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Deep learning (DL), a potent technology to develop Digital Twin (DT), for

weather prediction using cubed spheres (DLWP-CS) was recently proposed

to facilitate data-driven simulations of global weather fields. DLWP-CS is a

temporal mapping algorithm wherein time-stepping is performed through

U-NET. Although DLWP-CS has shown impressive results for fields, such

as temperature and geopotential height, this technique is complicated

and computationally challenging for a complex, non-linear field, such as

precipitation, which depends on other prognostic environmental co-variables.

To address this challenge, we modify the DLWP-CS and call our technique

“modified DLWP-CS” (MDLWP-CS). In this study, we transform the architecture

from a temporal to a spatio-temporal mapping (multivariate setup), wherein

precursor(s) of precipitation can be used as input. As a proof of concept, as a

first simple case, a 2-m surface air temperature is used to predict precipitation

using MDLWP-CS. The model is trained using hourly ERA-5 reanalysis and

the resulting experimental findings are compared to two benchmark models,

viz, the linear regression and an operational numerical weather prediction

model, which is the Global Forecast System (GFS). The fidelity of MDLWP-CS

is much better compared to linear regression and the results are equivalent

to GFS output in terms of daily precipitation prediction with 1 day lag. These

results provide an encouraging framework for an e�cient DT that can facilitate

speedy, high fidelity precipitation predictions.

KEYWORDS

weather prediction, digital twins, deep convolutional neural networks, U-NET, cubed

sphere, precipitation
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1. Introduction

Precipitation prediction is important for many applications

at different scales for socio-economic decision-making.

Numerical weather prediction (NWP) models are one of the

best tools for such predictions. However, reliable precipitation

prediction at a higher resolution is still a challenge for the NWP

models (Dimri and Niyogi, 2013; Kidd et al., 2013; Rao et al.,

2019; Lavers et al., 2021). Representing an accurate relationship

of precipitation to prognostic variables within the NWP systems

contributes to the accuracy of forecasted rainfall (Maher et al.,

2018). In addition to the challenges in the representation of

physical processes, there are several uncertainties existing in

the present-day NWP system (Yano et al., 2018). Thus, simpler,

computationally efficient, and more cost-effective approaches

are needed for predicting precipitation.

In the last decade, deep learning (DL), a potent technology

to develop Digital Twin (DT), has emerged as a framework

to solve complex, nonlinear problems by unwrapping the

non-linearity in different layers of a deep neural network

(Zeiler and Fergus, 2014). The developments, particularly in

the field of computer vision, have led to efficient solutions to

problems such as recognizing handwritten and other decodings,

which were not possible a decade back. These advances have

come about due to different factors such as the availability of

hardware capable of performing memory-intensive convolution

operations, which were not available when convolution neural

networks (CNN) were first proposed (LeCun et al., 1998).

Moreover, software stack development, such as open-source

python libraries (TensorFlow, PyTorch, Theano, and others),

has contributed to lowering the entry barriers for DL. The

advancement in DL methods has gained prominence in the

computer vision and other communities fomenting interest to

build a DT framework for weather prediction. Moreover, DL-

based weather prediction can yield output at a fraction of the

computational cost relative to the traditional NWPs.

Recently, various efforts have focused on the weather

prediction of global data fields, such as geopotential height,

wind, and temperature (prognostic variables), using DL as

an alternative to NWP (Rasp and Lerch, 2018; Scher, 2018;

Scher and Messori, 2019; Arcomano et al., 2020; Han et al.,

2020; Sønderby et al., 2020; Yuval and O’Gorman, 2020; Bihlo,

2021; Espeholt et al., 2021; Ravuri et al., 2021; Yuval et al.,

2021; Bihlo and Popovych, 2022). However, there have been

limited attempts toward forecasting the global precipitation

(diagnostic variables), which is the most challenging variable

to predict (Scher, 2018; Scher and Messori, 2019; Arcomano

et al., 2020; Bihlo, 2021). Moreover, the literature described

earlier lacks comparison with the operational products and the

representation of the spherical structure of the global datasets.

Initial studies by Weyn et al. (2019) and Weyn et al.

(2020) attempted to resolve the issue of addressing global

data sphericity that had not been considered in the previous

literature. According to Weyn et al. (2019), U-NET was applied

to predict the 500-hPa geopotential height using the reanalysis

dataset (Deep Learning Weather Prediction, DLWP). In a

follow-up study, Weyn et al. (2020) introduced the cubed sphere

to transform the spherical global data while using U-NET

(Deep Learning Weather Prediction-cubed spheres, DLWP-

CS) to predict the 500-hPa geopotential height and 850-hPa

temperature. Both methods (DLWP and DLWP-CS) perform

a temporal learning framework similar to the traditional

autoregressive integrated moving average model (ARIMA) or

recurrent neural network (RNN) (predict geopotential height

at t + 1 time steps using inputs from time t) models to

demonstrate that U-NET can be used for NWP prediction.

In other words, the same variables need to be present in the

input and output for the model implementation. In that way,

they intend to develop a self-sustaining model independent

of the existing NWPs. The output can be recursively fed

as the input, and a simulation similar to NWPs can be

performed. The minimization of spherical distortion by the six-

faced cubed sphere projection (cubed sphere mapping), which

was taken as images, helped reduce the model biases. This

was a choice aimed to benefit from the developments in the

field of DL and computer vision. The global spherical dataset

involves transformations into the cubed sphere projection.

Although DLWP-CS has shown impressive results for fields,

such as geopotential height and temperature, it would be more

complicated and computationally challenging for a complex,

non-linear field, such as precipitation, where auto-correlation is

poor and is dependent on many other prognostic environmental

co-variables (precursors). Briefly, DLWP and DLWP-CS work

using a temporal mapping algorithm, wherein time-stepping is

performed by the U-NET. However, this method is challenging

for multivariate setup due to computational requirements where

variables of interest are dependent on various predictors.

To address the challenges discussed earlier, we modify

the DLWP-CS and call our technique “modified DLWP-CS”

(MDLWP-CS) to transform the U-NET architecture from a

temporal transformation (univariate) to a spatio-temporal

mapping (multi-variate), wherein precursor(s) of precipitation

can be used as an input. This modification, we hypothesize,

would allow the capture of the linkages from physically

relevant simple precursors to predict precipitation while

maintaining the dynamical scale teleconnections. A

schematic of the MDLWP-CS is presented in Figure 1.

Our work serves as a continuation of a methodology for

fast and reliable global precipitation predictions as part of a

DT.

The rest of the paper is organized as follows: The dataset

used in the study is described in Section 2. Methodology

and implementation strategy are described in Sections 3, 4,

respectively. Section 5 outlines the results and discussion The

study conclusions are outlined in Section 6 along with the

discussion about future scope.
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FIGURE 1

Schematic showing the U-NET modified DLWP-CS (Cubed Sphere)-based deep learning algorithm for learning Earth system physics toward fast

and reliable precipitation forecasts.

2. Datasets

2.1. Reanalysis dataset

Our proposed MDLWP-CS model is trained using

hourly data from ERA-5 reanalysis download from

the Weatherbench (https://github.com/pangeo-data/

WeatherBench). Weatherbench provides a baseline dataset

derived from the ERA5 archive that has been processed to

facilitate its use in ML models. This database comprises

15 variables and is available in three spatial resolutions (1.4, 2.8,

and 5.6 degrees). The details of this database can be found in

Rasp et al. (2020). Owing to the physical linkages to precipitation

and the computational and disk-storage constraints and the

objective of creating simple and efficient DT, we use only 2-m

surface air temperature as input and precipitation as the DL

model’s output. The dataset with 1.4◦ spatial resolution from

1979 to 2015 is used for this study. We used the time periods

from 1979 to 2009 for model training, 2010–2011 for model

validation, and 2012–2015 for model testing.
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2.2. Dataset from global forecast system

We used the day-1 lead precipitation forecasts from GFS

during 2012–2015 to compare MDLWP-CS output with the

operational numerical weather prediction model. It is a T574

global spectral model forced with fixed oceanic conditions.

The output corresponding to the years 2012–2015 is used for

precipitation, which is available globally at daily temporal scales.

The model is operationally run at IITM Pune on NVIDIA Tesla

P100 GPU in the Cray XC50 machine (Prasad et al., 2011).

3. Methodology

In this section, the concept of DLWP and DLWP-CS as

well as the proposed MDLWP-CS is described. The benchmark

models used for comparison are also discussed.

3.1. Familiarization with DLWP and
DLWP-CS

A deep convolutional neural network (CNN) with a U-

shaped architecture (U-NET) is at the heart of the DLWPmodel

(Weyn et al., 2019). The goal of a DLWP model is to take the

multidimensional atmospheric state u(t) at a particular time and

return the condition of the atmosphere at some future period,

u(t+1t). By using past weather as training data, DLWP directly

translates the present state u(t) to the expected future state u(t+

1t) predicting geopotential height. This method is similar to

the RNN or ARIMA where it performs temporal learning. This

method was further improved by transforming the spherical

global data into the CS mapping while using U-NET (DLWP-

CS) (Weyn et al., 2020). The CS remapping minimizes the

distortion on the cube faces on which convolution operations

are performed and provides natural boundary conditions for

padding in the CNN, which produces weather forecasts that

are stable and produce realistic weather patterns (Weyn et al.,

2020). CS is inherently a spherical cube with six faces, four

along the tropics and two representing the poles. The latitude–

longitude data are represented on the CS to ensure that the

errors arising due to sphericity of global data are minimized.

Variousmathematical operations such as convolution, nonlinear

activation, and max-pooling are applied to the images or faces of

the CS. In DLWP-CS, the same variables need to be present in

the input and output for the model implementation in a way to

develop an independent self-sustaining model similar to NWP.

In other ways, the output of DLWP-CS can be recursively fed as

an input within the system and a simulation similar to NWP can

be performed. Weyn et al. (2020) compared their results from

DLPW-CS with the Integrated Forecasting System (IFS42) at

the European Centre for Medium-Range Weather Forecasting

(ECMWF) and found that the DLWP-CS outperformed IFS42.

TABLE 1 Comparison of DLWP, DLWP-CS, and the proposed

MDLWP-CS.

Feature DLWP DLWP-CS MDLWP-CS

Considers spherical distortion x X X

Can be used in conjunction with

NWP

x X X

Multivariate setup x x X

Computational cost for diagnostic

fields such as precipitation

High High Low

Spatio-temporal mapping x x X

3.2. Overview of the proposed
MDLWP-CS

As discussed in Section 1, both DLWP and DLWP-CS

are limited to a multivariate setup where the variables

of interest, such as precipitation, are dependent on many

other prognostic environmental co-variables (precursors).

With DLWP and DLWP-CS models, the computational cost

for predicting precipitation would be very high due to

the multivariate nature of the problem. Table 1 discusses

the major differences between DLWP, DLWP-CS, and the

proposed MDLWP-CS. The number of inputs and targets in

MDLWP-CS can be variable, whereas DLWP and DLWP-

CS need an equal number of variables as inputs and

targets. Once the model is trained, the time for the forecast

(generate output) is much faster in MDLWP-CS. This is

a notable advantage of using a DL-based system relative

to the NWP system to reduce the computational cost for

real-time prediction.

3.3. Benchmark models

The performance of MDLWP-CS is compared to two

benchmark models, viz, the linear regression and an

operational numerical weather prediction model, the

Global Forecast System (GFS) (Prasad et al., 2011). The

comparison is done on the day-1 lead forecast output

from GFS, linear regression, and the DL-based global

model output.

Linear regression models are developed at each grid

point on Earth with the surface air temperature as the

independent variable and precipitation as the dependent

target. The linear regression model uses the same hourly

ERA-5 reanalysis data for training as MDLWP-CS. The

hourly data are aggregated at a daily time-scale and

are used for comparison with MDLWP-CS. The period

1979–2011 is used for training and 2012–2015 is used

for testing.
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FIGURE 2

Mean of daily global precipitation corresponding to the (A) ERA5 reanalysis, (B) GFS, (C) linear regression, and (D) MDLWP-CS. The values are

shown for the test period 2012–2015.

4. Implementation

To test our proposed MDLWP-CS, as a first simple case,

and also owing to the physical linkages of temperature to

precipitation and the computational as well as disk-storage

constraints, a 2-m surface air temperature is used to predict

precipitation using MDLWP-CS. The MDLWP-CS uses

features such as early stopping, a custom CubedSphereConv2D

class to map one variable to another, and a custom data

generator to facilitate training, validation, and testing. In

this section, the implementation strategy of MDLWP-CS

is described.

4.1. Data preprocessing and required
computational platform

All the fields (2-m surface air temperature as input and

precipitation as target) are first normalized using min–max

scaling and preprocessed to a CS mapping, which is then used

to train the model. When the spherical dataset is transformed

into CS, we need to select the spatial resolution of the six

CS faces to reduce spherical distortion. We did forward and

reverse mapping to choose the CS resolution, which minimized

the transformation error. We found that for our 1,024 ×

1,024 spatial resolution (1.4◦) would be ideal; however, with

the available hardware (Intel(R) Xeon(R) CPU E5-2695 v4 @

2.10GHz) used for the CS mapping, it was possible to only

transform one-time step (1 h) at a time to 1024x1024. The

GPU used for this work is NVIDIA Tesla P100 (12 GB GPU

RAM) on the Cray XC50. Hence, we chose 512x512 as the CS

resolution to transform 24-time steps (i.e., 1 day) to CS in a

single step. However, after the U-NET model was created, it

was found that the NVIDIA Tesla P100 (12 GB) GPU only

supported a single batch and single channel as the input and

output, that is, (1, 6, 512, 512, 1) to (1, 6, 512, 512, 1),

where the indices correspond to batches, faces, height, width,

and channels. Our model aims to map the precipitation from

different meteorological fields that would be used as input

channels to the DL model. Increasing the batch size led to a

memory error. Hence, we further reduced the CS resolution to

96 x 96 to accommodate more variables and the batch size for

smooth training.

Since the transformation is computationally expensive, the

data, which originally came as yearly files (i.e., one file contains

all 365 daily data) fromWeatherbench, are broken into daily files
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FIGURE 3

Bias in daily global precipitation corresponding to the (A) GFS, (B) MDLWP-CS, and (C) linear regression. The values are shown for the test period

2012–2015.

(i.e., each file contains a daily dataset) and then the mapping is

performed. In summary, because CS mapping is a highly data-

intensive task, a 1-h dataset at a 1.4◦ spatial resolution is first

preprocessed corresponding to each face resolution of 96x96.

The data are then fed into the model.

4.2. Required packages, hyperparameter,
and code availability

Keras library is used for building the DL model. Dask-based

parallel programming is used for the input/output (I/O) and

other operations. A learning rate of 1e-4 is used and a rectified

linear unit, also known as RELU, is used as the nonlinear

activation function. An early stopping algorithm within Keras

is used with min delta as 0, patience as 2, verbose as 1,

and mode as auto. The loss function is a mean squared

error, and early stopping is done based on the monitored

validation loss. The default number of epochs used is 10,000.

The datasets generated and analyzed for this study can be

found in the Zenodo (https://doi.org/10.5281/zenodo.6426942)

repository. The code to replicate the study is available on GitHub

(https://github.com/manmeet3591/modified_dlwpcs).

4.3. Computational time for
training/testing

The training is performed on the hourly ERA5 reanalysis

data from 1979 to 2009. The dataset corresponding to 2010–2011

is used as validation for training. It took between 17 and 20 h for

training one epoch, which includes 3,288 samples of the hourly

input from the 3 years of data used for training in a single pass

and a batch size of eight. Iterative training is performed such that

the 3 years of training data are loaded on the data generator in a

single pass. It takes around 22 s for one step of the epoch to train

with the batch size as 8. The number of samples is computed by

dividing the number of time steps by the batch size. So, if 3 years

of data have 26,280(8760*3) time steps, the number of samples

per epoch is computed as 3,285 (26,280/8).

The dataset from 2012 to 2015 is used for testing.

The MDLWP-CS-based global forecasts are generated in

approximately 2 h from the trained model for the entire period

of 4 years of the testing data. To compare the MDLWP-CS

forecast with the GFS forecasts from the Indian Institute of

Tropical Meteorology available at a daily scale, daily aggregation

is performed over each grid point. Once the MDLWP-CS is

trained, the time for the forecast (generated output) is much

faster and less as compared to the NWP system. This speed of
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FIGURE 4

Pearson correlation coe�cient of daily global precipitation corresponding to the (A) GFS, (B) MDLWP-CS, and (C) linear regression. The values

are shown for the test period 2012–2015.

data-driven model output/inference is a notable advantage of

using a DL-based system relative to the NWP system.

5. Results and discussion

The performance of MDLWP-CS is evaluated during the

boreal summer season (June–September, i.e., JJAS) for 2012–

2015 and compared with GFS (operational NWP system) and

linear regression at day-1 lead time. The test data predictions for

JJAS 2012–2015 are compared with the corresponding output

from the GFS model. As discussed in the methodology, we

compare MDLWP-CS with the GFS forecasts at the day-1 lead.

Figure 2 shows the mean precipitation from the ERA5

reanalysis, GFS, MDLWP-CS, and linear regression. It can be

seen that GFS and MDLWP-CS demonstrate similar patterns in

mean precipitation when compared with ERA5, whereas linear

regression is unable to capture the spatial pattern. In addition,

linear regression overestimates mean precipitation, especially

over land regions. One of the important dynamic meteorological

features, the intertropical convergence zone (ITCZ), can be

clearly found in the ERA5, GFS, and MDLWP-CS. Specifically,

MDLWP-CS slightly underestimates the precipitation over the

tropical areas compared to ERA5 reanalysis.

Figure 3 shows the bias in mean climatology (climatology

from forecasted precipitation minus climatology from ERA5

reanalysis) of global precipitation fields from the GFS, MDLWP-

CS, and linear regression models for the test period 2012–

2015. The linear regression models show excessive wet bias

globally. The overall pattern of bias among GFS and MDLWP-

CS is similar; however, MDLWP-CS has a dry bias over the

ocean in tropical areas. Over the land, there are some notable

differences, such as MDLWP-CS showing a slightly dry bias

over the Eastern Pacific, whereas over the Sahel region GFS

has a wet bias. Moreover, MDLWP-CS performs similarly or

better compared to GFS in North and South America. MDLWP-

CS exhibits a dry bias in north India and a wet bias in

south India.

The grid-wise temporal correlations (Pearson correlation

coefficients) between the ERA5 reanalysis daily precipitation

and GFS, MDLWP-CS, and linear regression models have been

computed for 2012–2015 and are shown in Figure 4. Linear

regression shows nearly zero correlation over most of the global

land regions except over equatorial Africa. GFS shows better

skill compared to linear regression. However, compared to the

benchmark models, the Pearson correlation coefficient values of

MDWLP-CS are much higher overall, especially over the land.

More precisely, over the land, the GFS shows maximum values
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TABLE 2 Pearson correlation coe�cients averaged over di�erent land

regions from (a) GFS (baseline), (b) MDLWP-CS, and (c) LR models with

ERA5 precipitation for the test years 2012–2015.

Region GFS (baseline) MDLWP-CS LR

Canada (50-70N, 130-90W) 0.19 0.63 0.19

North Asia (50-70N, 25-140E) 0.24 0.64 0.19

Europe (44-54N, 40-100E) 0.28 0.64 0.05

United States (32-50N, 110-80W) 0.21 0.62 0.09

Central Asia (35-50N, 40-100E) 0.23 0.53 0.14

Amazon (5N-10S, 50-70W) 0.16 0.49 0.09

Equatorial Africa (10N-10S, 14-35E) 0.21 0.47 0.44

South Asia (18-35N, 70-90E) 0.32 0.62 0.15

of correlation coefficient from 0.2 to 0.3, whereas MDLWP-CS

has better correlation in the range of 0.5–0.6. For more clarity,

the Pearson correlation coefficients were calculated over eight

different regions (Canada, North Asia, Europe, United States,

Central Asia, Amazon, Equatorial Africa, and South Asia) for

each model and are presented in Table 2. It is noticeable that the

correlation coefficient values of MDWLP-CS are much higher

compared to GFS and linear regression across all the regions.

For further quantification of the performance of MDWLP-

CS compared to GFS, the Critical Success Index (CSI) (Mesinger,

2008) and Index of Agreement (IOA) (Willmott, 1982) are

calculated for each of the eight regions. Both the skill scores

range from 0 to 1 (where 1 = perfect forecast and 0 = no skill

in the forecast). CSI measures the skill of categorical forecast for

a particular threshold and is calculated as the ratio of the total

number of correct event forecasts (hits) and the total number

of forecast, including the number of misses (hits + false alarms

+ misses). The CSI is not affected by the number of non-

event forecasts (correct rejections). The CSI corresponding to

0.5 and 3 mm/day for each of the eight regions are presented in

Tables 3, 4, respectively. For both thresholds, the CSI is higher

in MDWLP-CS compared to GFS (out of the eight regions,

CSI of MDWLP-CS is higher in seven and six regions for 0.5

and 3 mm/day, respectively). The IOA of GFS and MDLWP-

CS is presented in Table 5. Furthermore, the skill of MDLWP-

CS is better than GFS (out of the eight regions, the IOD of

MDWLP-CS is higher in six regions).

Overall, the skill of MDLWP-CS is better relative to

linear regression and to the operational NWP system (GFS

outputs) in terms of predicting daily precipitation. More

specifically, the MDLWP-CS is able to model the precipitation

reasonably well over the land regions relative to the oceans.

It is worth mentioning that in this study, MDLWP-CS uses

only a single input, that is, the 2 m surface air temperature

with precipitation as the target. This performance can be

attributed to the importance of surface air temperature over

ocean and land to precipitation (Houston and Niyogi, 2007;

TABLE 3 Critical success index for the precipitation averaged over

di�erent land regions from (a) GFS(baseline) and (b) MDLWP-CS

models with ERA5 precipitation for the test years 2012–2015.

Region GFS (baseline) MDLWP-CS

Canada (50-70N, 130-90W) 0.48 0.49

North Asia (50-70N, 25-140E) 0.50 0.50

Europe (44-54N, 40-100E) 0.48 0.48

United States (32-50N, 110-80W) 0.49 0.48

Central Asia (35-50N, 40-100E) 0.45 0.47

Amazon (5N-10S, 50-70W) 0.50 0.50

Equatorial Africa (10N-10S, 14-35E) 0.50 0.50

South Asia (18-35N, 70-90E) 0.49 0.49

The values shown are for a threshold of 0.5 mm/day averaged over the land regions.

TABLE 4 Critical success index for the precipitation averaged over

di�erent land regions from (a) GFS, (b) MDLWP-CS, and (c) linear

regression models with ERA5 precipitation for the test years

2012–2015.

Region GFS (baseline) MDLWP-CS

Canada (50-70N, 130-90W) 0.16 0.24

North Asia (50-70N, 25-140E) 0.24 0.23

Europe (44-54N, 40-100E) 0.36 0.38

United States (32-50N, 110-80W) 0.27 0.34

Central Asia (35-50N, 40-100E) 0.41 0.44

Amazon (5N-10S, 50-70W) 0.36 0.38

Equatorial Africa (10N-10S, 14-35E) 0.47 0.48

South Asia (18-35N, 70-90E) 0.47 0.48

The values shown are for a threshold of 3 mm/day averaged over the land regions.

TABLE 5 Index of agreement for the precipitation averaged over

di�erent land regions from (a) GFS and (b) MDLWP-CS models with

ERA5 precipitation for the test years 2012–2015.

Region GFS (baseline) MDLWP-CS

Canada (50-70N, 130-90W) 0.74 0.82

North Asia (50-70N, 25-140E) 0.80 0.70

Europe (44-54N, 40-100E) 0.79 0.86

United States (32-50N, 110-80W) 0.75 0.84

Central Asia (35-50N, 40-100E) 0.79 0.65

Amazon (5N-10S, 50-70W) 0.69 0.88

Equatorial Africa (10N-10S, 14-35E) 0.64 0.76

South Asia (18-35N, 70-90E) 0.90 0.94

Pielke Sr et al., 2007; Routray et al., 2010). MDLWP-CS can

preserve the global scale teleconnections due to the cubed sphere

transformations and these linkages lead to better performance

of the model. Moreover, the skill of the MDLWP-CS will

further improve when more precursors of precipitation (such as
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lower level humidity, wind, and outgoing longwave radiation)

are used.

6. Conclusion

In recent years, various efforts have focused on weather

prediction using DL, a potent technology to develop DT, to

facilitate data-driven simulations of global weather fields as

an alternative to NWP. However, there have been limited

attempts toward forecasting the global precipitation (diagnostic

variables), which is a challenging variable to predict using

DL. The Weyn et al. (2019) and Weyn et al. (2020) DL

framework for the predicting geopotential height by introducing

CS to transform the spherical global data into a temporal

mapping algorithm (univariate setup) is built further in this

study. We modified the DLWP-CS to transform the architecture

from a temporal transformation to a spatio-temporal mapping,

wherein precursor(s) of precipitation can be used as input.

As a proof of concept, a 2-m surface air temperature is

used to predict precipitation using MDLWP-CS and compared

with two benchmark models that are linear regression and

an operational numerical weather prediction model, GFS. The

results highlight the improved skill of MDLWP-CS compared to

the benchmark models for predicting daily precipitation. This

study thus lays the foundation for using a DL approach for

efficient multiscale (regional to global) precipitation forecasting

using a parsimonious physics-driven statistical model choice

framework. Future efforts are needed to apply this framework

for higher impact rainfall events (rather than the climatology

alone) and will be pursued in a follow-up study.
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