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ABSTRACT

We use pseudospectral direct numerical simulations to solve the three-dimensional (3D) Hall–Vinen–Bekharevich–Khalatnikov (HVBK)
model of superfluid helium. We then explore the statistical properties of inertial particles, in both coflow and counterflow superfluid turbu-
lence (ST) in the 3D HVBK system; particle motion is governed by a generalization of the Maxey–Riley–Gatignol equations. We first charac-
terize the anisotropy of counterflow ST by showing that there exist large vortical columns. The light particles show confined motion as they
are attracted toward these columns, and they form large clusters; by contrast, heavy particles are expelled from these vortical regions. We
characterize the statistics of such inertial particles in 3D HVBK ST: (1) The mean angle HðsÞ between particle positions, separated by the
time lag s, exhibits two different scaling regions in (a) dissipation and (b) inertial ranges, for different values of the parameters in our model;
in particular, the value of HðsÞ, at large s, depends on the magnitude of Uns. (2) The irreversibility of 3D HVBK turbulence is quantified by
computing the statistics of energy increments for inertial particles. (3) The probability distribution function (PDF) of energy increments is of
direct relevance to recent experimental studies of irreversibility in superfluid turbulence; we find, in agreement with these experiments, that,
for counterflow ST, the skewness of this PDF is less pronounced than its counterparts for coflow ST or for classical fluid turbulence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129767

I. INTRODUCTION

Over the past few decades, there has been growing interest in
studies of the statistical properties of particles advected by turbulent
fluid flows, especially because of advances in experimental techniques
and computational resources. Such particle advection is of central
importance in geophysical1–3 and astrophysical4 flows, industrial pro-
cess,5,6 nonequilibrium statistical mechanics,7 and the visualization of
turbulent flows in quantum fluids.8–21 However, investigations of par-
ticles in turbulent superfluids are in their infancy, when we compare
them with their classical fluid turbulence counterparts. Some experi-
mental groups14–22 have used particles to visualize vortex lines in
superfluid turbulence. In some cases, the particles (e.g., frozen hydro-
gen or deuterium) are several orders of magnitude larger than the core

size of a vortex. Some of these particles can be modeled as neutrally
buoyant tracer particles in superfluid turbulence.

Superfluid turbulence is a multiscale problem for which we must
use different levels of description, depending on the length scales that
we consider:11–13 The Gross–Pitaevskii equation (GPE)11,23,24 provides
a natural description for a low-temperature, weakly interacting Bose
gas, at length scales comparable to the size of the superfluid vortex
core, which has a healing length n. The vortex-filament model distin-
guishes between individual quantum vortices, but it does not account
for the nature of the vortex core; it is valid on length scales greater
than n, in the incompressible limit. The Hall–Vinen–Bekharevich–
Khalatnikov (HVBK) two-fluid model does not resolve individual
quantum vortices but uses macroscopic, classical vorticity fields
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(this assumes local polarization of the quantum-vortex lines). At the
level of the kinetic theory, there is the model of Zaremba et al.25 Some
groups have begun to investigate the interactions of classical particles
with vortices in a GPE description of superfluid turbulence.26–31 These
particles are active in the sense that they affect the superfluid flow
while they are advected by this flow.

Within the HVBK framework, we can consider both coflow and
counterflow superfluid turbulence (ST). In coflow ST, the two fluids
move in the same direction, with the same mean velocities; in counter-
flow ST, superfluid and normal-fluid components move in opposite
directions because of an imposed temperature gradient. The statistical
properties of counterflow ST are different from those of classical fluid
turbulence32 and coflow ST.33–35 In counterflow-ST experiments, there
is a steady flow along a channel that is closed at one end and open at
the other end; a heat flux q is generated by passing a current through a
resistor, at the closed end; the normal fluid, which carries this heat
flux, with velocity Un ¼ q=qST , entropy per unit mass S, and at tem-
perature T, moves away from the closed end; to maintain zero mass
flux, qsUs þ qnUn ¼ 0, so the superfluid flows in the opposite direc-
tion, toward the closed end, with velocity Us ¼ �ðqn=qsÞUn. Thus,
there is a relative velocity Uns ¼ Un � Us between the two fluids in
such thermally driven counterflow ST36

Uns ¼
q
qs

Un; (1)

where qn and qs are the densities of the normal-fluid and the super-
fluid component, respectively, and q ¼ qn þ qs is the total density. So
long as the heat flux q is small, this counterflow is laminar, but if q
increases beyond a critical value, this flow is turbulent.

We carry out a systematic study of inertial particles in 3D HVBK
coflow ST and counterflow ST.40–43 This model has been studied,
without particles, for superfluid 4He in both two dimensions (2D) and
3D;44–47 moreover, a recent study37 has investigated the clustering of
inertial particles in 3D HVBK turbulence. Below the critical tempera-
ture Tc ¼ 2:17 K, superfluid 4He is thought of as comprising a viscous,
normal-fluid component and an inviscid superfluid component. The
density ratio of the normal-fluid component and the total fluid ðqn=qÞ
is equal to one at Tc, and qn=q decreases as we decrease the tempera-
ture T; at T¼ 0, the normal-fluid component vanishes, and 4He is
completely in the superfluid form. For 0 < T < Tc, the normal-fluid
component interacts with quantized vortices of the superfluid, via
mutual friction;48 this causes dissipation in the superfluid component.
In this study, we consider inertial particles, whose size is smaller than
the Kolmogorov dissipation length of the normal fluid; we assume that
these particles are passive insofar as they do not affect the flow and
their turbulence-induced accelerations are much larger than the accel-
eration because of gravity.

We use pseudospectral direct numerical simulations (DNSs) to
solve a simplified version of the 3D HVBK model, with inertial par-
ticles, whose statistical properties we then study for different values of
the mutual-friction coefficients, in this model, and for various values
of the Stokes numbers (St ¼ sp=sf , where sp is the particle-response
time, and sf is the Kolmogorov-dissipation timescale of the fluid).
Inertial particles are different from Lagrangian tracer particles, which
follow the fluid velocity; because of their inertia, particles cluster for
St ’ 1.37,49,50 We summarize our principal results before we present
the details of our work:

1. We characterize the anisotropy of counterflow ST by using spec-
tra35 and the anisotropy tensor (see below); we then calculate
particle statistics by employing the measures given below.

2. We define persistence times, based on the velocity-gradient ten-
sors of the normal fluid and the superfluid, and show that the
cumulative probability distribution functions (CPDFs) of these
persistence times have exponential tails in different regions of
the flow.

3. The mean angle HðsÞ, between particle positions separated by
the time lag s (defined precisely below), has two different scaling
regions (in dissipation and inertial ranges) for different values of
the Stokes numbers and the mutual-friction coefficients.

4. The CPDFs of the curvature j and the modulus h of the torsion
of particle trajectories have power-law tails with universal expo-
nents, which are independent of all the control parameters in
our model.

5. We characterize the irreversibility of 3D HVBK turbulence, by
using inertial particles, and quantify its dependence on the
Stokes numbers.

The remainder of this paper is organized as follows. We describe
the HVBK model and our DNSs in Sec. II. We present, in Sec. III, the
details of our results. We discuss the implications of our results in the
concluding Sec. IV.

II. MODEL AND NUMERICAL SIMULATIONS

We use the simplified form of the 3D HVBK equations.44 In
addition to the kinematic viscosity �n of the normal fluid, we include
Vinen’s effective viscosity51 �s in the superfluid component to mimic
the dissipation because of (a) vortex reconnections and (b) interactions
between superfluid vortices and the normal fluid;52 the equations for
this simplified, incompressible 3D HVBKmodel (we use the form sug-
gested in Ref. 33) for fluctuations un and us with zero mean are

@tun þ ðun þUnÞ � r½ �un ¼ �
1
qn
rpn þ �nr2un þ Fnmf þ fn;

@tus þ ðus þUsÞ � r½ �us ¼ �
1
qs
rps þ �sr2us þ Fsmf þ f s:

(2)

Here, unðusÞ; UnðUsÞ; qnðqsÞ; pnðpsÞ, and �nð�sÞ are the velocity,
mean velocity, density, pressure, and kinematic viscosity of the normal
fluid (superfluid), respectively; Un and Us vanish for coflow but not
for counterflow. The mean relative velocity Uns ¼ Un � Us is non-
zero for counterflow, and it cannot be eliminated by a Galilean trans-
formation as discussed in Ref. 34. The mutual-friction terms Fnmf and
Fsmf , which lead to energy transfer between normal-fluid and super-
fluid components,53,54 are

Fsmf ¼ �
qn

q
fmf ; Fnmf ¼

qs

q
fmf ;

fmf ¼
B
2

x̂s � ðxs � ðun � usÞÞ þ
B0

2
xs � ðun � usÞ;

(3)

where q ¼ qn þ qs is the total density, uns ¼ un � us is the slip veloc-
ity, xs ¼ r� us is the superfluid vorticity, B and B0 are the mutual-
friction coefficients, and fn and f s are the external forcing terms for
the normal fluid and superfluid, respectively, and the caret denotes a
unit vector. We consider incompressible flows for which we use the
incompressibility conditions
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r � un ¼ 0 and r � us ¼ 0; (4)

for the normal fluid and the superfluid, respectively. Given these
incompressibility conditions, the pressures pn and ps can be eliminated
from the equations; if these pressures are required, we can calculate
them by using the Poisson equations that relate them to the velocity
fields, but we do not need them in this study. We carry out a Fourier-
pseudospectral DNS study of the 3D HVBK equations (2) and (4) by
using the following:

• a cubical box of side 2p, with periodic boundary conditions along
each direction, N3 collocation points, and the 2/3 dealiasing rule.55

• in this pseudospectral method,23,56 the derivatives in Eq. (2) are
evaluated in Fourier space where they are local, and products are
evaluated in physical space; for Fast Fourier transforms (FFT)
and their inverses, we use the FFTW57 libraries;

• the constant-energy-injection scheme58,59 is used to force the
Fourier modes, which lie in the first two shells in Fourier space,
for both the normal fluid and the superfluid;

• the second-order Adams–Bashforth scheme for time marching.59

• In our direct numerical simulations (DNSs), we use smooth ini-
tial conditions; furthermore, the flow is incompressible, so there
are no shocks. Of course, we do use 2/3 dealiasing, as we have
mentioned in our paper; we have checked explicitly, by using two
resolutions, namely, N3 ¼ 2563 and N3 ¼ 5123 that the statistical
properties we consider are not affected significantly by this
change of resolution.

The parameters for our DNSs are given in Table I; here,
RenkðReskÞ, sneddyðsseddyÞ; gnðgsÞ, sngðssgÞ, and T are the Taylor-microscale
Reynolds number, eddy-turn-over time, Kolmogorov dissipation
length and time scales for the normal fluid (superfluid), and tempera-
ture (in kelvin), respectively. We use the temperature-dependent values
of qn; qs;B, and B0 from the experiments of Ref. 60. The values of the
viscosities are taken from Ref. 61. We use �n=�s � 10; it is difficult to
go beyond this ratio with the resolution of our DNS. [This is similar to
the problem faced by DNSs of magnetohydrodynamics (MHD) turbu-
lence when the magnetic Prandtl number (the ratio of the fluid kine-
matic viscosity and magnetic diffusivity) is very different from unity.59]

To study the advection of inertial particles in this HVBK model,
we consider that (a) the radius of the particles a� gn, where gn is the
Kolmogorov dissipation length scales for normal fluid, (b) particles do
not interact with each other, (c) particles do not affect the fluid flows,
and (d) turbulence-induced particle accelerations are much greater
than the acceleration because of gravity. The particle’s radius
’ 1! 5� 10�3 cm, and the Kolmogorov length scale for the normal
fluid at T ¼ 1:65K is ’ 1� 10�2 cm. Under these conditions, the
evolution equations for the particles, discussed in Refs. 62–64 for a
classical fluid, can be generalized, in the HVBKmodel,16 to

dvðtÞ
dt
¼ unðX; tÞ � vðtÞ

sp
þ b

qn

q
Dun
Dt
þ qs

q
Dus
Dt

� �

dXðtÞ
dt
¼ vðtÞ;

(5)

here, vðtÞ and XðtÞ are, respectively, the velocity and position of the
particle at time t; and unðX; tÞ and usðX; tÞ are the Eulerian normal-
fluid and superfluid velocities at position X and time t; D/Dt is the
material derivative; the term with the coefficient

b � 3q=ð2qp þ qÞ; (6)

accounts for added-mass effects (qp is the particle’s density); the
particle-response time for the normal fluid is

sp ¼
a2q

3bqn�n
: (7)

To study the statistical properties of such particles, we solve
Eq. (5) for (a) Np¼ 100 000 particles, by using the first-order Euler
scheme for time marching and tri-linear interpolation, to calculate the
particles’ velocities at off-grid points, and (b) for different Stokes
numbers

Stn ¼
sp
sn
; (8)

with sn ¼ ð�n=�nÞ
1
2 the Kolmogorov timescale for the normal fluid,

and �n is the rate of kinetic energy dissipation for the normal fluid; the
higher these Stokes numbers, the higher the particle inertia.

TABLE I. Parameters for our DNS runs. Coflow ST: R1–R3; and counterflow ST: R4–R8. N3 is the total number of collocation points; qn=q is the normal-fluid fraction; the non-

dimensionalized counterflow velocity ~Uns ¼ jUnsj=unT , where unT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjunj2i

q
and the angular brackets denote the average over the turbulent, but statistically steady state of

the 3D HVBK system; B and B0 are the coefficients of mutual friction; �nð�sÞ; RenkðReskÞ, sneddyðsseddyÞ; gnðgsÞ, sngðssgÞ, and T are the kinematic viscosity, Taylor-microscale
Reynolds number, eddy-turn-over time, Kolmogorov dissipation length and time scales for the normal fluid (superfluid), and temperature (in kelvin), respectively; the time step is
dt; kmax is the largest wave number (after dealiasing); and fn (fs) provide constant energy injection into the first two shells in Fourier space for the normal fluid (superfluid); we
force both the fluids.

Run N T qn=q ~Uns B B0 �n=104 �s=104 dt=104 fn fs Renk Resk sneddy sseddy kmaxgn kmaxgs sng ssg

R1 256 1.65 0.193 0.00 1.14 0.15 11.3 2.3 10 0.02 0.02 34 124 1.43 1.34 1.26 0.46 0.19 0.13
R2 256 2.10 0.741 0.00 1.30 –0.07 1.67 10 10 0.02 0.02 153 40 1.30 1.41 0.36 1.14 0.11 0.18
R3 512 1.65 0.193 0.00 1.14 0.15 11.3 2.3 8 0.02 0.02 35 211 1.24 1.14 2.04 0.49 0.15 0.09
R4 256 1.65 0.193 11.32 1.14 0.15 11.3 2.3 10 0.02 0.02 287 758 1.60 1.45 2.45 0.68 0.58 0.29
R5 20.31 237 561 1.90 1.65 2.46 0.71 0.74 0.31
R6 256 2.10 0.741 8.94 1.30 –0.07 1.67 10 10 0.02 0.02 374 177 1.82 2.10 0.50 2.14 0.21 0.63
R7 512 1.65 0.193 12.90 1.14 0.15 11.3 2.3 8 0.02 0.02 58 244 4.32 2.51 6.22 1.77 1.17 0.47
R8 512 2.10 0.741 8.54 1.30 –0.07 1.7 10.0 8 0.02 0.02 190 62 2.17 4.12 1.13 5.40 0.26 1.00
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III. RESULTS

We study the statistics of inertial particles for different values of
Stn and b in the 3D HVBK model for our different DNS runs. Before
we discuss these statistics of inertial particles we present, in Fig. 1, iso-
surface plots of the magnitude of the normal-fluid vorticity jxnj at
T¼ 1.65K: Figs. 1(a)–1(d) show, respectively, such isosurface plots for
coflow and counterflow ST; in the latter case, the counterflow velocity
points along Ûns ¼ êk, where êk is the unit vector along the z direc-
tion. We present isosurfaces for Stn ¼ 1:0 and b ¼ 1:25 ðqp=q ¼ 0:7Þ
and b ¼ 0:1 ðqp=q ¼ 14:5Þ. For coflow, the spatial organization of
isosurfaces appears to be isotropic at T ¼ 1:65K and particles form
clusters [Fig. 1(a)] as in classical fluid turbulence. In contrast, counter-
flow ST exhibits large-scale vortex columns [Fig. 1(b)], in which heavy
particles (b ¼ 0:1) form large clusters [Fig. 1(c)] that are repelled from
the regions with large vortical structures; however, light particles
(b ¼ 1:25) are attracted toward these structures [Fig. 1(d)]. In Fig. S1
of supplementary material V, we show isosurface plots of jxnj for
counterflow ST at T ¼ 2:10K; the distribution of particles is similar to
that at T ¼ 1:65K.

We also characterize the anisotropy of counterflow ST by using
the anisotropy tensor aij and energy spectra. The anisotropy tensor has
the components

aij ¼
uiuj
uiui
� 1
3
dij; (9)

where ui and uj are the Cartesian components of the fluctuating veloc-
ity for the normal fluid, we use the Einstein summation convention
for repeated indices, and the overbar denotes the volume average. We
calculate different off diagonal components of aij and find, e.g., that
aij ’ 10�3 for coflow ST at T ¼ 1:65K; by contrast, for counterflow
ST, aij ’ 2� 10�1. This shows clearly the degree of anisotropy in the
counterflow ST in our DNS. Furthermore, we examine the anisotropy
of counterflow ST by using the following energy spectra:35

El
kk
¼ 1

2

X
kk�1

2<k
0<kkþ1

2

~u l
kðk0Þ � ~u l

kð�k0Þ;

El
k?
¼ 1

2

X
k?�1

2<k
0<k?þ1

2

~u l
?ðk0Þ � ~u l

?ð�k0Þ;
(10)

here, l can be n or s; we denote by ~u l
k and ~u l

? the spatial Fourier trans-
forms of the velocities in the directions kk and k?, respectively, where

kk ¼ ðk � ÛnsÞÛns and, perpendicular to it, k? ¼ k � kk; and k0; kk,
and k? are, respectively, the magnitudes of k0; kk, and k?. We plot, in
Fig. 2, the energy spectra En

k?
(dark blue) and En

kk
(cyan) for the

normal-fluid component of counterflow ST at T ¼ 1:65K for Ûns ¼
êk (run R5). Note that En

kk
is strongly pressed relative to En

k?
; further-

more, these spectra show two distinct (blue-shaded region) power-law

forms that are consistent with En
k?
	 k�8=3? and En

kk
	 k�11=3k . These

spectra are in agreement with the recent results of Ref. 35.
This anisotropy of counterflow ST affects the trajectories of iner-

tial particles, which are advected by such turbulence. We can visualize
this qualitatively by including the positions of, say, 10 000 particles
(shown via small white spheres) along with the isosurfaces, in Fig. 1, of
the magnitude of the normal-fluid vorticity jxnj. Clearly, in the case of
counterflow ST at T¼ 1.65K [Fig. 1(c)], particles form large clusters

FIG. 1. Isosurface plots of the magnitude of the normal-fluid vorticity jxnj with particles as white points, at T¼ 1.65 K. (a) Coflow ST (R1) and (b)–(d) counterflow ST (R5); (c)
a 2D view of (b) for heavy particles (b ¼ 0:1); and (d) the same plot as in (c) but for light particles (b ¼ 1:25). The counterflow velocity is along the z direction, which points
out of the page in (c).

FIG. 2. Log–log plots of the energy spectra [Eq. (10)] En
k?

(dark blue) and
En
kk

(cyan) for the normal fluid component of counterflow ST with T¼ 1.65K and

Ûns ¼ êk (run R5). The blue shaded region shows the inertial range of scales. In the

inset, we plot the compensated spectra En
k?

 k8=3? (dark blue) and En

kk

 k11=3k (cyan).
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around large vortical structures and move principally along the direc-
tion Ûns of the counterflow velocity.

In Subsection IIIA, we characterize the flow in the Eulerian
frame by using joint PDFs (JPDFs) of the Q and R invariants of the
velocity-gradient tensor. In Subsection III B, we obtain the angle H
that quantifies the statistics of inertial-particle displacement incre-
ments. Subsection III C is devoted to a characterization of the statisti-
cal properties of the geometry of particle trajectories. In Subsection
IIID, we characterize the irreversibility of 3D HVBK turbulence. In all
these subsections, we compare and contrast our results for coflow ST
and counterflow ST; we also examine the dependence of some of the
results on the non-dimensionalized counterflow velocity ~Uns ¼ jUnsj=
unT , where u

n
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjunj2i

q
, and the angular brackets denote the aver-

age over the turbulent, but statistically steady state of the 3D HVBK
system. Figure 9 in the Appendix shows the time series of the volume-
averaged energy, EðtÞ ¼

P
kk
Ekk þ

P
k? Ek? , in the statistically steady

state for run R1; here, Ekk and Ek? are defined in Eqs. (10).

A. Joint probability distribution of Q–R invariants

We begin by calculating the invariants Pa; Qa, and Ra of the
velocity-gradient tensorAaij ¼ @juai

Pa ¼ �TrðAaÞ;

Qa ¼ �
1
2
TrðA2

aÞ;

Ra ¼ �
1
3
TrðA3

aÞ;

(11)

where the subscript a stands for n or s, and i; j ¼ 1; 2; 3. For incom-
pressible flows, Pa ¼ 0. The discriminant for the characteristic equa-
tion ofAa is

Da ¼
27
4
R2
a þ Q3

a : (12)

We use these invariants and Da, in the Qa � Ra plane, to charac-
terize the following four types of flows regions (for this well-
established method, see, e.g., Ref. 74 and references therein):

• Region A: vortical flow with stretching, for Da > 0 and Ra < 0;
• Region B: vortical flow with compression, for Da > 0 and Ra > 0;
• Region C: flow with biaxial strain, for Da < 0 and Ra < 0;
• and Region D: flow with axial strain, for Da < 0 and Ra > 0.

Joint PDFs (JPDFs) of Qa and Ra are often used to characterize
turbulent flows in classical fluid turbulence,74 where they have a char-
acteristic tear-drop shape, i.e., in strain-dominated regions (Q< 0),
R> 0 is more probable than R< 0, whereas the opposite holds in vor-
tical regions (Q> 0). In Fig. 3, we present filled contour plots of four
representative JPDFs for coflow ST [Figs. 3(a) and 3(b)] and counter-
flow ST [Figs. 3(c) and 3(d)] at T ¼ 1:65K; these are in the Eulerian
frame. The four flow regions, (A)–(D), are shown in Fig. 3(a). We note
that the JPDFs for coflow ST have a tear-drop shape, as in classical
fluid turbulence; but those for counterflow ST show some deviations
from this shape, which means that, in the strain-dominated region
(Q< 0), both R< 0 and R> 0 are almost equally probable [and like-
wise for the vortical region (Q> 0)]. Some groups75 have found, for
various experimental turbulent flows, that the shape of the Q � R
JPDF depends on the flow and that deviations from a tear-drop shape
may arise if we have vortex-sheet-like structures rather than vortex-
tube-like structures; these depend on the sign of the second eigenvalue
of strain-rate tensor. We will discuss this in detail, in the context of
counterflow ST, elsewhere. In this paper, we focus principally on our
particle-based studies.

In each one of these flow regions, (A)–(D), we calculate the PDFs
of persistence times tpern and tpers for the normal-fluid (n) and super-
fluid (s) components, respectively. These are the times spent by a parti-
cle, in a given region, before it moves to another region (for classical
fluid turbulence, see Ref. 74). We calculate persistence-time PDFs in
the Eulerian frame, by measurements of Qa;Ra, and Da, at a fixed
point in space, as a function of time t. We get similar PDFs for tracers
or inertial particles by following the trajectory of each such particle
and obtainingQa;Ra, andDa along its trajectory.

In Fig. 4, we present semilog plots of the persistence-time CPDFs
at two temperatures (T¼ 1.65 and 2.10K), in the Eulerian frame, for
the normal fluid and for coflow ST in Fig. 4(a) and for counterflow ST
in Fig. 4(b). We give similar plots for the superfluid component, in
Fig. S2, in supplementary material V. From the semilog plots in Figs. 4
and S2, we observe that, for both coflow and counterflow ST,
persistence-time CPDFs (and PDFs) have exponentially decaying tails
in all the regions A–D and in both the normal fluid and the superfluid.

B. Inertial-particle displacement increments

In the context of classical fluid turbulence, it has been noted in
Ref. 65 that the study of the changes in the direction of Lagrangian
tracers reveals two power-law ranges. We carry out the analog of this

FIG. 3. Filled contour plots of four representative JPDFs for coflow ST [(a) and (b) from run R3] and counterflow ST [(c) and (d) from run R7]; we give JPDFs of Qn and Rn in
the first and third columns and of Qs and Rs in the second and fourth columns; these are in the Eulerian frame. Kn ¼ ugn

gn
and Ks ¼ ugs

gs
.
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analysis for inertial particles advected by 3D HVBK coflow and coun-
terflow ST; our study highlights the effect of ~Uns on the change in the
direction of these particles. From our DNSs, we obtain the angle HðsÞ
between subsequent inertial-particle-displacement increments65 as a
function of the time lag s as follows:

dXðx0; t; sÞ ¼ Xðx0; tÞ � Xðx0; t � sÞ; (13)

whereXðx0; tÞ is the position of the particle at time t, and x0 is the ref-
erence position for the particle at time t0. The angleHðt; sÞ is given by

cos ðHðt; sÞÞ ¼ dXðx0; t; sÞ � dXðx0; t þ s; sÞ
jdXðx0; t; sÞjjdXðx0; t þ s; sÞj ; (14)

whose average value, over the time t and the number of particles Np, is

HðsÞ ¼ hjHðt; sÞjit;NP
: (15)

For coflow ST at T¼ 1.65K [Fig. 5(a)], we present the log–log
plot of HðsÞ vs s for different values of Stn and b ¼ 1:25ðqp=
qo ¼ 0:7Þ. These plots show two power-law scaling regions separated
by a crossover regime around sng , the Kolmogorov timescale: in the dis-
sipation range (cyan-shaded regions) HðsÞ 	 sa; in the inertial range
(green-shaded regions) HðsÞ 	 sf; our data are consistent with the
exponents a ’ 1 and f ’ 1=2. Similar scaling regimes have been

obtained for Lagrangian tracers in classical fluid turbulence65 except at
a large Stokes number in which case particles become ballistic and do
not show the inertial range. This shows that coflow ST at T¼ 1.65K
or higher temperatures behaves like classical fluid turbulence because
the normal-fluid and superfluid components are strongly coupled by
the mutual friction.

For counterflow ST at T¼ 1.65K [Fig. 5(b)], the scaling region in
the dissipation range (s < sng) yields a ’ 1, as in coflow ST. Beyond
sng , because of the mean counterflow speed (~Uns ¼ 20:31), particles
form large clusters [Figs. 1(b)–1(d)]. For light particles [Fig. 1(d)],
these large clusters are attracted toward the vortex columns and are
substantially confined. This confinement reduces the asymptotic value
ofH at large s (as compared to its counterpart in coflow ST). In partic-
ular, particles with large Stn [cyan curve in Fig. 5(b)] are strongly
affected by this confinement because they follow the normal-fluid
component, which has large mean velocity Un as compared to that of
the superfluid component Us (cf. Ref. 66 for a related effect in classical
fluid turbulence). At a higher temperature, say T ¼ 2:10K, the super-
fluid fraction is very small, and the behavior of H is similar to that in
classical fluid turbulence [Fig. 5(c)] with the scaling exponents a ’ 1
and f ’ 1=2; of course, at large values of s, H is reduced, because of
the mean counterflow velocity, as it is for T ¼ 1:65K.

C. Particle trajectories

In addition to the statistics of particle velocities and accelerations
in coflow and counterflow ST, it is instructive to examine the statistics
of the trajectory curvature j and the modulus h of the torsion. Both of
these quantities have dimensions of inverse length, so large values of j
and h provide information about small-scale structures. To character-
ize the geometry of a particle’s trajectory, we follow Ref. 67 and use the
tangent t, normal n, and bi-normal b that are defined as68–70

t ¼ dr
ds

; n ¼ 1
j
dt
ds

; b ¼ t� b: (16)

Here, s is the arc length, and j is the curvature of the trajectory; t, n,
and b evolve as follows:

FIG. 5. Log–log plots of the angle HðsÞ (see the text) vs the time lag s for (a) coflow ST at T¼ 1.65 K, (b) and (c) counterflow ST at T¼ 1.65 K and T¼ 2.1 K, respectively.
These plots are for b ¼ 1:25 and for different values of Stn. Note the power-law scaling regions in the dissipation ranges (cyan-shaded regions) and in the inertial ranges
(green-shaded regions) with HðsÞ 	 sa and HðsÞ 	 sf, respectively.

FIG. 4. Semilog plots of the CPDFs of the persistence times, tpern , at T¼ 1.65 K in
the Eulerian frame for the normal-fluid (n) component; for coflow ST (run R3) in (a)
and for counterflow ST (run R7) in (b).
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dt
ds
¼ jn;

dn
ds
¼ #b� jt;

db
ds
¼ �#n: (17)

# is the torsion of the trajectory. In terms of v and its derivatives
( _v ; v€), we have, in parametric form

j ¼ jv � _v j
jvj3

¼ an
v2

; # ¼ v � ð _v � v€Þ
ðv � vÞ3j2

: (18)

where v and an are the magnitude of the velocity and of the normal
component of particle’s acceleration.

In the log –log plots of Figs. 6(a) and 6(b), we present for coflow
ST, the CPDFs QðjÞ andQðhÞ, respectively, where h ¼ j#j. Both these
CPDFs show power-law-scaling regions: QðjÞ 	 j�hjþ1, for j!1,

with hj ’ 2:5, i.e., the PDF PðjÞ 	 j�hj ; and QðhÞ 	 h�hhþ1, for
h!1, with hh ’ 3, i.e., the PDF PðhÞ 	 h�hh . In Figs. 6(c) and 6(d)
we present, for counterflow ST, the CPDFs QðjÞ and QðhÞ, respec-
tively. The exponents hj and hh are the same as for coflow ST. We use
a local-slope analysis (see, e.g., Ref. 71) to calculate the mean values of
hj and hh and their error bars [insets of Figs. 6(a) and 6(b)]. The expo-
nents hj and hh, for the tails PðjÞ and PðhÞ are universal, insofar as
they are independent of B;B0;qn; qs; Stn; Stn, and ~Uns. The exponents
hj and hh have the same values as they do in classical fluid
turbulence.67,72,73

We can obtain hj and hh, by making plausible approximations,
as in classical fluid turbulence.72,73 For the curvature

FIG. 6. Log–log plots of CPDFs of (a) the curvature j and (b) the magnitude h of the torsion of particle trajectories for coflow ST (runs R1, R2, and R3); (c) and (d) are,
respectively, the counterflow-ST counterparts of (a) and (b) (for runs R5, R6). Insets show plots of the local slopes of the tails of these CPDFs for run R1 [in (a) and (b)] and
for run R5 [in (c) and (d)]; the mean values of these local slopes yield the exponents of the power-law tail of the CPDFs (and the local-slope standard deviations give the error
bars for these exponents). [We can also calculate the exponent of the tail of the CPDF of j from the instantaneous angles of particle trajectories (see Fig. S3 in supplementary
material V).] In these plots Stn ¼ 1:0 and b ¼ 0:88.
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PðjÞ ¼
ð

d j� an
v2

� �
Pðan; vÞdandv; (19)

where an is the normal component of the particle’s acceleration, and v

the magnitude of its velocity. Furthermore, h ¼ jv�ð _v�v€Þjðv�vÞ3j2 , which we can

simplify to obtain h ¼ j v€ �bjanv
; large values of h correspond to small val-

ues of an or v. For the modulus of the torsion

PðhÞ ¼
ð

d h� 1
anv

� �
Pðan; vÞdandv: (20)

an is a small-scale quantity, and v is dominated by large-scale flows, so
we argue, as in Ref. 67, that this scale separation suggests67,72,73 that we
have the following factorization of the joint PDF:

Pðan; vÞ ’ PanðanÞPvðvÞ: (21)

From our DNSs of the 3D HVBK model, we find that: (a) the PDF of
v is well approximated by the Maxwellian

PvðvÞ ¼ C1v
d�1 exp ð�v2=C2Þ; (22)

where C1 and C2 do not depend on v; and (b) the PDF of an can be fit
to the form

PanðanÞ ¼ C3an exp ð�a2n=C4Þ; (23)

where C3 and C4 do not depend on an. By substituting Eqs. (21)–(23)
in Eqs. (19) and (20), we get, after some simplification (in the small an
limit),

PðjÞ 	 j�2:5; j!1;
PðhÞ 	 h�3; h!1;

(24)

our DNS results are in agreement with these power-law forms.

D. Energy increments and the irreversibility of 3D
HVBK turbulence

We turn now to the energy increments of inertial particles
advected by 3D HVBK turbulent flows

WðsÞ ¼ hEðt0þsÞ � Eðt0Þit0 ; (25)

where Et ¼ ð1=2ÞvðtÞ2 is the kinetic energy per unit mass of the parti-
cle, and the particle velocity v is calculated by using Eqs. (5); hit0

denotes the average over the time origin t0. Such energy increments
have been used to study irreversibility in classical fluid turbulence,
where it has been found that inertial particles, in turbulent flows of a
classical fluid, gain energy slowly but lose it rapidly;76,77 such gain and
loss are also referred to as flight-crash events because, on average, a
particle decelerates faster than it accelerates. In Figs. 7(a) and 7(c), we
plot, respectively, the PDFs PðW=rWÞ, where rW is the standard devi-
ation, for coflow ST and counterflow ST at T ¼ 1:65K and for light
particles (b ¼ 1:25).

For coflow ST, we observe that PðW=rWÞ is negatively skewed
for the small values of s, which indicates that the particles lose energy
faster than they gain it. This skewness decreases as we increase s, as we
show in blue curve of Fig. 7(a) for coflow ST; clearly, these PDFs are
more symmetrical (and somewhat close to Gaussian PDFs) than their
small-s counterparts in Fig. 7(a).

There is a striking difference if we consider light particles
(b ¼ 1:25) in counterflow ST [Fig. 7(c)]: the skewness of PðW=rWÞ is
positive (as has been found recently in a model for bacterial turbu-
lence78). We conjecture that this positive skewness arises because, in
counterflow ST, the mean velocity ~Uns makes light particles cluster
near large vortical structures [Fig. 1(d)].

In Figs. 7(b) and 7(d), we present, for coflow ST and counterflow
ST, respectively, and for different values of Stn, graphs of the scaled
third moment of the energy increment hW3=E3

nf i vs the scaled time
increment s=sng , where Enf and sng are, respectively, the energy and the
dissipation timescale for the normal fluid. From Figs. 7(b) and 7(d),
we infer that this third moment is negative for coflow ST but positive
for counterflow ST. For small time increments in coflow ST

�hW3=E3
nf i 	 ðs=sngÞ

3; (26)

and for counterflow ST

hW3=E3
nf i 	 ðs=sngÞ

3; (27)

deviations from these simple-scaling form are evident at large values
of s=sng .

Flight-crash events have also been studied for coflow ST and
thermal-counterflow ST in experiments with superfluid 4He, by using
particles that are like Lagrangian tracers.22 These experiments find
that, on scales larger than the mean inter-vortex spacing and for

FIG. 7. Semilog plots of the energy-increment PDF PðW=rW Þ, where rW is the standard deviation of W, for coflow ST (columns 1–2) and for counterflow ST (columns 3–4) at
T¼ 1.65 K: (a) for different time lags s=sng, where sng is the normal-fluid dissipation time; (b) log –log plots of h�W 3=En

nfi vs the time lag s=sng , where E
n
nf is the normal-fluid

energy, and s3 is indicated by the black-dashed line. (c) and (d) are the counterflow-ST versions of (a) and (b), respectively. The cyan-shaded regions show the regimes
over which we fit power laws. The dashed curve in (a) shows the Gaussian fits for PðW=rW Þ for s=sng ¼ 14:74 with 0 mean and unit standard deviation. For all the plots
Stn ¼ 1:0 and b ¼ 0:88.
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mechanically driven coflow ST, there are negatively skewed PDFs
PðW=rWÞ, which are signatures of flight-crash events (see above);
these experimental results are in consonance with our findings for
coflow ST [Figs. 7(a) and 7(b)]. Experiments22 have also shown that
the flight-crash events are less apparent in counterflow ST than in
coflow ST, and there are signatures of positively skewed velocity-
difference PDFs as well; this is in agreement with our results [Figs. 7(c)
and 7(d)] for light particles. Furthermore, these experiments22 find
that, on scales smaller than or comparable to the mean inter-vortex
spacing, there is less evidence for flight-crash events than in classical
fluid turbulence; we cannot address this here because, as we have
noted above, the HVBK model cannot be used for a description of
superfluid turbulence on length scales smaller than or comparable to
the mean inter-vortex spacing. However, even in this model of HVBK,
the results of counterflow are strikngly different from that of coflow.

To quantify the irreversibility of the flow, we can calculate the
power pðtÞ ¼ aðtÞ � vðtÞ, from particle trajectories, with a ¼ dv=dt
being the particle’s acceleration. The irreversibility parameter is, as in
classical fluid turbulence,76

Ir ¼ hp3i
hp2i3=2

; (28)

which we plot vs Stn in Figs. 8(a) and 8(b) for coflow and counterflow
ST, respectively, at T ¼ 1:65K and for both light and heavy particles.
For coflow ST, this irreversibility parameter is negative for light
(b ¼ 1:25) as well as heavy (b ¼ 0:1) particles and for all Stn; this has
also been found in classical fluid turbulence.76 Moreover, it has been
argued79 that Ir < 0 in 3D fluid turbulence; similar arguments can be
used, mutatis mutandis, to conclude that Ir < 0 in 3D HVBK coflow
turbulence, in agreement with our graphs in Fig. 8(a). For counterflow
ST, the irreversibility parameter [Fig. 8(b)] is positive for light particles
(b ¼ 1:25), which reflects the positive skewness in the energy incre-
ments of Figs. 7(c) and 7(d); in contrast, for heavy particles (b ¼ 0:1),
the irreversibility parameter is negative [navy-blue curve in Fig. 8(b)],
which indicates negatively skewed PDFs of energy increments.

IV. CONCLUSIONS

Studies of inertial particles in superfluid turbulence are in their
infancy; by contrast, there have been extensive studies of the statistical
properties of such particles advected by classical fluid turbulence.38,39

Hence, we have carried out a systematic study of inertial particles in
statistically steady coflow ST and counterflow ST in the 3D HVBK
model, for different values of the Stokes numbers Stn, with normal-
fluid fractions and mutual-friction coefficients that are taken from
measurements60 on superfluid 4He, as a function of the temperature.
One recent study37 has investigated the clustering of inertial particles
in 3D HVBK turbulence and has shown that, for coflow ST, although
the particle distribution is nearly uniform at high temperatures, it still
has signatures of some clustering.

Coflow ST is isotropic, but counterflow ST is inherently aniso-
tropic; we have shown this via isosurfaces of jxnj and the positions of
representative particles in Fig. 1. For coflow ST at T ¼ 1:65K, par-
ticles cluster as they do in classical fluid turbulence because, at this
temperature, the mutual friction couples both fluids strongly. The par-
ticles form large-scale clusters at T ¼ 1:65K in counterflow ST; and
light particles are attracted toward [Fig. 1(d)] the large vortical col-
umns; by contrast, heavy particles are expelled from these vortical col-
umns [Fig. 1(c)].

These large vortical columns have a direct influence on the statis-
tics of the angle H, which is the angle between subsequent inertial-
particle-displacement increment. The study of H reveals two scaling
regions; one in dissipation and other in the inertial region. In the case
of coflow ST, the large time asymptotic value of H is the same for all
Stokes numbers which is the signature of isotropic case.65 While for
counterflow, this asymptotic value of H reduces for light particles with
large Stn as they are affected more by the confinement from normal
fluid component. Reference 66 studies the effect of mean velocity on
the angle H in the case of classical turbulence and also observe such
reduction in the large time lag value of H.

One of the main results of this study is the signature of positive
skewness in the PDFs of energy increment Figs. 7(c) and 7(d) for light
particles. As we mention earlier, in a recent study of coflow and coun-
terflow ST, Ref. 22 observes that the flight crash events are less promi-
nent than that of classical fluid turbulence; they show that for coflow,
there is some similarity to classical case at large length scales. This
result of coflow is in agreement with our study, i.e., there are signatures
of flight crash events in the HVBK model of coflow. For counterflow,
Ref. 22 observes different results from the classical case at all length
scales and found signatures of positive skewness in moments of veloc-
ity differences. This is also in consonance with our results of positive
skewness in the case of counterflow for light particles; while for heavy
particles, the PDFs of energy increment are negatively skewed.

We hope that our definition and study of flight crash events, for
inertial particles in 3D HVBK turbulence, will lead to new experimen-
tal investigations of this problem in, e.g., superfluid 4He or
Bose–Einstein condensates (BECs).

SUPPLEMENTARY MATERIAL

See the supplementary material for: (1) a brief description of the
specific power laws found in Fig. 2; (2) isosurface plots of the magni-
tude of the normal-fluid vorticity jxnj at temperature T ¼ 2:10K; (3)
CPDFs of the persistence time III A, tpers , at T ¼ 1:65K for the super-
fluid component; (4) the curvature III C, j, of particle trajectories,
obtained from the instantaneous angle Hðt; sÞ; (5) isosurface plots
of the magnitude of the normal-fluid vorticity jxnj at temperature
T ¼ 2:10K for a square cuboid domain with resolution
256� 256� 1024.

FIG. 8. Plots of the irreversibility parameter Ir (see the text) vs Stn for (a) coflow ST
and (b) counterflow ST. These plots are at T ¼ 1:65K and for b ¼ 0:1 in navy
color and for b ¼ 1:25 in light sea green.
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NOMENCLATURE

Ir Irreversibility
p Power input to the particle

Qn=s;Rn=s Invariants of velocity gradient tensor for normal-fluid/
superfluid

tpern=s Persistence time of particles for normal-fluid/
superfluid

Unsð~UnsÞ Counterflow mean velocity (magnitude of mean rela-
tive velocity)

WðsÞ Particle’s kinetic energy increment separated by time lag s

a; f exponents of the angle H
b Parameter that accounts for the added mass effect to

the particle
h Magnitude of the torsion of the particle’s trajectory
j Curvature of the particle’s trajectory

qp Particle’s density

sn=sg Kolmogorov-dissipation timescale for normal fluid/
superfluid

H Angle between particle’s subsequent position increment

APPENDIX: THE VOLUME-AVERAGED ENERGY

Plot of the volume-averaged energy EðtÞ¼
P

kk
Ekk þ

P
k?
Ek? ,

of the turbulent flow for normal fluid and superfluid components
showing the statistically steady state at long times.
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