and 250 Hz

(fifth-order low pass, Butterworth hardware filter) and digitised at 16-bit resolution (0.1 μV/

bit). Next, following an automatically applied digital low-pass Butterworth filter of 112.5 Hz

cut-off to prevent aliasing, the data was downsampled to 250 Hz. This signal processing pipe-

line was implemented using BrainVision Recorder (Version 1.20.0701, Brain Products GmbH,

Gilching, Germany). OpenBCI offers only an 8-channel recording with the requisite 250 Hz

sampling rate, using a Bluetooth transmitter. While 16 channels can be used with an add-on

board (OpenBCI Daisy board), it reduces the sampling rate to 125 Hz, which is too low for

gamma range. A Wi-Fi shield was available which offered a higher sampling rate without los-

ing on the channel availability, but it was still in beta phase at the time of our study. A higher

sampling rate with 16 channels was also possible if data were recorded directly to the SD card

on the equipment, but we opted to use streaming via Bluetooth for monitoring the signals in

real time. For the OpenBCI setup, raw signals were recorded using OpenBCI GUI (version

5.0.2). Internally, OpenBCI first samples the signal at 1024 kHz in DC coupled mode followed

by an R-C low-pass hardware filter of 72kHz. The signal is then digitised at 24-bit resolution

(0.002235 μV/bit) followed by noise-shaping and a digital, third-order, low-pass sinc filter as

the anti-aliasing filter (https://www.ti.com/lit/ds/symlink/ads1299.pdf) before downsampling

to our chosen sampling rate of 250Hz. It was observed during experimental setup that the

OpenBCI system was sensitive to ambient mains noise, especially when the digital I/O pins

were used to collect event marker data, and care had to be taken to prevent small perturbations

from creating noise artefacts. The OpenBCI amplifier (whose wiring and electronics were

open to the air) was placed inside a copper mesh (whose dimensions did not exceed 30 cm in

any direction), grounded to the UPS ground socket, to serve as a Faraday cage, to reduce line

noise during acquisition and make it comparable to the Brain Products setup, which was

already an enclosed system (further encasing the Brain Products setup inside a copper mesh

did not improve recording quality). The copper mesh of the OpenBCI system was small

enough not to impede the portability of the system. Eye tracking (monocular, left eye) was

done for ten out of eleven subjects using Eye-Link 1000 (SR Research, Ontario, Canada) sam-

pled at 1 kHz.

Experimental setting and behavioural task

All subjects sat in a dark room facing a gamma-corrected LCD monitor (BenQ XL2411;

dimensions: 20.92×11.77 inches; resolution: 1289×720 pixels; refresh rate: 100 Hz) with their

head supported by a chin rest at a distance of 57 cm from the screen. The experiment was per-

formed in two sessions for each subject, one with OpenBCI and one with Brain Products
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(sequence chosen randomly) separated by a break for few minutes. Each session consisted of

one minute of eye-open recording and one minute of eye-closed recording for measurement,

followed by a visual fixation task. The entire experiment lasted for an average duration of 2.1

hours (minimum: 1.25 hours, maximum: 2.75 hours).

In the visual fixation task, each trial comprised of a 1 second fixation duration and 1 second

stimulus duration, with a 1 second inter-trial interval. The stimuli presented were static, full-

contrast, sinusoidal-luminance, achromatic gratings with a combination of one of the three

spatial frequencies (1, 2 or 4 cycles per degree (cpd), calibrated to viewing distance) and one of

the four orientations (0˚, 45˚, 90˚ or 135˚) and were displayed pseudorandomly using NIMH

MonkeyLogic software (version 2.0.236 [35]). These stimulus parameters were chosen as they

were previously shown to induce robust gamma [12]. Each of the two sessions consisted of an

average of 298 ± 10 trials (mean ± SD), for the 12 stimulus types combined. Trials in which the

eye tracker recorded an eye blink or a shift in eye position beyond a 5˚ fixation window during

fixation period or stimulus period were rejected online by the stimulus presentation software.

The event markers for each stimulus type were conveyed to the two EEG acquisition devices

using National Instruments USB-6008 Multifunction I/O Device.

Artefact rejection

A fully automated artefact rejection pipeline was used (for more details, see [13,14]). Briefly,

trials with deviation from the mean signal in either time or frequency domains by more than 6

standard deviations were labelled as outliers and rejected. Subsequently, data from electrodes

with too many outliers (> 40%) was discarded. This resulted in a rejection of 21.4 ± 16.6%

(mean ± SD) of trials for the OpenBCI session and 11.8 ± 7.2% of the trials for the Brain Prod-

ucts session (although more trials were rejected with OpenBCI, the difference was not signifi-

cant when compared using two-tailed Mann-Whitney U test (p-val = 0.3). Finally, any

electrode whose slope of the baseline power spectrum in the 56–84 Hz range was less than zero

was rejected. This led to the rejection of 3 electrodes in 2 subjects, 1 electrode in 1 subject and

no rejection in the remaining 8 subjects in OpenBCI recordings. In the Brain Products record-

ings, 2 electrodes were rejected in 1 subject, 1 electrode in 1 subject and no rejection in the

remaining 9 subjects. If either of the electrodes of a bipolar pair (see below for details) was

marked for rejection, the whole pair was removed from analysis.

EEG data analysis

All analyses were performed using bipolar referencing scheme. Every electrode was re-refer-

enced offline to its neighbour, yielding 5 bipolar electrode pairs (P7-O1, P3-O1, CPz-Pz,

P4-O2, P8-O2) from the 8 unipolar electrodes. The bipolar referencing scheme was chosen

because it yielded less noisy time–frequency spectra and a stronger gamma-band response in

most subjects compared to unipolar referencing, in conformity with previous studies [13,14].

All the data analysis was done using custom codes written in MATLAB (The Mathworks Inc.,

2021, version 9.10.0 (R2021a)). Brain Products data extraction included the usage of the ‘bva-

io’ plug-in of EEGLAB toolbox (v12.0.2.5b [36], RRID: SCR_007292). Voltage measurements

in OpenBCI recordings were sign-flipped [26] and were corrected offline to match the Brain

Products standard while plotting Event Related Potentials (ERPs). The mains noise compo-

nent was selectively attenuated offline prior to spectral analysis as follows [37]. First, we

divided the unsegmented raw data into 180-second segments that contain integer cycles of the

mains noise frequency. For each segment, we identified the frequency with maximum power

using Fast-Fourier Transform in the 40–60 Hz range (to account for minor variations in the

line noise frequency). A pure sinusoidal wave of that frequency (generated using inverse-FFT
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with the power of all other frequencies set to zero) was subtracted from the raw data to obtain

the mains-noise-filtered data. Because the line noise component was notched out at high-fre-

quency resolution, it was invisible in PSDs computed over short time segments. Linear

detrending was done to the raw EEG signals to correct for slow drifts. Power Spectral Densities

(PSDs) and the time–frequency spectra were computed using the multitaper method [38] with

a single taper using the Chronux toolbox (http://chronux.org/, RRID:SCR_005547 [39]). With

timepoint 0 marking the onset of stimulus, baseline period was chosen between -750 ms and 0

ms, and stimulus period was chosen between +250 ms and +1000 ms, yielding a frequency res-

olution of 1.33 Hz for the PSDs. The periods were chosen to avoid stimulus-onset related tran-

sients. Time–frequency power spectra were calculated using a moving window of size 250 ms

and a step size of 25 ms, giving a frequency resolution of 4 Hz.

Change in Power between stimulus and baseline periods for a frequency band was calcu-

lated using the following equation:

DPower ¼ 10 log10
STðf Þ
P

f BLðf Þ

 !

10log10

P
f STðf Þ

P
f BLðf Þ

 !

where ST is the stimulus power spectrum and BL is the baseline power spectrum, both aver-

aged within relevant frequency bins (f), across all analysed trials and electrodes. Band powers

of a single electrode are susceptible to variation among different subjects. Hence, band powers

were averaged across electrodes for a more reliable comparison among subjects. Band powers

were specifically computed in three frequency bands, namely slow gamma (20–34 Hz), fast

gamma (35–66 Hz), and alpha (8–13 Hz). We note that beta oscillations also fall in the slow

gamma range described in this study. Beta oscillations, however, are shown to be prominent at

rest and attenuate with voluntary movements [40]. This is in contrast to the slow gamma oscil-

lations which are shown to be almost invisible at rest and increase in power with visual stimu-

lation [12]. We therefore refer to the 20–34 Hz band as the slow gamma range in our study.

Peak frequency of a particular band was defined as the frequency at which the change in band

power was maximum within that particular band.

ERPs were corrected for DC shift by subtracting the mean of the signal from each trial. The

cross-correlation between the OpenBCI and Brain Products traces was computed using the

xcorr function in MATLAB. The time at which the maximum of the cross-correlation function

was observed was taken as the latency.

Slope of the PSD plot

For slope calculation, the PSDs were fit with the following power law function [23]:

P ¼ A:f ð� aÞ þ B

where P is the power and f is the frequency, while A (scaling function), B (noise floor), and α
(slope) are free parameters. To avoid over-fitting, we set B as the power at max frequency (125

Hz). Subsequently, linear regression was done on the log of Power (after subtracting the noise-

floor) to obtain an estimate of A and α. As in our previous paper [13], slopes were calculated

specifically for the 16–34 Hz and 54–88 Hz ranges to avoid contamination by the alpha range

bump and line noise artefact and its harmonics. It is worth noting that the 54–88 Hz range

slope also reflects muscular electrical activity.
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Correlation analyses

Similarity between OpenBCI and Brain Product recordings was quantified using the Spearman

correlation of the data points between the two sessions. Although interpretation of correlation

coefficients can be complicated [41], we used these analyses to be consistent with our previous

paper in which we compared the consistency of gamma oscillations in two recordings taken a

year apart from the same subjects [32]. For band powers, the data points were the change in

band power between the stimulus and baseline averaged across electrodes (yielding one value

per frequency band for each subject). For assessment of similarity of temporal evolution, the

data points were the time series of the mean band power change obtained using time frequency

spectra. However, a high correlation between OpenBCI and Brain Products traces may be con-

founded by the possibility that the spectral profile in response to visual stimulus is common to

all subjects. A previous study suggests that spectral and temporal profiles are unique to subjects

and different in different subjects [32]. To assert whether these correlations indeed represent

subject-specific trends and not a general similarity of all traces, we further compared correla-

tions between the two recordings of the same subject and between different subjects. Correla-

tion measures between OpenBCI and Brain Product recordings of the same subject are termed

‘self-pair’ correlations, and between OpenBCI and Brain Product recordings of two different

subjects are termed ‘cross-pair’ correlations.

Statistical analysis

Appropriate non-parametric tests (Mann Whitney U test (Wilcoxon rank sum test) [42], permu-

tation test [43]) were used to interpret the findings. Mann Whitney test was used to compare if

the slope of the PSD was significantly different between the two EEG system recordings. It was

also used to see whether there was a significant difference in gamma band power between stimu-

lus and baseline periods for each subject. For asserting the significance of Spearman correlation

values, permutation test was used. This involved computing the Spearman correlation between

two ordered variables, and then repeating this process after shuffling the order. This produced a

distribution of correlation values centred around zero, using which a p-value for the original cor-

relation obtained can be computed. 0.05 was used as the cut-off for significance of the p-values.

Results

Instrument noise

Before EEG recordings, we characterized the internal instrument noise characteristics by placing

the recording electrodes, along with the reference and ground in a common conducting salt bath

(dashed lines in Fig 1). The power spectral density (PSD) for OpenBCI recordings (red dashed

lines) showed larger line noise at 50 Hz compared to Brain Products (blue dashed lines), and also

exhibited three additional peaks at 14 Hz, 36 (50–14) Hz and 64 (50+14) Hz. These peaks are due

to modulation of the mains noise, that occurs due to non-linear distortion during amplification.

No such artefactual peaks were observed for the Brain Products system. Even after shielding the

OpenBCI setup for EEG recordings (which reduced the noise peak at 50 Hz, see Methods for

details), these three peaks could be observed for some subjects (as shown below). These results

were obtained after shielding the OpenBCI setup with a small copper mesh (described in Methods

above), without which the OpenBCI setup had a large amount of line noise.

Baseline PSDs and slopes are comparable

Next, we compared EEG recordings in the pre-stimulus baseline period. Fig 1A (solid lines)

shows the mean PSD across all subjects after averaging across all trials and up to 5 bipolar
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electrodes for each subject (see Methods for details). The Brain Products system had more

mains noise than OpenBCI, possibly due to the usage of the Faraday shield for OpenBCI (no

shield was used for Brain Products). To reduce the line noise artefact, we estimated the mains

noise component in long segments of data and subtracted the same [37] before re-computing

the PSD (see Methods for details), which yielded similar PSDs using both amplifiers (Fig 1B).

We computed the slopes of the PSDs at two different frequency ranges: 16–34 Hz and 54–88

Hz, as per our previous report [13]. These ranges were chosen to prevent contamination due

to the alpha band and line noise. These slopes were not significantly different between Open-

BCI and Brain Products recordings (Fig 1C and 1D: raw-data: 16–34 Hz: p = 0.69, 54–88 Hz:

p = 0.33, noise-corrected data: 16–34 Hz: p = 0.90; 54–88 Hz: p = 0.74; two-tailed Mann Whit-

ney U test). The PSDs of the two systems were highly correlated (Spearman correlation

Fig 1. Slope comparison of OpenBCI and Brain Products at baseline. A) Baseline raw Power Spectral Density (PSD) for OpenBCI (red trace)
and Brain Products (blue trace) averaged across 11 subjects (thickness of the trace indicates the standard error of PSD across subjects at each

frequency). Dotted lines show PSD of shorted electrodes for instrument noise measurement. C) Slope of the PSD vs Frequency plot averaged across

all subjects for two frequency ranges (16–34 Hz and 54–88 Hz) for OpenBCI (red) and Brain Products (blue). The error bars indicate the standard

error. B, D) Same as A, C, but after selectively attenuating the mains/line noise component (see Methods for details).

https://doi.org/10.1371/journal.pone.0279881.g001
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coefficient of 0.91 for raw data (p< 1e-06, calculated using permutation test) and 0.93 for

noise corrected data (p< 1e-06)). Interestingly, the first harmonic of noise was slightly lower

than the expected 100 Hz in both setups. The reasons for this discrepancy are unclear. Note

that the Brain Products setup was also much noisier than our previous EEG recordings done

using the actiCap active electrodes provided by Brain Products (see, for example, comparable

baseline PSDs in Fig 2 of Murty et al., 2020). As we discuss later, this is likely due to the use of

the cheaper openBCI cap.

Fig 2 shows the results of an example subject (subject S2) for the visual fixation task. Trial

and electrode averaged evoked potentials are plotted for OpenBCI (Fig 2A, left column) and

Brain Products (Fig 2A, right column). These traces revealed a transient in the first 200 ms

after stimulus onset and after the stimulus offset (i.e. after +1000ms). Change in power in stim-

ulus period compared to baseline power revealed a prominent suppression in the alpha range

and an increase in slow gamma power in both OpenBCI and Brain Products (Fig 2A, second

row). The was also a broadband increase in power beyond the slow-gamma range, which was

more prominent in Brain Products compared to OpenBCI. Power increase in the alpha band

Fig 2. Stimulus induced gamma response in an example subject. A) Trial averaged EEG trace or ERP (first row) and time frequency

spectrograms of change in power from baseline with time (second row). Vertical grey bars indicate stimulus duration (1 second). B)

Change in Power (dB) from baseline as a function of time in alpha (8–13 Hz, first row), slow gamma (20–34 Hz, second row) and fast

gamma (35–66 Hz, third row) bands recorded using OpenBCI (red trace) and Brain Products (blue trace). C) PSD for stimulus (solid
line) and baseline (dotted line) averaged across 5 bipolar electrodes for OpenBCI (left column) and BrainProducts (right column). D)

Change in power (dB) from baseline in stimulus period recorded using OpenBCI (red trace) and Brain Products (blue trace).

https://doi.org/10.1371/journal.pone.0279881.g002
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after 1000ms of the trial was likely an eye blink or movement artefact during the inter-trial

period. Fig 2C shows the PSD of the stimulus and baseline periods for the two amplifiers, dem-

onstrating alpha (8–13 Hz) suppression and an increase in power in the slow-gamma (20–34

Hz) and the fast-gamma (35–66 Hz) bands, with the fast-gamma response being more appre-

ciable in the Brain Products recording. Fig 2D shows the baseline subtracted PSDs for the two

systems illustrating the same trend as above (since the log of PSD is subtracted, it is essentially

a change in power from baseline, expressed in decibels). The change in power in alpha, slow

and fast gamma bands as a function of time from their respective pre-stimulus baseline power

is shown in Fig 2B. Overall, the increase in the band power is lower in OpenBCI than Brain

Products for both the gamma bands, while it is similar for the alpha band (Fig 2A second row,

2B, 2C and 2D). Small noise peaks placed symmetrically around the mains noise band, indicat-

ing modulation distortions (also see Fig 1), can be observed in the PSDs of OpenBCI in this

subject (Fig 2C, first column). However, since this noise is present in both pre-stimulus base-

line period and stimulus-period, it gets cancelled out when we compute the change in power

from baseline (Fig 2C and 2D).

Spectral and temporal patterns show similarity

Fig 3 shows the results of the visual fixation task for all the subjects sorted by decreasing

gamma power. Visually similar results were obtained in the baseline-subtracted time frequency

spectra of OpenBCI (first column) and Brain Products (second column). The change in power

from baseline during stimulus at each frequency (Fig 3, third column), and the change in

mean band power (in dB) of alpha, slow gamma and fast gamma bands with time (Fig 3, 4th,

5th and 6th columns respectively) also showed visually similar trends. However, the amplitude

of change in band power can be seen to be lower in OpenBCI than in Brain Products in most

subjects for the gamma bands, in particular for the fast gamma band.

Fig 3. Comparison of OpenBCI and BrainProduct recordings for all subjects. Baseline subtracted time frequency spectrograms for

OpenBCI (first column and red trace in other columns) and Brain Products (second column and blue trace in other columns), change in

PSD (dB) from baseline in stimulus period vs frequency (third column), change in power (dB) with time for alpha (fourth column),slow

gamma (fifth column) and fast gamma (sixth column) bands. Vertical bands in the last three columns indicate stimulus duration (grey).

Each row represents one subject. The subjects are numbered in decreasing order of total gamma power.

https://doi.org/10.1371/journal.pone.0279881.g003
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We considered a subject as having a “gamma response” if they showed a significant increase

in band power between stimulus and baseline when compared across all analysable trials using

one-tailed Mann-Whitney U test. False Discovery Rate (FDR) was controlled using the Benja-

mini and Hochberg procedure [44]. With this criterion, 6 subjects (S1 –S6) were found to have

slow gamma response using both Brain Products and OpenBCI. For fast gamma, 5 subjects

(S1 –S4,S7) showed a fast gamma response with Brain Products, out of which 4 subjects

showed a fast gamma response (S1 –S4) with OpenBCI. A significant alpha suppression was

observed in 10 subjects (all subjects except S5) using Brain Products and 9 subjects (all subjects

except S5 and S10) using OpenBCI. In subject S10, while it is not apparent visually in Fig 3,

there was a very small fast gamma increase (~ 0.1 dB increase from baseline in stimulus period)

in OpenBCI recordings that was registered as significant by the statistical test we used, even

after multiple testing correction. Similarly, alpha suppression in this subject was significant

with Brain Products (but not OpenBCI), even though the suppression was small (~0.76 dB

reduction from baseline in stimulus period). Overall, these results indicate that the power

changes obtained using Brain Products and OpenBCI were highly consistent. To quantify

these results, we computed the correlation between the change in band power from baseline in

each frequency band of each subject using OpenBCI with that of Brain Products (Fig 4). The

Spearman correlation coefficient for alpha band was 0.92 (p< 1e-06, computed using permu-

tation test), for slow gamma was 0.94 (p< 1e-06) and for fast gamma was 0.75 (p = 0.012). For

frequency wise correlation values across all subjects, see S1 Fig. The peak frequencies of the

gamma bands were computed in those subjects who showed a gamma response, and in whom

the gamma band had a clear peak instead of a broadband increase (specifically, in subjects

S1-S6 in the slow gamma range). Four of these subjects showed an identical peak frequency

between the two systems and the remaining two subjects showed a peak frequency within a dif-

ference of 2 Hz from each other. We compared this statistically using two-tailed Mann-Whit-

ney U test and found no significant difference between the peak frequencies from the two

systems (p = 0.73).

Amplitude of change in band powers appears to be better captured by

Brain Products than OpenBCI

Although the correlation between power obtained using the two amplifiers was high, the distri-

bution of points around the identity line (Fig 4) indicates that the amplitude of band power

change was generally greater in Brain Products than OpenBCI. For alpha band, most points

Fig 4. Comparison of change in Band Powers of OpenBCI and Brain Product recordings. Change in band power from baseline in stimulus

period of alpha, slow gamma and fast gamma oscillations recorded using OpenBCI (x axis) and Brain Products (y axis) for males (filled circles) and

females (open circles). Dashed line indicates identity line.

https://doi.org/10.1371/journal.pone.0279881.g004
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lay below the identity line indicating that alpha suppression was better captured by Brain Prod-

ucts than OpenBCI. For fast gamma, the enhancement in gamma power was again better cap-

tured with Brain Products than OpenBCI, with the majority of data points above the identity

line. For slow-gamma, the difference between the two devices appears less salient. However,

note that the power in slow-gamma band is influenced by two opposing factors. First, there is

an increase in power due to the slow-gamma rhythm, which is observed in about half of the

subjects (S1 –S6). However, there is also a reduction in power in lower frequencies, which

sometimes extended to the slow-gamma range. This is better observed in the subjects (S7 –

S11) who did not have a strong slow-gamma rhythm, and their corresponding data points lay

below zero dB in Fig 4 (middle panel). For those subjects, the points lay below the identity line,

again reflecting better capture of low-frequency suppression by Brain Products than OpenBCI,

and not poorer capture of the slow-gamma rhythm by Brain Products compared to OpenBCI.

ERPs are comparable but with a small delay

Fig 5 shows the de-trended and de-noised (see Methods for details) ERPs of OpenBCI and

Brain Products for all subjects. A slight jitter can be seen in the OpenBCI traces compared to

the Brain Products traces. Computing the cross-correlation between the two traces led to a

median correlation (± standard error; computed using bootstrapping) of 0.79 ± 0.05, with

OpenBCI traces lagging by 8 ± 0.5 milliseconds (cross-correlation value and the lag for each

subject are indicated in the figure), corresponding to a lag of 2 sample points because our sam-

pling frequency was 250 Hz. There was substantial variation in ERPs across subjects, consistent

with our previous study where we show substantial variation in alpha and gamma responses

across subjects which were nevertheless consistent across two recordings of the same subject

[32],

Similarity between the two recordings within and between subjects

Next, we compared the temporal profile and the characteristic spectral distribution (see Intro-

duction) between the two setups. The similarity of the change in band powers with time, and

baseline subtracted PSDs of the two EEG amplifiers was quantified using Spearman correlation

between the time series for each subject (see Methods). Self-pair correlations of baseline-sub-

tracted PSD (0.51 ± 0.1, median ± standard error computed using bootstrapping) were signifi-

cantly higher than its cross-pair correlations (0.33 ± 0.02, p = 1.07e-04, one sided Mann

Whitney U test, Fig 6A). Similar results were obtained for the temporal evolution traces in

alpha, slow gamma and fast gamma bands:(alpha: self: 0.93 ± 0.04; cross: 0.52 ± 0.07, p = 7.4e-

6, Fig 6B; slow gamma: self: 0.82 ± 0.05; cross: 0.31 ± 0.06, p = 6.01e-06, Fig 6C; fast gamma:

self: 0.68 ± 0.15, cross: 0.22 ± 0.04, p = 2.7e-4, Fig 6D). When self-pair correlations were plotted

against cross-pair correlations, their values were concentrated below the identity line (Fig 6).

Discussion

Our study is the first one to assess the performance of a low-cost amplifier in the detection of

stimulus induced gamma response and compare it with a research grade amplifier while con-

trolling for subjects, electrodes and electrode placement, task performed and subsequent anal-

ysis. We showed that a low-cost EEG amplifier like OpenBCI is able to detect gamma response

in subjects, and the spectral and temporal profiles from OpenBCI recordings are correlated to

that of a research grade amplifier like Brain Products when full screen static gratings are pre-

sented as stimuli. Correlations between the two recordings of the same subjects (‘self-pair cor-

relations’) were significantly higher than correlations between different subjects (‘cross-pair
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correlations’) indicating that the distinctiveness in spectral and temporal profiles across differ-

ent subjects could be captured by these amplifiers.

Although we were able to record gamma oscillations using OpenBCI, the overall perfor-

mance of Brain Products was superior. There was lesser noise and fewer bad trials and elec-

trodes in Brain Products recordings compared to OpenBCI. The change in power in the

gamma band was of a lower amplitude in OpenBCI than Brain Products, especially in the fast

Fig 5. ERP Plots of all subjects. ERPs for OpenBCI (red trace) and Brain Products (blue trace) for all subjects. The

subjects are numbered in decreasing order of gamma power, as in Fig 3. The vertical grey shaded region indicates the

stimulus duration. The cross-correlation coefficient and lag between OpenBCI and Brain Products are indicated on the

right for each subject.

https://doi.org/10.1371/journal.pone.0279881.g005
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gamma band. We found that 7/11 subjects showed a gamma response (either fast or slow) with

Brain Products (out of which 6/11 subjects showed a gamma response, either slow or fast, with

OpenBCI), a fraction that is considerably lower than what was observed in a previous study in

which more than 80% of subjects showed a gamma response with Brain Products recordings

[13]. We interpret this finding with caution, since the sample size in this study was consider-

ably lower than the previous study. The main difference in the Brain Products recordings

between these two studies was that we used the OpenBCI cap with passive electrodes here,

while we used ActiCap with active electrodes from Brain Products in the previous study. Much

more work needs to be done to evaluate the clinical utility of EEG-derived gamma oscillations,

Fig 6. Comparison of self-pair correlations and cross-pair correlations. Self pair correlations (between OpenBCI and Brain

Products recordings of same subjects) vs cross pair correlations (between OpenBCI and Brain Products recordings of different

subjects) for change in PSD from baseline in stimulus period (A) and change in power with time for alpha (B), slow gamma (C)

and fast gamma (D) bands. Red line indicates x = y line. The bold black marker indicates the median of the cross pair correlations

for each subject.

https://doi.org/10.1371/journal.pone.0279881.g006
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in particular to test if the fraction of subjects who show a gamma response can be increased by

using different caps, or by employing source localization techniques to better isolate the

gamma response (which may in turn depend on the number of sensors). Further, potential

functional correlation with clinical signatures must be determined.

In addition, EEG-derived gamma responses need to be compared with comparable MEG

recordings (with/without source localization), because EEG-derived gamma responses could

be affected by muscle activity related to microsaccades and electromyographic activity from

cranial and neck muscles even in tasks not requiring any muscle activity [18–20]. We note

here that even though microsaccades have been shown to produce a signature in the EEG in

the gamma band [19], it is clear that the slow and fast gamma responses described here have a

distinct biophysical origin. First, in our previous studies [13,14], we rigorously analyzed the

microsaccades by computing the main sequence [45], and showed that all results hold even

when considering trials in which no microsaccades are detected. Second, stimulus-induced

slow and fast gamma are sustained throughout the duration of the trial, while microsaccade

induced gamma is transient. Further, slow gamma power typically increases over time while

fast gamma power reduces over time [12], ruling out the possibility that both are artefacts of

microsaccades. Finally, these stimulus-induced gamma oscillations are highly dependent on

stimulus properties, and closely resemble the trends observed in animal studies [12] where eye

movements are rigorously controlled.

Comparisons between low-cost and research-grade amplifiers in previous

studies

Previous studies have assessed the performance of low-cost EEG amplifiers in various con-

texts. While some studies have only assessed the performance of a low-cost amplifier in the

absence of a research grade control [27,46], others have compared their performance with a

research grade amplifier but have not controlled for factors like the use of same electrodes,

same subjects or downstream analysis to reliably attribute all differences only to the amplifi-

ers [47,48]. de Vos and colleagues [25] compared the performance of an Emotiv based setup

with Brain Products GmbH with the same electrodes in the context of a P300 spelling task

in 13 subjects. However, they mainly compared the P300 ERP topographies and spelling

task performance (r > 0.77), with no frequency domain comparison. In a study done by

Frey, 2016 [26], OpenBCI signals were compared to the signals from g.tec g.USBamp ampli-

fier (another research grade amplifier) from one subject in a P300 spelling task and a work-

ing memory load task. The study used a custom adapter which enabled simultaneous

recording with two amplifiers using the same electrodes in the same recording session. The

study reported a high correlation between ERPs and PSDs of the two amplifiers (r > 0.99).

Their simultaneous recording from the two amplifiers in a single recording session as

opposed to our sequential recording sessions and their low sample size (n = 1) could be an

explanation for the lower ERP correlation values (mean r = 0.79) and PSD correlation values

we found in our study during baseline period (r = 0.93). Also, their spectral analyses were

restricted to frequencies < 40 Hz, which does not include the mains noise range, potentially

contributing to a higher correlation value. They also reported a slight jitter (88 ms) in the

ERP of OpenBCI compared to g.tec. While we have also found a small jitter in the ERP of

OpenBCI (median lag = 8 ms, Fig 5) compared to Brain Products, we did not correct for it

since all our analyses were in the frequency domain. Rashid et. al. [29] reported no signifi-

cant difference in the power of signals between OpenBCI and NuAmps (another research

grade amplifier) in the beta band (12–38 Hz, which includes slow gamma frequencies) in 22

participants, but the task performed was a motor task.
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Comparison in performance of OpenBCI for different frequency bands

Previous studies have shown that in the presence of static, full-field visual gratings, two

gamma bands are found in the EEG: a slow gamma band (20–34 Hz) and a fast gamma band

(35–66 Hz) [12,13]. In addition, alpha band is also suppressed. In our study, slow gamma was

found to be better retrieved by OpenBCI than fast gamma in terms of amplitude of change in

band power and correlation of its temporal evolution (Figs 3 and 6). This could be due to the

contamination of fast gamma with the cross-modulation noise bands (Fig 1, dashed lines and

Fig 2C, left). Slow gamma and fast gamma bands were both found to be reduced in Alzhei-

mer’s disease and Mild Cognitive Impairment patients in a study done by Murty and col-

leagues [14]. Further, previous studies have shown that slow gamma band is more reliable with

age than fast gamma [13] and shows more inter-subject variability and better test-retest reli-

ability [32]. This raises the possibility of using OpenBCI to detect slow gamma as a biomarker

or screening tool in low resource settings.

Conclusion

OpenBCI is a low-cost EEG amplifier whose open-hardware nature offers customisability and

ease of interface with existing equipment, and its lack of bulk offers mobility which allows

extensibility of experiments and usage in natural environments outside of dedicated laborato-

ries. OpenBCI amplifier was noisier than Brain Products amplifier when both were connected

to the OpenBCI cap. Further, signals from Brain Products were noisier than our previous stud-

ies when we used Brain Products ActiCaps instead of the OpenBCI cap, suggesting that part of

the noise was due to the use of the OpenBCI cap. Nevertheless, OpenBCI was able to capture

the gamma response in most of the subjects that showed a gamma response using Brain Prod-

ucts amplifier. Our study suggests that OpenBCI has potential as a low-cost alternative to tradi-

tional research grade amplifiers in the detection of stimulus induced gamma oscillations,

although more research is needed to improve the signal quality and test its usefulness in clini-

cal settings.

Supporting information

S1 Fig. Frequency wise Spearman correlation of power recorded using the two amplifiers

across all subjects, plotted across frequency. Black circles are for correlation values whose p-

values calculated with permutation test are more than 0.05 and green circles are for correlation

values whose p-values are less than 0.05. False Discovery Rate of p-values is controlled using

Benjamini and Hochberg (1995) procedure.
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