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Next-generation exascale machines with extreme levels of parallelism will provide massive 
computing resources for large scale numerical simulations of complex physical systems at 
unprecedented parameter ranges. However, novel numerical methods, scalable algorithms 
and re-design of current state-of-the art numerical solvers are required for scaling 
to these machines with minimal overheads. One such approach for partial differential 
equations based solvers involves computation of spatial derivatives with possibly delayed 
or asynchronous data using high-order asynchrony-tolerant (AT) schemes to facilitate 
mitigation of communication and synchronization bottlenecks without affecting the 
numerical accuracy. In the present study, an effective methodology of implementing 
temporal discretization using a multi-stage Runge-Kutta method with AT schemes is 
presented. Together these schemes are used to perform asynchronous simulations of 
canonical reacting flow problems, demonstrated in one-dimension including auto-ignition 
of a premixture, premixed flame propagation and non-premixed autoignition. Simulation 
results show that the AT schemes incur very small numerical errors in all key quantities 
of interest including stiff intermediate species despite delayed data at processing element 
(PE) boundaries. For simulations of supersonic flows, the degraded numerical accuracy of 
well-known shock-resolving WENO (weighted essentially non-oscillatory) schemes when 
used with relaxed synchronization is also discussed. To overcome this loss of accuracy, 
high-order AT-WENO schemes are derived and tested on linear and non-linear equations. 
Finally the novel AT-WENO schemes are demonstrated in the propagation of a detonation 
wave with delays at PE boundaries.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The fundamental understanding of a multitude of complex scientific and engineering phenomena relies extensively on 
high fidelity numerical simulations of the governing equations. Of particular interest is the so-called Direct Numerical Sim-
ulations (DNS) [1] of reacting and non-reacting turbulent flows wherein all turbulence scales are fully resolved. In the 
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DNS approach the time-dependent governing Navier-Stokes, energy and species continuity equations are solved with high 
accuracy, and all dynamically relevant ranges of unsteady spatial and temporal scales are numerically resolved. This strin-
gent resolution criterion imposes prohibitive computational cost and consequently limits the attainable parametric range of 
relevant DNS. Even for moderate Reynolds number or number of transported species, for example, DNS requires massive 
supercomputers with hundreds of thousands of processing elements (PEs) working concurrently.

In some of the most well resolved DNS of complex flows [2–13] high-order finite difference schemes have been used 
extensively to approximate the spatial derivatives. The parallel efficiency of these schemes is high since they use local sten-
cils extending only to the nearest grid-points to approximate the derivatives. However, in a data parallel decomposition of 
the domain, where multiple PEs are working on different parts of the computational domain in parallel, the PEs also need 
to communicate across the processor boundaries of the nearest computational domain neighbors in each direction. These 
communications proceed in the form of halo exchanges of processor boundary information that is stored in buffer/ghost 
points. For current state-of-the-art numerical solvers, the PEs synchronize and wait for these halo exchanges to complete 
before derivatives at PE boundaries are computed. If this synchronization is not imposed, data from the latest communica-
tion may not be available at the buffer points. However, if old or delayed data is used at the boundaries with the standard 
finite difference schemes, the resulting solution is inconsistent and inaccurate [14,15]. Thus, standard schemes inherently 
necessitate synchronizations at PE boundaries and consequently incur severe penalties due to processor idling, especially 
when a large number of PEs are used. This is the communication and synchronization bottleneck that is expected to pose a 
major challenge in efficiently scaling to next-generation exascale machines [16].

An efficient way to mitigate this bottleneck is to relax the strict communication and synchronization requirements and 
perform simulations asynchronously. Essentially the derivatives are computed with the latest available data which may or 
may not be at the current time level and thus a delay is encountered at the PE boundaries. However, due to the degraded 
numerical accuracy of standard schemes with asynchrony, alternate approaches are needed for asynchronous computations 
such that numerical errors incurred are minimal. While asynchronous computations have been utilized successfully for 
iterative linear solvers [17–20], some of the early work in asynchronous simulations of partial differential equations (PDEs) 
is limited to simple canonical equations in one-dimension. In [21–23] the governing equation is modified apriori to offset 
the effect of asynchrony on the numerical solution. However, extension of this approach to higher order and dimension 
is very challenging. An alternate approach to realize asynchronous computing is to modify the numerical scheme [14,
15,24,25]. An example of this approach would be the asynchrony-tolerant (AT) schemes of arbitrarily high orders that 
were used for asynchronous simulations of one-dimensional linear and non-linear equations in [24]. The statistical error 
analysis of these AT schemes presented in [24] shows that the error depends upon simulation parameters, such as the 
number of PEs and delays at the boundaries. In a more recent study, the AT schemes were used to perform accurate 
asynchronous simulations of Burgers’ turbulence [26] and compressible turbulence [27] that also exhibited superior scaling 
to their synchronous counterpart. Two distinct algorithms, synchronization avoiding (SAA) and communication avoiding 
(CAA), to efficiently introduce asynchrony at boundaries in a three-dimensional flow solver were also presented and verified 
in [27]. The ability of the asynchronous method to absorb system noise effects was demonstrated in [26]. The stability 
and spectral accuracy of AT schemes was analyzed in detail in [28]. To further advance the applicability of AT schemes, 
multi-physics simulations such as turbulent combustion, requiring massive computations, are a natural next choice.

As a first step to evaluate the numerical performance of AT schemes for computationally expensive and highly nonlinear 
turbulent combustion simulations, several canonical reacting one-dimensional flow problems are performed. In particular, 
the effect of data asynchrony is studied for autoignition, premixed flame propagation and non-premixed autoignition. Both 
single-step and detailed chemical mechanisms with stiff reactions are used to test the efficacy of the AT schemes. Moreover, 
for simulations of flows involving shocks and discontinuities AT-WENO schemes are derived for the first time. These AT-
WENO schemes are then demonstrated for their numerical performance in simulations of both reacting and non-reacting 
flow.

The remainder of the paper is organized as follows. In section 2 a brief overview of asynchronous computing and AT 
schemes is presented along with time integration using multi-stage Runge-Kutta schemes. The AT-WENO schemes are de-
rived in section 3 followed by order of accuracy tests. The governing equations are included in section 4 and the numerical 
test cases and results are presented in section 5. Finally, sections 6 and 7 comprise discussions and conclusions, respectively. 
The AT schemes used in the simulations and expressions for the AT-WENO schemes are included in the Appendix.

2. Asynchronous computing method

2.1. Concept

To illustrate the asynchronous computing method proposed in [14,15], consider the simple one-dimensional time-
dependent heat equation,

∂u

∂t
= α

∂2u

∂x2
, (1)

where u(x, t) is the temperature and α is the diffusion coefficient. This equation can be approximated using a first-order 
Euler and second-order central difference schemes for spatial and temporal derivatives, respectively, as
2
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Fig. 1. A schematic of a one-dimensional discretized domain in (a) serial and in (b) parallel (bottom) with two processing elements. The red curve denotes 
the three-point stencil about point j and the dashed line denotes the processor boundary. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

un+1
j − un

j

�t
= α

un
j+1 − 2un

j + un
j−1

�x2
+O(�t,�x2). (2)

Here un+1
j = u(x j, tn) is the temperature at a grid point j and a time level n. This finite difference equation, for a given set 

of initial and boundary conditions, can be used to evolve the temperature field in a discretized one-dimensional domain 
(see Fig. 1(a)). Implementation of this numerical method in a serial code is straightforward, as function (u) values at the 
grid points and at necessary time levels would be available in the processing element’s memory. On the other hand, in 
a parallel computing model with a distributed memory setting, the one-dimensional domain is decomposed into P sub-
domains that are mapped to P processes/processing elements (PEs), as illustrated in Fig. 1(b) for P = 2. Now, each PE’s 
memory would contain a subset of function values that belong to the mapped sub-domain. The grid points in each sub-
domain can be further divided into two sets: first, the interior points at which the function updates are computed with 
data available within the PE’s memory, and second, the PE boundary points at which the function updates depend on the 
data from neighboring PEs. This is facilitated by, as mentioned earlier, the so-called halo exchanges which communicate the 
necessary function values from a neighboring PE into buffer or ghost points. Note that the function update using Eq. (2)
at PE boundary points cannot proceed until the halo exchanges are complete. This is often ensured by imposing explicit 
synchronization that results in significant overheads.

In the asynchronous computing method [15], the halo exchanges are initiated, but no explicit synchronization is imposed. 
Therefore the function value at buffer points may or may not be at the latest time level n, which modifies the update 
equation in Eq. (2) for PE boundary points (assuming that the points are at the left boundary) to

un+1
j − un

j

�t
= α

un
j+1 − 2un

j + un−k̃
j−1

�x2
+O(�t/�x2,�t,�x2), (3)

where k̃ represents the time level delay resulting from the relaxed synchronization. If the communication at the latest time 
level is complete, then k̃ = 0 and the computations at the PE boundary points are synchronous (like the interior points). 
Otherwise, k̃ > 0 and the update equation would involve a delayed function value, resulting in asynchronous computations. 
Note that depending on the computation and communication time scales, delays at different PE boundaries can be different 
and can be several time levels older. Let L be the maximum allowable delay between the two PEs at a PE boundary. Then, 
the delay k̃ ∈ {0,1,2, . . . ,L− 1}. As the arrival of messages at PE boundaries can be modeled as a random process [29], the 
corresponding delay values, k̃, take on random values. Let pk represent the probability of occurrence of a k time level delay, 
i.e. k̃ = k, in a simulation. The sum of probabilities is 

∑L−1
k=0 pk = 1.

It is evident that the numerical properties of standard schemes used asynchronously would not just depend on numerical 
and physical parameters such as grid resolution (�x), time step (�t) and diffusion coefficient (α), but would also depend on 
simulation parameters such as the number of PEs (P), stencil size, delay probabilities (pk) and maximum allowable delay 
(L). A statistical framework was developed in [15] to assess the numerical properties of finite differences implemented 
with relaxed communication synchronizations. It was shown that asynchronous computations at the PE boundaries would 
not only affect the stability and consistency of the overall numerical method, but also significantly degrade the accuracy. 
For the schemes considered in Eq. (3), the truncation error consists of terms that are functions of �t/�x2, �t and �x2

to leading order. From stability analysis, which gives the relation �t ∼ �x2 for a constant CFL number, the leading order 
term is identified as O(�t/�x2), which is zeroth-order accurate. Following the analysis described in [15], one can obtain 
the overall accuracy in the domain to be O(�x) or first-order accurate. It can also be shown that the error would scale 
linearly with the number of PEs P and mean delay ¯̃k. As standard schemes would result in poor accuracy under relaxed 
data synchronization, new asynchrony-tolerant schemes were derived subsequently [24], which are summarized next.
3
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2.2. Asynchrony-tolerant (AT) spatial schemes

The basic idea of asynchrony-tolerant (AT) schemes is to use an extended stencil in space and/or time to recover loss 
of accuracy due to the use of delayed data. For example, the spatial derivative of un

j := u( j�x, n�t) at location j and time 
level n can be computed using

∂u

∂x

∣∣∣∣n

j
= 1

�x

L−1∑
�=0

M2(�)∑
m=−M1(�)

a�
mun−�

j+m, (4)

where �x is the grid size, M1(�) and M2(�) are the extents of stencil to the left and right of un
j and L is the maximum 

allowable delay level. For a given set of parameters {L, M1(�), M2(�)} the unknown weights a�
m are obtained by solving a 

linear system of equations that is formed by imposing necessary accuracy constraints on terms of the Taylor series expansion 
of un−�

j+m about un
j . If L = 1 and M1(0) = M2(0) = M , this system of equations yields coefficients for the standard central 

difference scheme. For L > 1, AT schemes can be derived if the stencil parameters {M1(�), M2(�)} are appropriately chosen. 
An example of a second-order AT scheme with �t ∼ �x2 at the left processor boundary, i.e. delayed data is used only at 
the left stencil points, is

∂u

∂x

∣∣∣∣n

j
= k̃un−k̃−1

j−1 − (k̃ + 1)un−k̃
j−1 + u j+1

�x
(5)

where k̃ is the delay [24]. We note that the coefficients in Eq. (5) depend upon delays, unlike the fixed coefficients in 
standard schemes. Furthermore, in the absence of delays i.e. when k̃ = 0, Eq. (5) reduces to the standard central difference 
scheme for the first derivative. The general methodology to derive different families of AT schemes of arbitrary order of 
accuracy is described in [24]. Here the AT schemes from [24] are directly used and are listed in the Appendix without 
details of the derivation.

2.3. Temporal scheme: Runge-Kutta

For a fully-discrete system, the global order of accuracy depends on both the spatial and temporal discretizations. In 
order to compute this global order, a stability relation of the form �t ∼ �xr is used to express the leading order truncation 
error term of the time discretization scheme also in terms of grid size (�x). For example, for a fourth-order spatial scheme 
(O(�x4)), if a second-order temporal discretization scheme (O(�t2)) is used then the global spatial order is two if �t ∼ �x
and four if �t ∼ �x2. One of the most widely used schemes for high-order temporal discretization is the multi-stage Runge-
Kutta (RK) method. An S-stage explicit RK scheme for an equation of the form du/dt = f (u, t) over a time step �t is given 
by

un+1 = un + �t
S∑

s=0

bs Ks, (6)

where the stages Ks are computed using

K1 = f (un, tn)

Ks = f (un + �t
s−1∑
i=1

(asiki), tn + cs�t).
(7)

Here asi, bs, cs are the coefficients of the RK scheme. For an RK scheme, in advancing from time level n to n +1, intermediate 
stages Ks are computed. Each of these stages depends upon the previous stages as can be seen from Eq. (7). Thus, for 
simulations performed in parallel, RK schemes require PEs to communicate and synchronize after every stage in order to 
update the corresponding values at buffer points. However, if simulations are performed with asynchronous communications 
using AT schemes, then a fractional delay will be encountered at the intermediate stages and different AT schemes will be 
required for each stage. An alternate method is proposed to effectively use multi-stage RK schemes with AT that circumvents 
the need to communicate at every stage and avoids fractional delays.

In the presence of delays, each stage Ks is computed using AT schemes at PE boundary points. As mentioned before, 
the current stage Ks explicitly depends upon the previous stages, Ks−1, Ks−2, . . . , K1. Thus, to ensure accuracy all the stages 
of RK scheme are computed locally at both PE boundary and buffer points of each PE. Furthermore, at the old time levels 
required by the AT scheme, these stages are also computed at the internal points close to the PE boundary. In order to 
perform the additional computations at buffer points, a larger message of size (= No. of stages in RK × spatial stencil) has 
to be communicated across processors at every time step. However, the PEs no longer communicate at every stage of the 
RK. Thus, there exists a trade-off between communication which is expensive and computation which is relatively cheap.
4
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To illustrate that the RK schemes preserve the order of accuracy when combined with high-order AT schemes, the one-
dimensional diffusion equation in Eq. (1) is reconsidered. Denoting the right-hand-side of Eq. (1) by f (u, t) = ∂2u/∂x2

(excluding the diffusion coefficient, α), the temporal discretization at the j-th spatial point using a two-stage second-order 
RK scheme (RK2) is given by

un+1
j = un

j + α�t

(
K j,1

2
+ K j,2

2

)
(8)

where K j,1 = f (un
j , t

n), K j,2 = f
(
(un

j )
∗, tn + �t

)
and (un

j )
∗ = un

j + �t( f (un
j , t

n)) = un
j + �tαK j,1. When a standard fourth-

order central difference scheme is used for numerical approximation of f (un
j , t

n), the following K j,1 and K j,2 are obtained,

K j,1 =−un
j−2 + 16un

j−1 − 30un
j + 16un

j+1 − un
j+2

12�x2

K j,2 = − α�t(K j−2,1) + un
j−2

12�x2
+

4
(
α�t(K j−1,1) + un

j−1

)
3�x2

−
5
(
α�t

(
K j,1

) + un
j

)
2�x2

+
4
(
α�t(K j+1,1) + un

j+1

)
3�x2

− α�t
(

K j+2,1
) + un

j+2

12�x2
.

(9)

The Taylor series expansion of Eq. (8) on substituting Eq. (9) then yields a truncation error of the form

TEn
j |sync = 1

6

(
− f (0,3)(x, t)

)
�t2 − 1

90
α f (6,0)(x, t)�x4 +O(�x6,�t3,�x4�t) (10)

or

TEn
j |sync = (− r2

αu(0,3)(x, t)

6α2
− 1

90
αu(6,0)(x, t))�x4 +O(�x6), (11)

where rα = α�t/�x2 is the diffusive CFL number and the subscript “sync” denotes synchronous. Note that from Eq. (11)
the global spatial order of accuracy is four.

When a fourth-order AT scheme is used at the boundary points for computation of spatial derivatives, we have

K j,1 =
(

k̃2 + k̃
) (

−un−k̃−2
j−2 + 16un−k̃−2

j−1 − 30un
j + 16un

j+1 − un
j+2

)
24�x2

−
(

k̃2 + 2k̃
) (

−un−k̃−1
j−2 + 16un−k̃−1

j−1 − 30un
j + 16un

j+1 − un
j+2

)
12�x2

+
(

k̃2 + 3k̃ + 2
) (

−un−k̃
j−2 + 16un−k̃

j−1 − 30un
j + 16un

j+1 − un
j+2

)
24�x2

(12)

which is used to compute K j,2 = f (un
j +�tαK j,1, tn +�t) with f (., .) being evaluated using the fourth-order AT-scheme as 

well. Once again, the Taylor series expansion is used to obtain the truncation error,

TEn
j |AT,k̃ = − 5

24
αk̃

(
k̃2 + 3k̃ + 2

)
u(0,3)(x, t)

�t3

�x2
− 1

6
u(0,3)(x, t)�t2 − 1

90
αu(6,0)(x, t)�x4 +O(k̃3 �t3

�x
). (13)

The above expression simplifies to give a global fourth-order truncation error term when rα is substituted,

TEn
j |AT,k̃ = −

⎛⎝75k̃
(

k̃2 + 3k̃ + 2
)

r3
αu(0,3)(x, t) + 60r2

αu(0,3)(x, t) + 4α3u(6,0)(x, t)

360α2

⎞⎠�x4 +O(�x6). (14)

When the delay is zero i.e. k̃ = 0, the truncation error in Eq. (14) reduces to TEn
j |sync (Eq. (11)) which is the synchronous 

truncation error at the internal points. Therefore, RK schemes can be used with the AT-schemes without affecting the global 
order of accuracy. During a simulation the stencil data at older time levels for the buffer as well as for internal points are 
available, and hence standard synchronous schemes can be used to compute the sub-stages K j,s at these points for efficient 
implementation of RK with AT. Numerical simulations of linear equations were performed using this approach and the 
global order of accuracy was preserved. Here the order of accuracy tests is shown for RK schemes with AT-WENO schemes 
that are derived next (see Table 1).
5
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3. Asynchrony-tolerant weighted essentially non-oscillatory schemes (AT-WENO)

Despite their advantages, central finite difference schemes are not always suitable for performing DNS of, for example, 
supersonic flows. In the presence of sharp gradients or discontinuities in density, temperature and composition due to deto-
nations, shocks or high pressure flames, the central difference schemes are prone to numerical oscillations and instabilities. 
A well established numerical technique to accurately simulate flows with piece-wise smooth solutions between discontinu-
ities is the so called weighted essentially non-oscillatory schemes (WENO) [30,31]. These schemes aim to achieve high-order 
accuracy at the smooth regions of the flow and resolve the discontinuities with minimal oscillations by automatically select-
ing the locally smoothest stencil. WENO schemes are considerably more expensive than regular central difference schemes 
due to the need to evaluate the same flux functions from multiple candidate stencils [32]. However, the numerical method is 
suitable for implementation in finite difference codes using stencil operations very similar to the central difference schemes. 
Also, the usual advantages of DNS using finite difference schemes including parallelism and scalability apply to the WENO 
schemes as well. Apart from DNS [33,12], the advantages of WENO schemes have also been demonstrated in implicit large 
eddy simulations (iLES) [34–36].

In this section, a brief overview of the standard WENO schemes is provided followed by a discussion on the effect 
of asynchrony on the standard WENO schemes (AS-WENO) and derivation of the asynchrony-tolerant WENO (AT-WENO) 
schemes for accurate numerical simulations when delays are observed at PE boundaries. Consider the one-dimensional 
(x-direction) version of the governing equations:

∂ Q

∂t
+ ∂C

∂x
+ ∂ D

∂x
= S, (15)

where Q is the solution vector, C is the vector comprising the convective flux terms, D is the viscous and molecular 
diffusion flux vector, and S is the vector of source terms. The exact form of terms in Q , C and D is defined in section 4. In 
the WENO framework, the terms contained in the D vector do not require any special treatment and are evaluated using 
central difference schemes (standard or AT). However, the convective flux terms in C have to be computed appropriately 
to ensure both stability and accuracy in regions near and at discontinuities. Specifically, the derivative of the convective 
flux ∂C/∂x at a point j is approximated using the flux at the edges, i.e., Ĉ j± 1

2
of a cell I j = [x j− 1

2
, x j+ 1

2
]. The flux at the 

edges is computed using the WENO approximation procedure that can be carried out using interpolation or reconstruction, 
and accordingly, requires point values or cell averages of the fluxes. Note that the hat notation (̂) is used to denote the 
variables at cell edges. The derivative is then computed using the relation

∂C

∂x

∣∣∣∣
j
=

Ĉ j+ 1
2

− Ĉ j− 1
2

�x
(16)

for a uniform grid and the order depends upon the order of the numerical flux approximation Ĉ j± 1
2

. When using finite-

differences, the WENO approximation directly yields the fluxes at the edges in terms of the fluxes at the grid points. For 
stability, appropriate up-winding of fluxes is also required and is achieved through splitting the flux, for example using the 
local Lax-Friedrichs flux splitting methodology,

C = C+ + C−, where

C± = 1

2
(C ± λmax Q ),

(17)

at every grid-point. The quantity λmax in Eq. (17) is the maximum local wave propagation speed which can be computed as

λmax| j = max{(|u|) j−1, (|u ± c|) j−1, (|u|) j, (|u ± c|) j}, (18)

where u and c are the local flow velocity and the speed of sound, respectively. The derivative is then simply evaluated using

∂C

∂x

∣∣∣∣
j
=

Ĉ+
j+ 1

2
− Ĉ+

j− 1
2

�x
+

Ĉ−
j+ 1

2
− Ĉ−

j− 1
2

�x
(19)

with an appropriate upwind stencil for approximating both positive and negative fluxes [12]. For computation of derivative 
in Eq. (19) using the WENO procedure, the first step is to approximate the fluxes at the edges ( j ± 1/2) through an inter-
polation or a reconstruction procedure. For simplicity, the approximation of these fluxes using an interpolation technique is 
discussed here in detail. However, the approximation through reconstruction that treats grid-point values as cell averages 
can also be performed following the steps detailed here. In order to do so, the primitive function defined in [30] is required.

For illustration, consider a specific WENO scheme that uses three sub-stencils each of which comprises three grid-points 
denoted by S(i) , i = {0, 1, 2}, in Fig. 2 to approximate the value of a quantity û at cell edges, say j + 1/2, and time-
level n. Taken together the larger stencil obtained by combining these S(i) contains five points. Since the approximation 
6
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Fig. 2. Candidate stencils for asynchrony-tolerant WENO (AT-WENO) scheme for approximation at point j + 1/2 and delays at left processor boundary: S̃(0) , 
S̃(1) and S̃(2) in red, blue and black curves, respectively. S(0), S(1) and S(2) correspond to three-point stencils for standard WENO.

order depends upon the number of points, a fifth-order accurate approximation can be obtained with the full stencil for 
a smooth function. This is the classical three-fifth order WENO scheme, where the three smaller candidate stencils S(0) =
{ j −2, j −1, j}, S(1) = { j −1, j, j +1}, and S(2) = { j, j +1, j +2} give a degree two polynomial interpolation of ûn

j+ 1
2

at time 
level n. The synchronous third-order interpolant in each of the three stencils can be computed using Taylor series expansion 
or Lagrange interpolation [30,31],

ûn,(0)

j+ 1
2

= 3

8
un

j−2 − 5

4
un

j−1 + 15

8
un

j +O(�x3)

ûn,(1)

j+ 1
2

= −1

8
un

j−1 + 3

4
un

j + 3

8
un

j+1 +O(�x3)

ûn,(2)

j+ 1
2

= 3

8
un

j + 3

4
un

j+1 − 1

8
un

j+2 +O(�x3).

(20)

The final approximation is taken as a convex combination of the above three third-order approximations, yielding a 

higher order interpolant in the larger stencil. Ideally, if u(x, t) is smooth in the large stencil S =
2⋃

i=0
S(i) = { j − 2, j − 1, j, j +

1, j + 2}, a fifth-order approximation can be achieved using the following expression:

ûn
j+ 1

2
=

2∑
i=0

ωi û
n,(i)
j+ 1

2
, (21)

where ωi ’s are the non-linear weights

ωi = αi

2∑
i=0

αi

, αi = γi

(ε + β(i))2
. (22)

The non-linear weights in Eq. (22) satisfy wi ≥ 0 and 
2∑

i=0
ωi = 1 and are related to the ideal or linear weights γi through the 

smoothness indicator β(i) [37,31,38]. A simple Taylor series expansion yields the ideal weights γ = { 1
16 , 58 , 5

16 }, such that

ûn
j+ 1

2
= 3

128
un

j−2 − 5

32
un

j−1 + 45

64
un

j + 15

32
un

j+1 − 5

128
un

j+2 +O(�x5). (23)

We now focus on the effect of data asynchrony on each of the individual approximations. Consider a point j at the left 
processor boundary with a delay k̃ encountered at each of the buffer points. The order of accuracy of the interpolants in 
the first two stencils is affected by this delay,
7
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ûn,(0)

j+ 1
2

= 3

8
un−k̃

j−2 − 5

4
un−k̃

j−1 + 15

8
un

j +O(�t,�x�t,�x3)

ûn,(1)

j+ 1
2

= −1

8
un−k̃

j−1 + 3

4
un

j + 3

8
un

j+1 +O(�t,�x�t,�x3).

(24)

More precisely, there are terms in the truncation error that depend upon �t . On relating �t ∼ �xr , the interpolants with 
delays reduce to first order when r = 1 (convective CFL) and to second order when r = 2 (diffusive CFL). The convex 
combination of the three interpolants with ideal weights γi also has a leading order truncation term that scales as O(�t), 
thereby degrading the order even in the full stencil, i.e.

ûn
j+ 1

2
= 3

128
un−k̃

j−2 − 5

32
un−k̃

j−1 + 45

64
un

j + 15

32
un

j−1 − 5

128
un

j+2 +O(�t,�x�t,�t2,�x2�t). (25)

Clearly, the standard interpolants cannot be used in the presence of delays. A similar degradation in order was observed 
when standard finite difference schemes are used with asynchrony [15] for computation of spatial derivatives. Following 
the general methodology to overcome this loss of accuracy in [24], the asynchrony-tolerant WENO schemes (AT-WENO) can 
be derived. For this, the AT-interpolant for each of the substencils in the presence of delays is computed. When multiple 
time-levels are used, the interpolation is two-dimensional i.e. in space and time, and thus, requires a greater number of 
points to achieve a given order of accuracy. Since the Taylor series expansion is used to obtain the coefficients, a relation 
of the form �t ∼ �xr is also needed to identify the overall low-order terms (in space) that should be eliminated for 
achieving the desired order of accuracy. A schematic representation to identify low-order terms which need to be subjected 
to constraints is illustrated in Figures 2 and 3 in [24]. For example, for a third-order accurate approximation, when �t ∼ �x, 
six equations corresponding to terms of the order {1, �t, �x, �t2, �t�x, �x2} are needed, and therefore, each candidate 
stencil comprises six points. Similarly, if r = 2 only four equations {1, �t, �x, �x2} are required, and therefore, a four-point 
stencil is sufficient to achieve a third-order approximation. Since the stencil now depends upon the delays observed at 
the processor boundaries, the stencil itself is random because of the random nature of the delays. One can represent this 
stochastic stencil as S̃ . For the first candidate stencil (as shown in Fig. 2), S̃(0) = {u−k̃+n−1

j−2 , un−k̃
j−2, u

n−k̃
j−1, u

n
j } with delay k̃ and 

r = 2, the AT interpolant is

ũn,(0)

j+ 1
2

= 7

8
k̃u−k̃+n−1

j−2 + 1

8

(
3 − 7k̃

)
un−k̃

j−2 − 5

4
un−k̃

j−1 + 15

8
un

j + TE(0). (26)

The leading order truncation error in Eq. (26) term depends on the delay k̃ and is equal to

TE(0) = −5

4
k̃u̇′(x, t)�t�x + 5

16
u′′′(x, t)�x3 + · · · ∼ O(�x3), (27)

where u̇ = ∂u/∂t and u′ = ∂u/∂x and �t ∼ �x2 gives the overall spatial order of accuracy to be O(�x3). When 
k̃ = 0, Eq. (26) reduces to the standard third-order synchronous interpolant in Eq. (20). For the second stencil S̃(1) =
{u−k̃+n−1

j−1 , u−k̃
j−1, u

n
j , u

n
j+1}, with delays considered only at the buffer point (u j−1), the third-order interpolant is

ũn,(1)

j+ 1
2

= 1

8
k̃u−k̃+n−1

j−1 + 1

8

(
−k̃ − 1

)
un−k̃

j−1 + 3

4
un

j + 3

8
un

j+1 + TE(1), (28)

where the leading order truncation error term

TE(1) = − 1

16
u′′′(x, t)�x3 + · · · ∼ O(�x3) (29)

is independent of delay k̃, unlike Eq. (27). Lastly, for stencil S̃(2) = {un
j , u

n
j+1, u

n
j+2} = S(2) , since all the points are within the 

PE, the standard interpolant i.e. ũn,(2)

j+ 1
2

= ûn,(2)

j+ 1
2

can readily be used. The full stencil is comprised of seven points S̃ =
2⋃

i=0
S̃(i) =

{u−k̃+n−1
j−2 , un−k̃

j−2, u
−k̃+n−1
j−1 , un−k̃

j−1, u
n
j , u

n
j+1, u

n
j+2}. With this choice of stencil, at most, a fourth-order accurate approximation 

can be obtained for the full stencil since the degrees of freedom are sufficient only to eliminate seven low-order terms. 
Extension to higher orders would require extending the stencil in both space and time. This is explained in great detail in 
[24] for AT finite difference schemes.

On evaluation of the ideal weights for this larger stochastic stencil S̃ i.e.

ũn
j+ 1

2
=

2∑
i=0

γi ũ
n,(i)
j+ 1

2
, (30)

yields
8
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γ =
{

0,
1

2
,

1

2

}
(31)

which, in turn, gives a fourth-order truncation error term in Eq. (30). These ideal weights eliminate the first stencil S̃(0)

and reduce the full stencil to a four-point synchronous stencil in the absence of delays. If the second stencil is modified 
S̃(1) = {u−k̃+n−1

j−1 , un−k̃
j−1, u

n−k̃
j , un

j+1}, the ideal weights are no longer positive, γ =
{
− 3

2 ,− 5
2 ,5

}
. Further changing the third 

stencil to S̃(2) = {u−k̃+n−1
j , un−k̃

j , un−k̃
j+1, u

n
j+2} such that all three stencils now have similar stencil structure and thus use four 

points as shown in Fig. 2, the ideal weights obtained are

γ =
{

3

8
,

5

4
,−5

8

}
. (32)

This exercise shows that irrespective of the choice of asynchronous stencil with four points, at least one of the ideal or 
linear weights is non-positive for integer values of k̃. This non-convex nature of ideal weights leads to instabilities and 
oscillations [39]. The procedure to deal with the non-positive weights has been described in [39] and it involves splitting 
all the weights into positive and negative parts,

γ̃ +
i = 1

2
(γi + θ |γi|)

γ̃ −
i = γ̃ +

i − γi

(33)

for i = {0, 1, 2}. The split ideal weights are then scaled by the parameters

σ± =
3∑

i=1

γ̃ ±
i ; γ ±

i = γ̃ +
i /σ±, (34)

which are used to write the split polynomial interpolations(
ûn

j+ 1
2

)± =
2∑

i=0

γ ±
i ûn,(i)

j+ 1
2
, (35)

which is equivalent to replacing the ideal positive weight γi in Eq. (22) by the corresponding scaled split weight γ ±
i [39]. 

However, this procedure does involve a series of additional computations to compute the derivative of the flux accurately.
For this particular choice of stencil with delayed data at the left boundaries, the reconstruction polynomial can also be 

derived using the primitive function [30]. For example, for a stencil of the form S̃(i) = {u−k̃+n−1
j−1+i , un−k̃

j+i , u
n−k̃
j+1+i, u

n
j+1+i} where 

i = {0, 1, 2}, one obtains the following AT approximations,

ũn,(i)
j+ 1

2
=1

6

(
3i2 − 12i + 5

)
k̃u−k̃+n−1

i+ j−2 + 1

6

(
−3i2k̃ + 12ik̃ − 5k̃ + 3i2 − 6i + 2

)
un−k̃

i+ j−2

+ 1

6

(
−6i2 + 18i − 7

)
un−k̃

i+ j−1 + 1

6

(
3i2 − 12i + 11

)
un

i+ j.

(36)

The reconstruction polynomials in Eq. (36) reduce to the traditional candidate reconstruction polynomials in [38,30] when 
k̃ = 0 for three-fifth order WENO scheme with ideal weights {1/10, 6/10, 3/10}.

As is evident from Eq. (22), the non-linear weights ωi that are integral to the WENO formulation depend upon the 
smoothness indicators βi defined in [30] as

β(i) =
k∑

�=1

�x2�−1

x
j+ 1

2∫
x

j− 1
2

(
d�

dx�
p(i)(x)

)2

dx (37)

where p(i)(x) is the polynomial of degree k (=2, in the example considered here) for stencil S(i) . For a one-dimensional 
polynomial interpolation Eq. (37) can be easily evaluated to give a smoothness indicator for each stencil. However, for a 
simpler extension to an asynchronous stencil, Simpson’s 3/8 rule is used to compute β(i) ,

β(i) = �x

6

(
k∑

�=1

�x2�−1

(
d�

dx�
p( j)(x)

∣∣∣∣
x=x

j− 1
2

)2

+ 4
k∑

�=1

�x2�−1

(
d�

dx�
p( j)(x)

∣∣∣∣
x=x

j− 1
6

)2

+ 4
k∑

�=1

�x2�−1

(
d�

dx�
p( j)(x)

∣∣∣∣
x=x

j+ 1

)2

+
k∑

�=1

�x2�−1

(
d�

dx�
p( j)(x)

∣∣∣∣
x=x

j+ 1

)2)
,

(38)
6 2

9
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such that the derivatives of the interpolant are computed numerically at each of {x j− 1
2
, x j− 1

6
, x j+ 1

6
, x j+ 1

2
} using all the 

points in the stencil S(i) . This yields the smoothness indicator expressed in the form

β(0) = 1

3

(
4
(
un)2

j−2 +
(

11un
j − 19un

j−1

)
un

j−2 + 25
(
un)2

j−1 + 10
(
un)2

j − 31un
j−1un

j

)
β(1) = 1

3

(
4
(
un)2

j−1 +
(

5un
j+1 − 13un

j

)
un

j−1 + 13
(
un)2

j + 4
(
un)2

j+1 − 13un
j u

n
j+1

)
β(2) = 1

3

(
10

(
un)2

j +
(

11un
j+2 − 31un

j+1

)
un

j + 25
(
un)2

j+1 + 4
(
un)2

j+2 − 19un
j+1un

j+2

) (39)

which is consistent with β( j) in the literature. Extending this to the asynchronous stencil, the smoothness indicator of the 
following form is obtained when a four-point stencil is used for all three candidate stencils,

β̃(0) = 1

3

((
10k̃2 − 11k̃ + 4

)(
un−k̃

j−2

)2 +
(

− 20k̃2un−k̃−1
j−2 + k̃

(
11un−k̃−1

j−2 + 31un−k̃
j−1 − 20un

j

)
− 19un−k̃

j−1

+ 11un
j

)
un−k̃

j−2 + 10k̃2
(

un−k̃−1
j−2

)2 + 25
(

un−k̃
j−1

)2 − 31un
j u

n−k̃
j−1 + k̃un−k̃−1

j−2

(
20un

j − 31un−k̃
j−1

)
+ 10

(
un

j

)2
)
(40)

β̃(1) = 1

3

((
4k̃2 − 5k̃ + 4

)(
un−k̃

j−1

)2 +
(

− 8k̃2un−k̃−1
j−1 + k̃

(
5un−k̃−1

j−1 + 13un−k̃
j − 8un

j+1

)
− 13un−k̃

j

+ 5un
j+1

)
un−k̃

j−1 + 4k̃2
(

un−k̃−1
j−1

)2 + 13
(

un−k̃
j

)2 − 13un
j+1un−k̃

j

+ k̃un−k̃−1
j−1

(
8un

j+1 − 13un−k̃
j

)
+ 4

(
un

j+1

)2
) (41)

β̃(2) = 1

3

((
4k̃2 − 11k̃ + 10

)(
un−k̃

j

)2 +
(

− 8k̃2un−k̃−1
j + k̃

(
11un−k̃−1

j + 19un−k̃
j+1 − 8un

j+2

)
− 31un−k̃

j+1 + 11un
j+2

)
un−k̃

j + 4k̃2
(

un−k̃−1
j

)2 + 25
(

un−k̃
j+1

)2 − 19un
j+2un−k̃

j+1 + k̃un−k̃−1
j

(
8un

j+2 − 19un−k̃
j+1

)
+ 4

(
un

j+2

)2
)

.

(42)

Each of the β̃ i listed in Eq. (40), Eq. (41), Eq. (42) reduce to the corresponding β( j) expressions in Eq. (39) when k̃ = 0. With 
the approximations and smoothness indicators in the candidate stencil known along with the ideal weights, the derivative 
of the flux can then be computed using the standard WENO procedure.

For the choice of stencil discussed above, if the delay is zero then instead of achieving fifth-order approximation in 
the larger stencil, only fourth-order accuracy is obtained. This is explained as follows. The ideal weights {γ0, γ1, γ2} in 
Eq. (30) satisfy 

∑2
i=0 γi = 1 and thus, two additional constraints need to be imposed to find a unique solution when 

seeking a combination of smaller stencils. Upon upgrading from a third-order approximation in the smaller stencil S̃( j) to 
a fourth-order approximation in the full stencil S̃ , only two lower order truncation error terms of the form {�t�x, �x3}
can be eliminated. Thus, a unique solution for γi is obtained. However, such an approximation will never recover fifth-order 
accuracy in the absence of delays since the �x4 truncation error term is non-zero. Consequently, when there is no delay, 
the large stencil S̃ will have at most four points and the approximation is only fourth-order accurate. For example, the ideal 
weights Eq. (32) yield non-zero coefficients only for points { j − 2, j − 1, j, j + 2} in the full stencil when k̃ = 0. Moreover, 
this stencil is spatially discontinuous.

The reduction in the number of points in the larger stencil when the delay is zero and a corresponding lower order 
accurate approximation can be overcome by selectively eliminating additional truncation error terms. For an asynchronous 
fifth-order approximation, terms of the form {�t2, �t�x2, �x4} in addition to {�t�x, �x3} also need to be eliminated. 
Since this yields a system with six constraints and only three unknowns, a unique solution cannot be determined. However, 
it is still possible to achieve a fifth-order approximation in the absence of delays. Addition of one more point in the smaller 
asynchronous stencil and using this degree of freedom to eliminate the �t�x truncation term does not affect the order of 
the resulting interpolant. However, when the ideal weights in the large stencil are computed, one of the constraints can now 
be imposed on the �x4 term. This exercise then yields convex ideal weights that are exactly equal to the ones obtained 
when all three small stencils are synchronous. While the asynchronous approximation in the full stencil is still of order four, 
the synchronous approximation recovers fifth-order accuracy when the delay goes to zero. Moreover, a convex combination 
10
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Fig. 3. Updated candidate stencil for asynchrony-tolerant WENO (AT-WENO) scheme for approximation at point j + 1/2 and delays at left processor bound-
ary: S̃(0)

L and S̃(1)
L in red and blue curves, respectively. S(0), S(1) and S(2) correspond to three-point stencils for standard WENO. Here S̃(2)

L is same as 
S(2) .

of the candidate stencil with none of the weights being negative is achieved. Thus, the additional computation involved in 
the treatment on negative weights is no-longer required. This new asynchronous stencil at the left boundary is given as

S̃(0)
L = {un−k̃−1

j−2 , un−k̃
j−2, un−k̃−1

j−1 , un−k̃
j−1, un

j },
S̃(1)

L = {un−k̃−1
j−1 , un−k̃

j−1, un−k̃
j , un

j , un
j+1}

S̃(2)
L = S(2) = {un

j , un
j−1, un

j+2}.
(43)

and is shown in Fig. 3. For this stencil the third-order interpolation of the form

ũn,(0)

j+ 1
2

= −3

8
k̃u−k̃+n−1

j−2 + 5

4
k̃u−k̃+n−1

j−1 + 1

8

(
3k̃ + 3

)
un−k̃

j−2 + 1

4

(
−5k̃ − 5

)
un−k̃

j−1 + 15

8
un

j

ũn,(1)

j+ 1
2

= 1

8
k̃u−k̃+n−1

j−1 + 1

8

(
−k̃ − 1

)
un−k̃

j−1 + 3

4
un

j + 3

8
un

j+1

ũn,(2)

j+ 1
2

= 3

8
8un

j + 3

4
un

j+1 − 1

8
un

j+2

(44)

is obtained when a constraint is imposed on the truncation error term �t�x for the first two stencils, S̃(0) and S̃(1) . The 
ideal weights are then computed to be

γ =
{

1

16
,

5

8
,

5

16

}
. (45)

While the interpolation procedure for approximating the fluxes at the edges is explained in detail, approximation using re-
construction, which is equivalent to the WENO approximation for the first derivative, is the main relevant WENO procedure 
when designing finite volume or finite difference schemes to solve hyperbolic conservation laws [40]. Similar constraints in 
terms of the order-of-accuracy and elimination of specific terms can also be used to derive a reconstruction function with 
an asynchronous stencil using a primitive variable. For the choice of stencil listed in Eq. (43), by treating point values as 
cell-averages the third-order reconstruction approximation at the left boundary assumes the following functional form

ũn,(0)

j+ 1
2

= −1

3
k̃u−k̃+n−1

j−2 + 7

6
k̃u−k̃+n−1

j−1 + 1

6

(
2k̃ + 2

)
un−k̃

j−2 + 1

6

(
−7k̃ − 7

)
un−k̃

j−1 + 11

6
un

j

ũn,(1)

j+ 1
2

= 1

6
k̃u−k̃+n−1

j−1 + 1

6

(
−k̃ − 1

)
un−k̃

j−1 + 5

6
un

j + 1

3
un

j+1

ũn,(2)
1 = 1

un
j + 5

un
j+1 − 1

un
j+2

(46)
j+ 2 3 6 6

11
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such that the coefficients reduce to their corresponding synchronous values when k̃ = 0. The ideal or linear weights in this 
case can then be computed to be

γ =
{

1

10
,

3

5
,

3

10

}
(47)

which provides the fifth-order reconstruction polynomial in the larger stencil when the delay is zero, and is fourth-order, 
otherwise. Finally, the smoothness indicator for stencil Eq. (43) is computed using Simpson’s 3/8 rule,

β̃(0) = 1

3

(
4
(

un−k̃
j−2

)2 + 25
(

un−k̃
j−1

)2 + k̃2
(

4
(

un−k̃−1
j−2

)2 + 4
(

un−k̃
j−2

)2 + 19un−k̃
j−2

(
un−k̃−1

j−1 − un−k̃
j−1

)
+ 25

(
un−k̃−1

j−1 − un−k̃
j−1

)2 + un−k̃−1
j−2

(
19

(
un−k̃

j−1 − un−k̃−1
j−1

)
− 8un−k̃

j−2

))
− 31un

j u
n−k̃
j−1 + 10

(
un

j

)2

+ un−k̃
j−2

(
11un

j − 19un−k̃
j−1

)
+ k̃

(
8
(

un−k̃
j−2

)2 +
(

19un−k̃−1
j−1 − 38un−k̃

j−1 + 11un
j

)
un−k̃

j−2

+ un−k̃−1
j−2

(
−8un−k̃

j−2 + 19un−k̃
j−1 − 11un

j

)
−

(
un−k̃−1

j−1 − un−k̃
j−1

)(
50un−k̃

j−1 − 31un
j

)))
(48)

β̃(1) = 1

3

(
4k̃2

(
un−k̃−1

j−1 − un−k̃
j−1

)2 + 4
(

un−k̃
j−1

)2 + 13
(

un
j

)2 + 4
(

un
j+1

)2 +
(

5un
j+1 − 13un

j

)
un−k̃

j−1

− 13un
j u

n
j+1 − k̃

(
un−k̃−1

j−1 − un−k̃
j−1

)(
8un−k̃

j−1 − 13un
j + 5un

j+1

)) (49)

β̃(2) = 1

3

(
10

(
un

j

)2 − 31un
j+1un

j + 25
(

un
j+1

)2 + 4
(

un
j+2

)2 +
(

11un
j − 19un

j+1

)
un

j+2

)
= β(2). (50)

In terms of the leading order truncation error, these smoothness indicators have the same properties as their synchronous 
counterparts, and therefore, preserve the order characteristics of the non-linear weights in Eq. (21). Thus, the AT-WENO 
approximation in the simulations presented here is carried out using the reconstruction polynomials in Eq. (46), ideal 
weights in Eq. (47) and the smoothness indicators listed in Eq. (50). While only a specific example of AT-WENO is presented 
here, similar steps can be followed to derive high-order schemes as well by extending the stencil in both space and time. 
Furthermore, additional low-order truncation error terms can also be selectively eliminated in both candidate and full 
stencil such that the AT-WENO scheme in the full stencil reduces to the corresponding synchronous scheme in the absence 
of delays.

Before proceeding with the validation simulations in Section 5, the order of accuracy of the synchronous and the new 
AT-WENO schemes is tested on a linear advection equation,

∂u

∂t
+ c

∂u

∂x
= 0 (51)

in a periodic domain x ∈ [−1, 1] for an initial condition u(x, 0) = sin4(πx + 0.25) and a convective velocity of c = 5 for 
different spatial resolutions. Since the AT-WENO scheme is derived using the relation �t ∼ �x2, we retain this power-law for 
computing the time step in the simulations to assess the order of accuracy. The temporal scheme used is RK-3 implemented 
using the procedure listed in section 2.3. Delays with uniform probability are introduced at every grid-point. The L1 and 
L∞ norm of the error at t = 1.0 is tabulated in Table 1 for the synchronous case, standard WENO used asynchronously (AS-
WENO) and the asynchrony-tolerant WENO (AT-WENO). As expected, the order degrades to two when the standard WENO 
sees delays at the boundaries and the error is orders of magnitude larger than the synchronous error. On the contrary, the 
AT-WENO schemes exhibit errors comparable to the synchronous case and the order of accuracy is close to four.

The analysis was repeated for an inviscid Burgers equation,

∂u

∂t
+ ∂

∂x

(
u2

2

)
= 0 (52)

in a periodic domain with an initial condition, u(x, 0) = 0.5 + sin(πx). The order of accuracy both before and after the 
formation of the shock is computed. At t = 0.15, the solution is smooth throughout the domain and the order deterioration 
only occurs when the standard WENO is used asynchronously (AS-WENO). Both synchronous and AT-WENO have an order 
higher than the theoretical order when the grid is refined. For L1 and L∞ norm of error after shock formation, only the 
smooth region at a distance of 0.05 on both sides of the shock, i.e. |x − xshock| > 0.05, is considered [37]. Once again, errors 
in both the L1 and L∞ norms and the order of accuracy for AT-WENO are consistent with that for standard WENO. Thus, 
AT-WENO exhibits expected numerical accuracy for both linear and non-linear equations. (See Table 2.)
12
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Table 1
Order of accuracy for linear advection equation ut + cux = 0 with initial condition 
u(x, 0) = sin4(πx + 0.25) at t = 1.0 for synchronous, AS-WENO and AT-WENO.

Case N L1 error L1 order L∞ error L∞ order

16 1.95×10−1 - 3.93×10−1 -
32 3.87×10−2 2.3 9.09×10−2 2.1

Synchronous 64 2.79×10−3 3.8 5.57×10−3 4.0
(Order 5) 128 2.65×10−4 3.4 1.07×10−3 2.4

256 1.09×10−5 4.6 7.00×10−5 3.9
512 3.01×10−7 5.8 2.18×10−6 5.0

16 3.25×10−1 - 6.10×10−1 -
32 1.42×10−1 1.2 2.93×10−1 1.0

AS-WENO 64 2.84×10−2 2.3 6.38×10−2 2.2
p = [0.5,0.5] 128 5.70×10−3 2.3 1.32×10−2 2.3
(Order 5) 256 1.22×10−3 2.2 2.90×10−3 2.2

512 2.82×10−4 2.1 6.79×10−4 2.1

16 2.00×10−1 - 3.86×10−1 -
32 4.15×10−2 2.3 1.00×10−1 1.9

AT-WENO 64 2.98×10−3 3.8 6.70×10−3 3.9
p = [0.5,0.5] 128 2.90×10−4 3.4 9.54×10−4 2.9
(Order 4) 256 1.42×10−5 4.4 7.04×10−5 3.8

512 5.79×10−7 4.6 2.40×10−6 4.9

16 3.01×10−1 - 5.09×10−1 -
32 6.18×10−2 2.3 1.37×10−1 1.9

AT-WENO 64 5.20×10−3 3.8 1.13×10−2 3.6
p = [0.3,0.3,0.3] 128 4.22×10−4 3.6 1.12×10−3 3.3
(Order 4) 256 2.40×10−5 4.1 7.73×10−5 3.9

512 1.26×10−6 4.3 2.86×10−6 4.8

4. Governing equations

In the following sections the effect of asynchrony is evaluated for a set of canonical reacting flow configurations. The AT 
schemes described in Section 3 are implemented in a compressible reacting flow solver with periodic and open boundaries. 
The governing conservation equations and constitutive laws are presented in this section. The one-dimensional form of the 
conservation equations for mass, momentum, total energy and species are

∂ρ

∂t
= −∂(ρu)

∂x
∂(ρu)

∂t
= −∂(ρuu)

∂x
+ ∂τ

∂x
− ∂ P

∂x
∂(ρe0)

∂t
= −∂[u(ρe0 + P )]

∂x
+ ∂(τu)

∂x
− ∂q

∂x
∂(ρYi)

∂t
= −∂(ρuYi)

∂x
− ∂(ρYi V i)

∂x
+ W iω̇i,

(53)

where Yi is the mass fraction, W i is the molecular weight, V i is the species mass diffusion, ω̇i is the molar production rate 
of species i and e0 is the specific total energy

e0 = u2

2
− P

ρ
+ h. (54)

h = ∑Ns
i=1 Yihi = ∑Ns

i=1 Yi

(
h0

i + ∫ T
T0

cp,idT
)

is the total enthalpy expressed in terms of h0
i which is the enthalpy of formation 

of species i at temperature T0 and the isobaric heat capacity cp = ∑Ns
i=1 Yicp,i . For an ideal gas mixture, P = ρRu T /W and 

cp − cv = Ru/W , where W =
(∑Ns

i=1 Yi/W i

)−1
and Ru is the universal gas constant, are used to compute the pressure and 

specific heats. The viscous stress τ is

τ = 4

3
μ

∂u

∂x
, (55)

and the heat flux and species diffusion velocities are given by
13
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Table 2
Order of accuracy for inviscid Burgers’ equation ut + (u2/2)x = 0 with initial condition 
u(x, 0) = 0.5 + sin(πx) before and after the shock for synchronous, AS-WENO and AT-
WENO.

t = 0.15: Before shock

Case N L1 error L1 order L∞ error L∞ order

32 3.03×10−4 - 2.36×10−3 -
Synchronous 64 1.14×10−5 4.7 1.08×10−4 4.4
(Order 5) 128 4.38×10−7 4.7 3.71×10−6 4.9

256 1.41×10−8 5.0 2.12×10−7 4.1
512 3.37×10−10 5.4 4.53×10−9 5.5

32 7.99×10−4 - 4.77×10−3 -
AS-WENO 64 1.44×10−4 2.5 7.21×10−4 2.7
p = [0.5,0.5] 128 3.39×10−5 2.1 1.49×10−4 2.3
(Order 5) 256 8.61×10−6 2.0 3.76×10−5 2.0

512 2.05×10−6 2.1 8.93×10−6 2.1

32 3.11×10−4 - 2.48×10−3 -
AT-WENO 64 1.21×10−5 4.7 1.15×10−4 4.4
p = [0.5,0.5] 128 4.85×10−7 4.6 4.14×10−6 4.8
(Order 4) 256 1.82×10−8 4.7 2.07×10−7 4.3

512 6.61×10−10 4.8 4.82×10−9 5.4

32 3.23×10−4 - 2.67×10−3 -
AT-WENO 64 1.32×10−5 4.6 1.23×10−4 4.4
p = [0.3,0.3,0.3] 128 6.14×10−7 4.4 4.88×10−6 4.7
(Order 4) 256 2.74×10−8 4.5 1.99×10−7 4.6

512 1.25×10−9 4.5 7.42×10−9 4.7

t = 0.55: After shock

Case N L1 error L1 order L∞ error L∞ order

32 6.26×10−3 - 1.20×10−1 -
64 2.43×10−4 4.7 1.14×10−2 3.4

Synchronous 128 6.09×10−6 5.3 3.00×10−4 5.2
(Order 5) 256 1.83×10−7 5.1 2.18×10−5 3.8

512 2.25×10−9 6.3 3.79×10−7 5.8

32 6.49×10−3 - 1.20×10−1 -
AS-WENO 64 3.21×10−4 4.3 1.10×10−2 3.4
p = [0.5,0.5] 128 3.17×10−5 3.3 3.48×10−4 5.0
(Order 5) 256 6.96×10−6 2.2 1.75×10−5 4.3

512 1.70×10−6 2.0 4.14×10−6 2.1

32 6.26×10−3 - 1.20×10−1 -
AT-WENO 64 2.44×10−4 4.7 1.14×10−2 3.4
p = [0.5,0.5] 128 6.10×10−6 5.3 2.99×10−4 5.2
(Order 4) 256 1.85×10−7 5.0 2.18×10−5 3.8

512 2.43×10−9 6.2 3.78×10−7 5.8

32 6.26×10−3 - 1.20×10−1 -
AT-WENO 64 2.44×10−4 4.7 1.14×10−2 3.4
p = [0.3,0.3,0.3] 128 6.15×10−6 5.3 2.99×10−4 5.3
(Order 4) 256 1.89×10−7 5.0 2.18×10−5 3.8

512 2.80×10−9 6.1 3.76×10−7 5.9

q = −λ
∂T

∂x
+

Ns∑
i=1

hi J i

V i = − Dmix
i

Xi

∂ Xi

∂x

(56)

where J i = ρYi V i is the species diffusive flux, Dmix
i is the mixture-averaged diffusion coefficient, and Xi = Yi W /W i is 

the mole fraction. Barodiffusion and the Soret and Dufour effects are not considered. CHEMKIN [41] and TRANSPORT [42]
software libraries were linked with the solver and used for evaluating reaction rates, thermodynamic and mixture-averaged 
transport properties. Eq. (53) can be written in a compact form as in Eq. (15) where
14
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Table 3
Probability of simulated delays for 
different sets used in the numerical 
experiments presented in Section 5. 
This legend (color and/or symbol) 
is used in all the figures from Fig. 
4 to Fig. 13.

Probability Legend
[p0 p1 p2]

Set-1 [0.8 0.1 0.1] ◦
Set-2 [0.6 0.3 0.1] −.∗
Set-3 [0.4 0.5 0.1] − − �

Set-4 [1.0 0.0 0.0] . . . +

Table 4
Summary of numerical simulations and their relevance.

Case number Case name Relevant processes to be resolved

5.1 Acoustic wave propagation (non-reacting) Pressure perturbation travelling at speed of sound
5.2 Auto-ignition of H2 (periodic domain) Spontaneous ignition dominated by reaction term
5.3 Auto-ignition of C2 H4 (temperature 

fluctuations at inflow)
Unsteadiness, oscillatory ignition front

5.4 Premixed flame propagation Reactive-diffusive balance in reaction zone
5.5 Non-premixed ignition Diffusion controlled reaction front
5.6 Propagation of a detonation wave Jump due to shock front followed by a reaction zone

Q =

⎛⎜⎜⎝
ρ
ρu
ρe0
ρYi

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝
ρu

ρu2 + P
u(ρe0 + P )

ρuYi

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
0

−τ
−τu + q
ρYi V i

⎞⎟⎟⎠ , and S =

⎛⎜⎜⎝
0
0
0

W iω̇i

⎞⎟⎟⎠ . (57)

The derivatives of product terms in Eq. (53) are expanded using the chain rule. For example, ∂(ρuYi)/∂x := (ρuYi)x =
ρu(Yi)x +ρuxYi +ρxuYi . This essentially allows computation of derivatives of such terms using AT schemes without having 
to retain every product term at multiple time-levels. Apart from the expansion using the chain rule, the one-dimensional 
asynchronous solver used in the present study is largely based on S3D [3] which is widely used to perform DNS of turbulent 
combustion.

5. Numerical results

In this section, five different flow configurations are selected to assess the effect of asynchrony on canonical combustion 
problems. For the first case, two types of asynchronous simulations are considered,

1. Standard schemes used asynchronously (AS-SFD or AS, AS-WENO as applicable)
2. AT schemes for asynchronous computation (AT, AT-WENO as applicable).

For the remainder of the cases, only the asynchronous simulation performed using AT schemes is compared with the 
synchronous simulation. The domain is decomposed into P processors and delays are introduced using a random number 
generator at each processor boundary similar to [24]. The maximum allowed delay levels are three with the probability of 
non-zero delay gradually increasing from Set-1 to Set-3. The different probability sets considered in numerical simulations 
are tabulated in Table 3 where Set-4 represents a synchronous simulation. The probability for Set-2 and Set-3 is similar to 
the probability of delays observed on TACC supercomputers [27]. A summary of all the numerical experiments performed 
and their relevance is listed in Table 4.

5.1. Non-reacting case: acoustic wave propagation

For this non-reacting case the propagation of an acoustic wave in air is considered. The effect of the source of the acoustic 
wave, for example from an ignition kernel, is decoupled from its propagation, and the only focus here is on whether the 
asynchrony-tolerant framework can accurately capture waves traversing with the speed of sound. Furthermore, if an error 
in gradients due to delayed data at the boundaries manifest themselves in the form of dilatational modes then one should 
observe these effects in the propagation of acoustic waves through larger errors. In the current problem the acoustic wave 
is considered to be a perturbation in the pressure field that is described with the following initial condition [43],
15
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Fig. 4. AS-SFD: instantaneous profiles and errors in pressure (atm) and velocity (ms−1) at t = 4 × 10−6s. The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), 
black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) are defined in Table 3. The light blue line indicates 
the initial condition and gray vertical lines represent processor boundaries. AS: Asynchronous with standard finite-difference schemes, S: synchronous.

Fig. 5. Asynchrony-tolerant (AT): instantaneous profiles and errors in pressure (atm) and velocity (ms−1) at t = 4 × 10−6s (left) and t = 6 × 10−6s (right). 
The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) 
are defined in Table 3. The light blue line indicates the initial condition and gray vertical lines represent processor boundaries. AT: asynchronous with 
asynchrony-tolerant, S: synchronous.

u(x,0) = u0 +Aexp

[
−B

(
x − x0

L

)]
P (x,0) = P0 + ρ0c0 (u − u0)

ρ(x,0) = ρ0 + ρ0 (u − u0)

c0

T = P/ρR

(58)

where u0, ρ0, P0 prescribe the uniform mean values, and ideal gas law is used to compute the temperature field. Here A
and B determine the magnitude and stiffness of the acoustic fluctuation and x0 is the location of the fluctuation peak. This 
initial field is shown as a light blue line in Fig. 4 and Fig. 5. Non-reflecting inflow/outflow boundary conditions [44,45] are 
used and the initial fluctuation is allowed to traverse across at least one processing element boundary where it encounters 
delays. While at the internal points standard fourth-order central difference schemes are used, at the physical boundary 
points the derivatives are computed using second-order finite difference schemes. For computation of derivatives at the 
processor boundaries, fourth-order AT schemes are used (see Table A.13 in Appendix A).

When the standard central-difference schemes are used asynchronously (AS-SFD), there are visible fluctuations in the 
pressure field even at early times. This is evident from Fig. 4 where both instantaneous pressure and velocity fields at time 
16
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Table 5
L1 and L∞ norms of error in velocity and pressure in acoustic wave propagation 
simulations.

t = 4 × 10−6s t = 6 × 10−6s

AS-SFD

Case U (ms−1) P (atm) U (ms−1) P (atm)

1 3.33×10−2 1.36×10−4 3.30×10−2 1.34×10−4

L1 error 2 9.87×10−2 4.00×10−4 3.78×10−1 1.52×10−3

3 8.01×10−1 3.26×10−3 2.28×101 9.31×10−2

1 2.27×10−1 9.43×10−4 2.72×10−1 1.08×10−3

L∞ error 2 6.53×10−1 2.69×10−3 2.03 8.08×10−3

3 6.16 2.57×10−2 1.45×102 7.56×10−1

Asynchrony-tolerant (AT)

Case U (ms−1) P (atm) U (ms−1) P (atm)

1 5.88×10−5 2.43×10−7 3.38×10−5 1.40×10−7

L1 error 2 6.70×10−5 2.75×10−7 4.82×10−5 1.95×10−7

3 8.83×10−5 3.64×10−7 3.81×10−5 1.57×10−7

1 5.25×10−4 2.18×10−6 3.27×10−4 1.29×10−6

L∞ error 2 7.84×10−4 3.23×10−6 4.70×10−4 1.92×10−6

2 1.16×10−3 4.73×10−6 6.09×10−4 2.56×10−6

Fig. 6. Temporal evolution of the peak temperature (K ) and pressure (atm) during auto-ignition of a premixture of hydrogen/air in a periodic domain. 
The different lines (without symbols): blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: 
p = [1.0, 0.0, 0.0]) are defined in Table 3. The dashed line indicates the time at which the instantaneous scalar and velocity profiles and errors are listed in 
Table 6 and Table 7.

t = 4 × 10−6s show large numerical errors and clear deviation from the corresponding synchronous field. For larger delay 
values corresponding to Set-3 in Table 3, the numerical perturbations become significant at much shorter times and render 
the simulation unstable eventually. These errors are amplified even after the acoustic wave leaves the domain. However, 
when AT schemes are used for the propagation of an acoustic wave with delays at processor boundaries, the solution 
remains in close agreement with its synchronous counterpart and the errors are several orders of magnitude smaller (see 
Fig. 5). Similar behavior is also observed at later times when the wave is close to leaving the right boundary. Moreover, the 
errors in both pressure and velocity are not localized to near processing element boundary points where AT schemes are 
used to compute derivatives.

The L1 and L∞ norms of the errors computed with respect to the synchronous simulation are defined as

Z L1 = 〈Zsynchronous − ZAS or AT〉
Z L∞ = max

(
Zsynchronous − ZAS or AT

)
,

(59)

where Z is any quantity, for example temperature, pressure or mass fractions, and 〈.〉 is the spatial average. These errors 
are listed in Table 5 for both AS-SFD and AT simulations at two different times. The AT schemes exhibit significantly less 
numerical error at both times, and the error does not grow monotonically with time like it does for the AS-SFD.

5.2. Premixed auto-ignition of H2 using one-step chemistry

A canonical problem of practical relevance to compression ignition in internal combustion engines is auto-ignition of a 
premixed fuel-air mixture at constant volume. Here auto-ignition of a fuel lean H2/air mixture at an equivalence ratio of 
0.4895 at an initial temperature of 400K is considered. A hot spot represented by a Gaussian temperature spike with a peak 
value of 1040K , which is above the ignition limit, is introduced at the center of a one-dimensional closed domain and the 
17
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Fig. 7. Asynchrony-tolerant (AT): auto-ignition of a premixed H2/air mixture: instantaneous profiles of temperature (K ), heat-release rate ( Jm−3s−3), pres-
sure (atm), velocity (ms−1), and mass fractions of Y H2 and Y H2 O . The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red 
(Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) are defined in Table 3. The light blue line indicates the initial condition and the gray 
vertical lines represent processor boundaries.

mixture eventually auto-ignites after an induction period. This thermal explosion leads to a rapid increase in temperature 
to nearly 2000K. Following the ignition of the hot spot, reaction fronts emanate from the spontaneous ignition kernel, one 
propagating to the left, while the other to the right. The gas expansion from the heat release during auto-ignition results 
in an induced velocity from an initially quiescent flow field. The time elapsed from the initial hot-spot to a time at which 
the temporal gradient of temperature or heat release rate is maximum is the so-called ignition delay time (τign). The 
time evolution of maximum temperature and pressure is shown in Fig. 6. It is clear that while the temperature increases 
slowly initially, there is an exponential increase in the temperature at around t = 5 × 10−5s. The temporal evolution of 
the peak temperature and pressure is captured accurately by the asynchrony-tolerant schemes. Following ignition, the two 
fronts propagate towards the left and right boundary and are allowed to traverse across at least one processing element 
boundary where delays are explicitly encountered. For simplicity we consider a periodic domain that allows us to compute 
spectral characteristics of both thermodynamic and hydrodynamic quantities. Note that the periodic boundary conditions 
considered here provide a closed volume with compression heating from the exothermic reactions that lead to a gradual 
rise in pressure with time. This is evident from Fig. 6 where the peak pressure increases from 1 atm to 1.4 atm after 
ignition. The oscillatory nature observed in the peak pressure, and to a lesser extent in the peak temperature, is due to 
the propagation of compression waves in the closed domain that originated from the initial localized spontaneous ignition 
kernels.

To investigate the effect of delays at processor boundaries on important quantities of interest both before and after 
spontaneous ignition, the spatial evolution of temperature, velocity, pressure, heat release, and mass fractions of hydrogen 
and water are shown in Fig. 7. The time instants considered are indicated with dashed-black lines in Fig. 6. Qualitatively, 
no difference exists between the instantaneous values of these quantities for synchronous simulation and asynchronous 
simulations with AT schemes. The L1 and L∞ norm of error computed with respect to the synchronous simulation is listed 
in Table 6 and Table 7, respectively, for three time instants. Also listed are the errors when the standard schemes are used 
18
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Fig. 8. AS-SFD: spectra of temperature (T̂ (κ)), velocity (Û (κ)), and mass fractions Ŷ H2 (κ) and Ŷ H2 O (κ) for auto-ignition of a premixed H2/air mixture. The 
different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) are 
defined in Table 3.

Fig. 9. Asynchrony-tolerant (AT): spectra of temperature (T̂ (κ)), velocity (Û (κ)), and mass fractions Ŷ H2 (κ) and Ŷ H2 O (κ) for auto-ignition of premixed H2. 
The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) 
are defined in Table 3.

Table 6
L1 norm of error in temperature, velocity, and mass fraction of H2 and H2 O for auto-ignition of premixed 
hydrogen.

Time Case U (ms−1) P (atm) T (K ) H2 H2 O

AS-SFD

1 2.4294×10−1 8.1737×10−4 3.2713×10−1 1.2700×10−6 2.5152×10−5

1.5e-4 2 3.9893×10−1 1.3420×10−3 5.3992×10−1 2.1059×10−6 4.1778×10−5

3 5.6643×10−1 1.9061×10−3 7.6244×10−1 2.9054×10−6 5.8324×10−5

Asynchrony-tolerant (AT)

1 1.07×10−7 3.16×10−10 8.50×10−8 1.89×10−13 2.29×10−12

4.96e-5 2 1.23×10−7 3.68×10−10 8.19×10−8 2.96×10−13 2.31×10−12

3 1.33×10−7 4.21×10−10 1.11×10−7 4.22×10−13 3.66×10−12

1 6.80×10−7 2.18×10−9 7.14×10−7 2.49×10−12 2.53×10−11

7.2e-5 2 6.46×10−7 2.20×10−9 9.74×10−7 3.77×10−12 4.89×10−11

3 1.07×10−6 3.52×10−9 1.09×10−6 2.79×10−12 3.67×10−11

1 1.17×10−4 2.70×10−7 7.67×10−4 4.56×10−9 4.87×10−8

1.5e-4 2 5.67×10−5 1.49×10−7 2.52×10−4 1.54×10−9 1.61×10−8

3 1.10×10−4 2.70×10−7 7.17×10−4 4.33×10−9 4.62×10−8

asynchronously. Note that in this case the errors are several orders of magnitude larger than AT schemes, irrespective of the 
quantity. Moreover, for the former case, the maximum error in temperature is approximately 9K which can trigger reactions 
and result in nonphysical ignition in otherwise quiescent flow due to the strong temperature dependence of reaction rates. 
Such numerical errors are not observed for AT schemes even when the gradients, for example, in temperature or species 
mass fractions exist at the processing element boundaries.

The spectra of temperature, velocity and mass fraction of reactants and products, are shown in Fig. 8 and Fig. 9. The 
AT schemes exhibit excellent agreement with the synchronous simulations at all wavenumbers (κ ). Moreover, non-physical 
accumulation of energy at high wavenumbers due to numerical errors does not exist which is in fact observed in Fig. 8
when the standard schemes are used with asynchrony. Hence, AT schemes demonstrate an excellent resolving efficiency in 
both physical and spectral space despite delayed data being used for the computation of derivatives at processing element 
boundaries.
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Table 7
L∞ norm of error in temperature, velocity, and mass fraction of H2 and H2 O for auto-ignition 
of premixed hydrogen.

Time Case U (ms−1) P (atm) T (K ) H2 H2 O

AS-SFD

1 8.73×10−1 2.72×10−3 3.50 1.80×10−5 3.19×10−4

1.5e-4 2 1.51 4.46×10−3 5.78 2.96×10−5 5.25×10−4

3 2.14 6.23×10−3 8.79 4.41×10−5 7.88×10−4

Asynchrony-tolerant (AT)

1 1.30×10−6 2.44×10−9 1.48×10−6 4.61×10−12 6.60×10−11

2e-5 2 1.64×10−6 2.30×10−9 2.07×10−6 1.07×10−11 9.12×10−11

3 1.83×10−6 2.80×10−9 1.18×10−6 1.19×10−11 9.79×10−11

1 7.55×10−6 2.64×10−8 9.52×10−6 7.27×10−11 8.87×10−10

5.52e-5 2 5.70×10−6 1.95×10−8 1.88×10−5 1.36×10−10 1.90×10−9

3 9.45×10−6 3.26×10−8 1.19×10−5 9.30×10−11 1.10×10−9

1 1.08×10−3 2.44×10−6 1.14×10−2 5.51×10−8 9.58×10−7

1.5e-4 2 4.08×10−4 7.97×10−7 3.60×10−3 1.77×10−8 3.05×10−7

3 8.06×10−4 1.75×10−6 1.07×10−2 5.12×10−8 8.93×10−7

Table 8
Asynchrony-tolerant (AT): L1 norm of error in temperature, velocity, and mass fraction of O H and C H2 O for 
auto-ignition of C2 H4/air flame with temperature fluctuations at the inflow.

Time Case U (ms−1) P (atm) T (K ) O H C H2 O H2 O

Asynchrony-tolerant (AT)

1 3.20×10−8 1.10×10−10 1.32×10−7 6.67×10−13 3.53×10−13 4.48×10−12

4.48e-4 2 3.89×10−8 1.27×10−10 1.70×10−7 8.75×10−13 4.82×10−13 5.91×10−12

3 4.97×10−8 1.66×10−10 1.75×10−7 9.06×10−13 4.90×10−13 6.08×10−12

1 3.09×10−9 1.09×10−11 3.32×10−8 1.50×10−13 9.12×10−14 1.16×10−12

9.98e-4 2 3.99×10−9 1.38×10−11 1.93×10−8 1.20×10−13 4.42×10−14 6.33×10−13

3 4.77×10−9 1.69×10−11 2.82×10−8 1.69×10−13 7.69×10−14 8.95×10−13

5.3. Auto-ignition: temperature fluctuations at the inflow boundary

The effect of turbulent fluctuations on fuel-air mixing, wrinkling of flames or spontaneous ignition front propagation is 
central to turbulent combustion. To simulate this effect in one-dimension and to ensure that the AT schemes can propagate 
fluctuations accurately across processing element boundaries, a temperature perturbation is forced at the left inflow bound-
ary. The initial condition, shown by the light blue line in Fig. 10, is the steady state solution obtained from the auto-ignition 
of premixed C2 H4/air mixture at a pressure of 2 atm. A 22 species 18-step reduced mechanism describing the oxidation 
kinetics of ethylene/air [46] is used. The steady solution is perturbed with sinusoidal temperature fluctuations with a mag-
nitude of 180K and frequency 20Khz at the left boundary using an oscillatory inflow boundary condition [47,48]. As the 
perturbations approach the igniting front, the adjacent temperature increases as is evident from the increase in the mass 
fraction of C H2 O radical in Fig. 10. This induces a secondary ignition kernel to the left of the initial front as can be seen 
in Fig. 10 (left column). The two kernels eventually interact and as time progresses, a steady ignition front develops to the 
left of the initial kernel as shown in the plots in the right column of Fig. 10. This front oscillates about a mean location, 
with the peak temperature and pressure also oscillating in response to the incoming sinusoidal fluctuations. The AT schemes 
accurately capture the transient and steady state evolution of both the temperature and intermediate species even in the 
presence of delays at the processor boundaries. An excellent qualitative agreement between the instantaneous profiles for 
AT and synchronous simulations in Fig. 10 is observed. Both L1 and L∞ norms of the errors tabulated in Table 8 and Table 9
are also reasonably small at both times.

5.4. Premixed flame propagation

The previous cases focused on investigation of the effect of asynchrony on spontaneous ignition dominated by un-
steadiness and advection-reaction balance. The present test case is intended to study the effect of delayed data on laminar 
premixed flame propagation. The flame propagates at a subsonic velocity and is characterized by a balance between the 
reactive and diffusive terms in the steady species conservation equations. A mixture of C2 H4/air at an equivalence ratio, 
φ = 0.42, T = 500 K and P = 1.72 atm is considered. The one-dimensional domain is 4 mm and is discretized with 576 grid 
points that are distributed across 12 processors. The 22 species, 18-step reduced mechanism from [46] for ethylene/air used 
in the earlier case is also used here. The initial condition is generated using an auto-ignition case, and non-reflecting inflow 
and subsonic outflow are imposed at the left and right boundaries, respectively. The flame is initially located close to the 
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Table 9
Asynchrony-tolerant (AT): L∞ norm of error in temperature, velocity, and mass fraction of O H and C H2 O for 
auto-ignition of C2 H4/air flame with temperature fluctuations at the inflow.

Time Case U (ms−1) P (atm) T (K ) O H C H2 O H2 O

Asynchrony-tolerant (AT)

1 2.10×10−7 8.22×10−10 1.08×10−6 5.76×10−12 4.36×10−12 5.12×10−11

4.48e-4 2 2.20×10−7 9.66×10−10 1.53×10−6 9.46×10−12 6.58×10−12 7.44×10−11

3 3.46×10−7 1.30×10−9 1.33×10−6 8.23×10−12 5.76×10−12 6.54×10−11

1 2.05×10−8 7.70×10−11 5.33×10−7 2.81×10−12 2.15×10−12 2.58×10−11

1.9e-3 2 2.78×10−8 1.01×10−10 3.13×10−7 1.68×10−12 1.26×10−12 1.50×10−11

3 3.57×10−8 1.28×10−10 4.41×10−7 2.42×10−12 1.83×10−12 2.14×10−11

Fig. 10. Asynchrony-tolerant (AT): instantaneous profiles of temperature (K ), velocity (ms−1), and mass fractions of O H and C H2 O radicals for au-
toignition of premixed C2 H4/air mixtures with temperature fluctuations at the inflow. The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: 
p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) are defined in Table 3. The light blue line indicates the initial 
condition and gray vertical lines represent processor boundaries.

Fig. 11. Asynchrony-tolerant (AT): instantaneous profiles of temperature (K ), pressure (atm), velocity (ms−1), and mass fractions of product, H2 O , and 
radicals, O H and C H2 O , at t = 1 × 10−2s for premixed C2 H4 flame propagation. The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p =
[0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta (Set-4: p = [1.0, 0.0, 0.0]) are defined in Table 3. The light blue line indicates the initial condition 
and gray vertical lines represent processor boundaries.
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Table 10
Asynchrony-tolerant (AT): L1 and L∞ norm of error in velocity, pressure, temperature, and mass fractions of O H , 
C H2 O and H2 O for premixed C2 H4 flame propagation.

Time Case U (ms−1) P (atm) T (K ) O H C H2 O H2 O

L1 error

1 6.22×10−11 2.32×10−13 2.72×10−9 2.51×10−15 3.21×10−15 8.60×10−14

1e-2 2 9.96×10−11 3.81×10−13 7.12×10−10 8.73×10−16 8.04×10−16 2.04×10−14

3 9.42×10−11 3.61×10−13 1.27×10−9 1.16×10−15 1.35×10−15 3.42×10−14

L∞ error

1 5.72×10−10 2.07×10−12 1.42×10−8 3.02×10−14 4.66×10−13 2.38×10−14

1e-2 2 1.06×10−9 3.07×10−12 4.18×10−9 8.81×10−15 1.23×10−13 6.31×10−15

3 6.52×10−10 3.36×10−12 6.61×10−9 1.42×10−14 2.09×10−13 1.19×10−14

Fig. 12. Initial condition for non-premixed ignition with diluted fuel on the left and vitiated air on the right.

right edge of the domain and in time propagates to the left while consuming the reactants mixture. The initial flame front, 
comprised of preheat and reaction zones, spans across three PEs as shown by the light blue line Fig. 11. This flame traverses 
across multiple processing element boundaries and the errors are computed to assess the effect of the asynchronous data 
encountered at the boundaries on flow and flame quantities.

The flame structure is invariant with time, therefore, only the instantaneous profiles and errors at the time instant when 
the flame approaches near the left boundary is considered for accuracy analysis. There is excellent agreement between the 
spatial profiles for the synchronous and the AT simulations, as shown in Fig. 11 for temperature, velocity as well as major 
and minor species. The drop in pressure in the reaction zone is negligibly small and thus the pressure values depicted 
in Fig. 11 are nearly constant. As is evident from Table 10, both L1 and L∞ norms of the error between synchronous 
and AT simulations are negligibly small and as low as O(10−14) for some of the species. Furthermore, the flame speed 
computed from the time evolution of the location of the peak heat release rate is equal to 12.59 cm/s for both synchronous 
and asynchronous simulations. The thermal flame thickness is equal to δT = T2−T1

max(∂T /∂x) = 7.81 × 10−4m, irrespective of the 
delays.

5.5. Non-premixed ignition

An ignition of non-premixed H2 using Burke’s mechanism [49] with 9 species is considered next. The setup is similar to 
the one used in [43] and [50] with fuel diluted with nitrogen on the left and air heated to 1500K on the right, as shown in 
Fig. 12. An inflow boundary condition from [47] is used on the left boundary with zero velocity and an outflow boundary 
condition is used on the right boundary with appropriate viscous conditions on each side. The one-dimensional domain is 
4 mm in length, discretized into 576 grid-points that are distributed across 12 PEs.

As time progresses and diffusion process tends to homogenize the gradients, there is ignition close to the stoichiomet-
ric mixture fraction, resulting in a rise in peak temperature and concentration of intermediate species. The instantaneous 
profiles of key quantities are shown in Fig. 13 at two times. The first series of plots on the left column in Fig. 13 are at 
an earlier time when ignition is localized. With time both fuel and intermediate species diffuse across processing element 
boundaries and the flame expands, which is shown in the plots on the right column in Fig. 13. The evolution of both major 
and minor species as well as temperature and velocity is accurately resolved by the AT schemes. The average and maximum 
errors, tabulated in Table 11 and Table 12, respectively, are both negligibly small. The errors were similarly negligible for 
other species that are not shown here.

5.6. Propagation of a detonation wave

To test the numerical accuracy of AT-WENO schemes for reacting flows, a detonation of stoichiometric hydrogen/oxygen 
mixture diluted with argon is considered. The mixture with molar ratio H2 : O 2 : Ar = 2 : 1 : 7 is at an initial temperature of 
305K and pressure of 6670 Pa. A detailed hydrogen/air mechanism [51] comprised of 9 species and 34 reversible reactions 
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Table 11
Asynchrony-tolerant (AT): L1 norm of error in temperature, velocity, and mass fractions of H2, O , H and H2 O for non-premixed 
H2/air ignition.

Time Case U (ms−1) P (atm) T (K ) H2 O H H2 O

Asynchrony-tolerant (AT)

1 1.94×10−8 4.43×10−11 1.52×10−7 6.04×10−12 3.63×10−12 4.85×10−13 2.54×10−11

7.92e-5 2 2.59×10−8 5.94×10−11 1.97×10−7 6.72×10−12 5.40×10−12 6.60×10−13 3.74×10−11

3 3.14×10−8 6.44×10−11 3.13×10−7 1.12×10−11 7.77×10−12 9.38×10−13 5.42×10−11

1 5.94×10−10 1.14×10−12 2.57×10−8 6.04×10−13 2.69×10−13 1.95×10−14 4.43×10−12

3.19e-4 2 5.25×10−10 1.06×10−12 3.45×10−8 6.98×10−13 2.55×10−13 2.22×10−14 5.91×10−12

3 6.18×10−10 1.30×10−12 5.01×10−8 1.61×10−12 2.56×10−13 4.91×10−14 4.80×10−12

Table 12
Asynchrony-tolerant (AT): L∞ norm of error in temperature, velocity, and mass fractions of H2, O , H and H2 O for non-premixed 
H2/air ignition.

Time Case U (ms−1) P (atm) T (K ) H2 O H H2 O

Asynchrony-tolerant (AT)

1 1.09×10−7 1.91×10−10 6.10×10−7 3.89×10−11 1.31×10−10 2.63×10−11 4.05×10−12

7.92e-5 2 1.11×10−7 2.25×10−10 8.52×10−7 4.83×10−11 1.85×10−10 3.69×10−11 5.24×10−12

3 1.21×10−7 2.14×10−10 1.25×10−6 7.16×10−11 2.73×10−10 5.27×10−11 7.10×10−12

1 5.08×10−9 9.80×10−12 9.89×10−8 2.38×10−12 1.65×10−11 1.50×10−12 7.53×10−14

7.92e-5 2 4.01×10−9 8.79×10−12 8.94×10−8 2.49×10−12 1.64×10−11 1.29×10−12 6.47×10−14

3 4.93×10−9 7.91×10−12 1.52×10−7 5.15×10−12 1.41×10−11 1.17×10−12 1.38×10−13

is used. A similar setup has also been used as a test case in previous studies to investigate the efficacy of numerical 
schemes [52–54]. A supersonic outflow condition is applied at the left boundary while a subsonic inlet condition is applied 
at the right boundary. The simulation is initialized with a shock that ignites the mixture at the left end of the computational 
domain. The domain length is 30 cm which is discretized into 6000 grid-points that are distributed across 100 PEs.

The simulation results are shown in Fig. 14 with pressure at different time instants in the leftmost plot. There is a leading 
shock front that compresses the fuel/air mixture followed by the induction and the reaction zones. The pressure obtained 
with the synchronous WENO scheme is shown in solid magenta. It is in excellent agreement with the pressure computed 
with the AT-WENO scheme shown in black circles and dashed lines. A zoomed-in view of the detonation structure depicted 
by temperature and pressure is shown in the centre plots of Fig. 14. The mixture reacts after the induction zone leading to 
an increase in temperature and a corresponding decrease in pressure. The mass fractions for different radicals including fuel 
H2 are plotted on the rightmost plot in Fig. 14. The results of this simulation show that the detonation structure is captured 
accurately with the AT-WENO scheme. Furthermore, the detonation velocity obtained from standard WENO and AT-WENO 
simulations is 1619.7 ms−1 and 1620.1 ms−1, respectively. These values are in good agreement with the detonation velocity 
reported in previous studies [52–54]. The peak von-Neumann pressure is 165.35 kPa and 165.34 kPa for WENO and AT-
WENO which are also similar to the previous studies. Overall, the AT-WENO schemes derived in the present study exhibit 
excellent numerical accuracy despite the use of delayed data at processor boundaries. Since multidimensional simulations of 
detonation phenomena in combustion devices face highly intensive computational resource requirements [55,56], AT-WENO 
schemes hold the potential of offsetting a certain portion of communication overhead associated with standard WENO 
schemes at large node counts, thereby leading to improved scalability.

6. Discussion

DNS of turbulent combustion at higher Reynolds numbers with detailed chemical mechanisms and at conditions relevant 
for practical devices will require efficient utilization of massive computing resources anticipated on next generation exascale 
machines. These simulations at scales and conditions that are currently infeasible will provide fine-grained details into the 
interactions between turbulence and chemistry and will provide fundamental insights into the physical processes that result 
in pollutant formation, flame stabilization, blow-off, higher efficiency, etc. This in turn will not only aid in the design of fuel-
flexible, low-emission combustion engines but also in the development of physics-based models for engineering simulations 
that will be used to design advanced clean engines. However, a successful transition of DNS codes to exascale machines and 
beyond is possible only through redesign and development of new computational algorithms in order to overcome some of 
the obvious bottlenecks and challenges.

The anticipated computing power of a quintillion (1018) double precision floating point operations per second on the ex-
ascale machine will be realized through extreme levels of parallelism with millions of processing elements (PEs), including 
CPUs, GPUs and FPGAs. For example, Frontier at the Oak Ridge Leadership Computing Facility (OCLF) will have 1:4 CPU to 
GPU ratio with unified memory. Despite the use of state-of-the-art low-latency, high-bandwidth communication links, the 
sheer number of communications will significantly hinder scaling to large node counts. To this end, efficient strategies to 
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Fig. 13. Asynchrony-tolerant (AT): Instantaneous profiles and error in temperature (K ), velocity (ms−1) and mass fractions of H2, H2 O , O and H for non-
premixed ignition of H2. The different lines: blue (Set-1: p = [0.8, 0.1, 0.1]), black (Set-2: p = [0.6, 0.3, 0.1]), red (Set-3: p = [0.4, 0.5, 0.1]) and magenta 
(Set-4: p = [1.0, 0.0, 0.0]) are defined in Table 3. The light blue line indicates the initial condition and the gray vertical lines represent processor boundaries.

Fig. 14. Asynchrony-tolerant (AT): Pressure (atm) profiles (left) at different times, structure of detonation wave (middle) for pressure (atm) and temperature 
(K ) and mass fractions of H, O , O H, H2 (right). The solid lines are standard WENO and black-dashed line with black symbols (Set-3 in Table 3) corresponds 
to AT-WENO. Gray vertical lines represent processor boundaries.

mask communications and data movement will be needed to improve scalability. The use of AT schemes at the PE bound-
aries for computation of derivatives accurately, despite delayed data, will facilitate further overlap between communications 
and computations. However, a challenge in extending the AT schemes to three-dimensions is that the derivatives of convec-
tive and diffusive terms need to be expanded in terms of derivatives of primitive variables by applying the chain rule. For 
example, ∂(ρue)/∂x := (ρue)x = ρuex + ρeux + euρx . This expansion increases the total number of derivatives that need 
to be computed, especially when a large number of species are involved. Alternatively, one can compute the convective 
and diffusive terms (for example, ρue, ρYiu, J i, τ ) from the primitive variables at different time levels as required by 
the AT schemes. These computations can be performed on the fly in order to avoid storing such product terms at multiple 
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time-levels. Essentially there is a trade-off between memory (data movement) and computation. Re-design of data struc-
tures for better memory coherency will also be extremely helpful since AT schemes use data from multiple time levels 
and can thus incur high cache miss rates. Besides these challenges, a critical first step in using AT schemes for scalable 
simulations of turbulent combustion on massive supercomputers is to ascertain that the numerical artifacts due to delayed 
data at PE boundary are significantly small and do not affect the underlying physics. The comprehensive set of numeri-
cal experiments presented in the present study specifically highlights the excellent numerical accuracy of AT schemes for 
compressible reacting unsteady flows.

A key component of simulations of reacting flows even for simple geometries includes the prescription of nonperiodic 
boundary conditions. The NSCBC [44,45] with improvements for reacting flows [47,48,50,57] has been successfully used for 
these simulations. In the normal direction, the terms in the NSCBC boundary conditions are not affected by AT schemes. 
For example, at the outflow, one-sided schemes are used, which require only local information within a PE. At the inflow, 
relaxation terms are used which again do not require PEs to communicate. Since transverse and viscous terms are also 
included for reacting flows [47,48,50], the AT schemes can be utilized in the transverse direction for computation of all the 
spatial derivatives involved. Extension to corners can be done following [57] with AT schemes used wherever necessary.

Another advantage for using asynchronous computations on exascale machines is to leverage the high flop-rate of GPUs, 
i.e. throughput computing. In hybrid computing architectures, GPUs are expected to handle most of the computations, while 
CPUs will facilitate communications between PEs. With AT schemes, GPUs will not have to wait on the CPUs for the most 
updated data from the neighboring PEs. This would enhance utilization of GPUs without affecting numerical accuracy or 
introducing idling penalties. A similar approach has been utilized in [58] where asynchronous copies between CPUs and 
GPUs are used to overlap computation and data movement, but delayed data with asynchronous computations have not 
been used. At a compiler level, new asynchronous run-time systems that are capable of dynamic task parallelism are being 
developed to improve the computation-communication overlap [59–61]. The AT schemes, which relax synchronization at a 
mathematical level, can be coupled with such data-centric programming models to create highly scalable PDE solvers. Asyn-
chrony has also been utilized in [62] for scalable resilience to soft faults. However, in [62] all derivatives are still computed 
with the most updated data but the computations are re-arranged to ensure maximum overlap between communication and 
computation. The asynchronization approach utilized in [62] coupled with mathematical level asynchrony with AT schemes 
can be effective in pushing the scaling wall. Furthermore, since AT schemes do not require updated data, these schemes can 
also be used to recover from node failures without halting the simulation altogether.

7. Conclusions

In this paper, a series of numerical simulations that utilize delayed data at processor boundaries are presented for 
canonical reacting flows with single-step and detailed reaction mechanisms. It is shown that large numerical errors are 
incurred in physical as well as spectral space when standard schemes are used asynchronously, even for the simplest 
problems. To overcome this loss of accuracy, novel asynchrony-tolerant (AT) schemes are used for accurate computation of 
spatial derivatives with delayed data at the boundaries. These asynchronous simulations using AT schemes are compared 
with standard synchronous simulations and are shown to exhibit excellent qualitative and quantitative agreement. Both 
spatial and temporal evolution of hydrodynamic and thermo-chemical quantities are accurately captured by the AT schemes.

For simulations of high-speed flows with shocks and jump discontinuities, the standard shock-resolving WENO schemes 
have degraded numerical accuracy. Thus, following the procedure listed in [24] AT-WENO schemes are derived. However, 
the schemes so derived have non-convex linear weights which can lead to numerical instabilities and oscillations [39]. To 
overcome this, the asynchronous stencil is modified to include an additional grid-point. With this degree-of-freedom, an 
additional low-order truncation error term is selectively eliminated while preserving the convexity of the ideal weights. 
For evaluation of non-linear weights in AT-WENO schemes, asynchrony-tolerant smoothness indicators are also derived. The 
superior accuracy of AT-WENO schemes in comparison to the standard WENO schemes is exhibited through the order-of-
accuracy tests for linear and non-linear equations. These schemes are also used for simulation of a detonation wave which 
is found to have excellent agreement with its synchronous counterpart.

A common conclusion one can arrive at through these simulations is that the AT schemes have excellent accuracy 
despite relaxed synchronizations at processor boundaries. Thus, AT schemes provide a potential path for highly scalable 
asynchronous simulations of turbulent combustion at the extreme scales promised by exascale and beyond.
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Appendix A. AT schemes

Table A.13
Asynchrony-tolerant (AT) schemes for left and right boundary used in numerical simulations for first 
and second derivative.
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Appendix B. Reconstruction approximation at the right boundary

For points located at the right processor boundary the modified smaller asynchronous stencil is given by, S̃(0)
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the rightmost gird points. We derive the following reconstruction approximation at the right boundary,

ũn,(0)

j+ 1
2

= un
j−2

3
− 7un

j−1

6
+ 11un

j

6
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Similarly, the approximation at point u j−1/2 on the right boundary at each of the candidate stencils is listed below
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Following the procedure described in the previous sections, the smoothness indicator at the right-boundary can be 
computed to be
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Lastly, we note that the approximation of u j−1/2 at the left-boundary is

ũn,(0)

j− 1
2

= 1

6
k̃u−k̃+n−1

j−2 − 5

6
k̃u−k̃+n−1

j−1 + 1

6

(
−k̃ − 1

)
un−k̃

j−2 + 1

6

(
5k̃ + 5

)
un−k̃

j−1 + un
j

3
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