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We show how the conic hull method, recently developed for the analytic and noniterative evaluation of
multifold Mellin-Barnes (MB) integrals, can be extended to the case where these integrals have straight
contours of integration parallel to the imaginary axes in the complex planes of the integration variables.
MB integrals of this class appear, for instance, when one computes the ϵ-expansion of dimensionally
regularized Feynman integrals, as a result of the application of one of the two main strategies (called A
and B in the literature) used to resolve the singularities in ϵ of MB representations. We upgrade the
Mathematica package MBConicHulls.wl which can now be used to obtain multivariable series
representations of multifold MB integrals with arbitrary straight contours, providing an efficient tool for
the automatic computation of such integrals. This new feature of the package is presented, along with an
example of application by calculating the ϵ-expansion of the dimensionally regularized massless one-loop
pentagon integral in general kinematics and D ¼ 4 − 2ϵ.
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I. INTRODUCTION

Mellin-Barnes (MB) integrals appear in many branches
of mathematics and physics: asymptotics [1], hypergeo-
metric function theory [2–4], quantum field theory [5],
electromagnetic waves in turbulence [6], etc. In all these
domains one makes use of these integrals as a powerful
computational tool. This has, for instance, been recalled
very recently in the context of particle physics
in [7,8]. Focusing on the latter domain, it is fair to say
that the community of high energy physics has been
particularly involved in the study of MB integrals and,
during the last two decades, in the development of soft-
wares dedicated to their application to the calculations of
Feynman integrals (see [5,8] and references therein).
Indeed in the phenomenology of particle physics, the
computational need is so huge and the complexity of the
calculations so high that it is often impossible to avoid
computers for the calculations. MB integrals have not been
an exception to this rule and powerful softwares are now
available to ease their use [9].

Although MB integrals have been widely studied, the
problem of their analytic and numerical evaluation is still an
active field of research, in particular when these integrals are
multifold. In [10], an important progress has been achieved
in this context, where the first systematic method of
computing multifold Mellin-Barnes (MB) integrals analyti-
cally, in a noniterative way, has been presented, along with
the powerful and user-friendly Mathematica package
MBConicHulls.wl allowing applications of this tech-
nique in an automatic way. From this approach, one obtains
series representations of multiple MB integrals by comput-
ing the latter using multidimensional residue theory. In
general, these series representations have the form of linear
combinations of multivariable hypergeometric series (and/
or derivatives of such serieswith respect to their parameters).
These representations are useful in various fields of physics
and mathematics, such as in quantum field theory (for the
computation of Feynman integrals, as mentioned above) or
in the theory of multivariable hypergeometric functions (for
the study of their transformation theory). One strength of the
approach of [10] is that, in the degenerate case (the common
situation where several series representations of the object
under study, all being convergent, coexist), it bypasses one
major difficulty met in other calculational approaches such
as, in physics, the negative dimension approach [11,12] (see
also [13]), the MB approach developed in [6], the method of
brackets [14] or other more recent techniques, such as the
one developed in [15] based onYangian symmetry. All these
methods need a detailed convergence analysis of the
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complete set of series involved in the calculation, which can
be more than thousands in nontrivial cases [15,16]. In
contrast, in [10] the series representations are not obtained
from a convergence analysis, but from a simple geometrical
approach based on the study of specific intersections of
conic hulls associated with theMB integral. This allows one
to derive the series representations in complicated caseswith
many variables where the other methods above fail. Another
important advantage of the approach of [10], compared to all
other methods, is that, in the case where one is interested in
the convergence region of a given series representation, one
can focus on a single master series and not on all the series
that form the series representation (because from the conic
hull approach one master series can be obtained for each of
the various series representations). This considerably sim-
plifies the convergence analysis.
The first applications of the computational method

of [10] have been published in [10,16,17], where compli-
cated conformal Feynman integrals have been evaluated
analytically for the first time, and in [18], where it was
shown, on the example of Srivastava’s triple hypergeo-
metric functionHC, that this method can be a powerful tool
for the derivation of linear transformations of multivariable
hypergeometric functions. In all these calculations, the
contours of integrations of the involved MB integrals are
such that they do not “split” the sets of poles of each of the
gamma functions that belong to the numerator of the MB
integrand in subsets, because this is the way the funda-
mental objects under study, i.e., (dimensionally regular-
ized) Feynman integrals and hypergeometric functions, are
well defined in terms of MB integrals. This condition, in
general, forces the contours to be nonstraight.
In this paper, we consider the different situation where

the contours of the multifold MB integrals can be any
straight lines parallel to the imaginary axes in the complex
planes of the integration variables (these lines, obviously,
avoid the poles of the MB integrand). In mathematics, this
is a problem of general interest. In quantum field theory,
this kind of MB integrals appear when one computes the
ϵ-expansion of dimensionally regularized Feynman inte-
grals following the MB representation approach summa-
rized in Ch. 5 of [5]. Indeed, in this approach, one performs
the ϵ-expansion at the MB integral level, which asks to
resolve the problem of ϵ-singularities following two main
strategies (called A and B in the literature [5,19]), both
leading to multifold MB integrals with straight contours
having the shape described above.

MB integrals with straight contours generally have the
sets of poles of some or all gamma functions of the
numerator of their integrand split in subsets by the contours.
This prevents from directly applying the method
of [10] to the computation of such integrals: it is first
necessary to perform some transformations of the MB
integrand, as we show in the next section. Therefore, in
order to deal with these cases, we have adapted the
MBConicHulls.wl package (which can be downloaded
from [20]) by adding an option in the code allowing the user
to define straight contours of integration. Once the straight
contours are specified by the user, the package performs the
corresponding necessary transformations automatically and
the results of the computation of the multifold MB integral
can then be derived in an automatic way, as done with the
original version of the package presented in [10].
We explain these considerations in detail in Sec. II,

on the simple example of a 2-fold MB integral where the
calculations of the transformations are done by hand,
whereafter we present the corresponding syntax that has
to be used when using the new version of our package for
an automatic treatment of the same calculations. In Sec. III
we show a nontrivial application of our method by
computing the ϵ-expansion of the dimensionally regular-
ized massless one-loop pentagon integral in general kin-
ematics and D ¼ 4 − 2ϵ. This calculation involves several
MB integrals, up to 4-fold, with straight contours, and we
show how one can easily obtain different series represen-
tations of the pentagon from these integrals. To our
knowledge, these results have not been previously pub-
lished in the literature. An alternative computational
approach of multifold MB integrals with straight contours
has been developed in [21] and automatized in the
MBsums.m Mathematica package. It is based on an
iterative approach: the MB integrals are evaluated sequen-
tially. In contrast, our MBConicHulls.wl package
computes multifold MB integrals in a noniterative way.
As one will see, the pentagon example of Sec. III gives us
the opportunity to compare these two different approaches
and packages. The conclusions of our paper then follow.

II. N-FOLD MB INTEGRALS
WITH STRAIGHT CONTOURS

The general form of the N-fold MB integrals with
straight contours that we consider in this work is

Iðx1; x2;…; xNÞ ¼
Zc1þi∞

c1−i∞

dz1
2πi

� � �
ZcNþi∞

cN−i∞

dzN
2πi

xz11 � � � xzNN
Q

k
i¼1 Γaiðei · zþ giÞQ
l
j¼1 Γbjðfj · zþ hjÞ

ð1Þ

where ai, bj, k, l,N are positive integers, z ¼ ðz1;…; zNÞ, ei and fj are bothN-dimensional real vectors while gi, hj and the
variables x1;…; xN can be complex. The integration contours are such that ℜðziÞ ¼ ci for i ¼ 1;…; N, i.e.
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they form straight lines parallel to the imaginary axes
in each of the zi complex planes. We restrict our
discussion in this paper to the case where the vector
Δ _¼Σi aiei − Σj bjfj ¼ 0. This is the degenerate case that
we mentioned in the introduction and which, to our
knowledge, includes the class of MB representations
appearing in Feynman integral calculus. The non-
degenerate case is presently under study.
As already said in the introduction, in the original

computational approach of multifold MB integrals pre-
sented in [10] (we do not recall this approach here and
refer the reader to [10] and to [17] for technical details), it
is assumed that the contours do not split, for each of the
gamma functions of the numerator of the MB integrand,
their set of poles in different subsets. An equivalent way to
formulate this assumption, in the straight contour case
described above, is that the real part of the arguments of

each of the gamma functions of the numerator of the
MB integrand must be positive for any values of
the integration variables running on the contours (this,
in passing, is a necessary requirement to derive well-
defined MB representations with straight contours for
Feynman integrals [22,23]). Obviously, when computing
multiple MB integrals with straight contours as given in
Eq. (1), this requirement is in general not satisfied,
hence one cannot directly apply the method of [10] for
the computation of these integrals. It is first necessary to
transform those gamma functions that do not have
their arguments with positive real parts, in such a way
that, for the chosen straight contours, they satisfy this
condition. This can be done using the generalized
Euler reflection formula, as we show here on a simple
example.
Let us consider the following 2-fold MB integral

Iðx1; x2Þ ¼
Zc1þi∞

c1−i∞

dz1
2πi

Zc2þi∞

c2−i∞

dz2
2πi

ð−x1Þz1ð−x2Þz2Γð−z1ÞΓð−z2Þ
Γð3

7
þ z1 þ z2ÞΓð23 þ z1ÞΓð35 þ z2Þ

Γð1
2
þ z1 þ z2Þ

ð2Þ

If one chooses the contours of integration such that all the
five gamma functions in the numerator of the MB integrand
satisfy the positivity constraint of the real part of their
respective argument for any z1 and z2 running on the
contours, for instance by fixing c1 ¼ − 1

7
and c2 ¼ − 1

9
,

then, up to an overall factor, one recognizes the MB
representation of the Appell F1 function

Iðx1; x2Þ ¼
Γð3

7
ÞΓð2

3
ÞΓð3

5
Þ

Γð1
2
Þ F1

�
3

7
;
2

3
;
3

5
;
1

2
; x1; x2

�
ð3Þ

For this choice of straight contours the sets of poles of each
of the gamma functions in the MB integrand are not split
in different subsets. One can see this fact by looking at
Fig. 1 (left) where the red point ðc1; c2Þ ¼ ð− 1

7
;− 1

9
Þ is

surrounded by the singular lines of the five gamma
functions of the numerator of the MB integrand in a
particular way, whose visualization we have tried to ease
by giving an identical color to all the singular lines of a
given gamma function. Indeed, it is clear from the picture
that the point ð− 1

7
;− 1

9
Þ is not located between two singular

lines of the same color. This is what is meant when we
say that, for each of the gamma functions in the numerator
of the MB integrand, the corresponding set of poles is not
split in subsets by the contours. Therefore, the result
of Eq. (3) can be directly checked using the original
version of our MBConicHulls.wl Mathematica pack-
age (i.e. without explicitly fixing the contours), as the
package is based on this assumption. Doing this exercise,
one obtains from the package that there are 8 different conic

hulls associated to this MB integral and that these lead
to 5 different series representations. The simplest of the
latter is the first one, obtained using the MBResolve[,1]
and EvaluateSeries[,1] commands of the
package. It gives the well-known double series repre-
sentation of F1 and its overall factor written in Eq. (3)
above.
We now want to compute the MB integral of Eq. (2) in

the less trivial situation where c1 ¼ 7
3
and c2 ¼ − 3

2
.

In this case, the first and fifth gamma functions of the
numerator of the MB integrand in Eq. (2) have arguments
with negative real parts. Therefore, their sets of poles are
now split by the contours, as can be seen in Fig. 1 (left) (the
point ðc1; c2Þ ¼ ð7

3
;− 3

2
Þ is located between singular lines

having the same color: two are yellow and two are green).
Therefore, in order to apply our package for the evaluation
of the corresponding MB integral, we have to find a way to
transform these gamma functions in order that the real part
of the arguments of each of the gamma functions in the
numerator of the transformed expression become positive
for c1 ¼ 7

3
and c2 ¼ − 3

2
. This can be done at the cost of

introducing more gamma functions in the integrand, by
using the generalized reflection formula:

Γðz − nÞ ¼ ΓðzÞΓð1 − zÞð−1Þn
Γðnþ 1 − zÞ ð4Þ

Indeed, rewriting the first gamma function as

Γð−z1Þ ¼
Γð3 − z1ÞΓð−2þ z1Þð−1Þ3

Γð1þ z1Þ
ð5Þ
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and the fifth one as

Γ
�
3

5
þ z2

�
¼ −

Γð− 3
5
− z2ÞΓð85 þ z2Þ
Γð2

5
− z2Þ

ð6Þ

one sees that for c1 ¼ 7
3
and c2 ¼ − 3

2
both gamma functions in the numerator of the right-hand side of Eqs. (5) and (6) will

now have arguments with positive real parts (in contrary with the left-hand side).
This allows us to write Eq. (2) in the following equivalent way

Iðx1; x2Þ ¼
Zc1þi∞

c1−i∞

dz1
2πi

Zc2þi∞

c2−i∞

dz2
2πi

ð−x1Þz1ð−x2Þz2
Γð3 − z1ÞΓð−2þ z1Þ

Γð1þ z1Þ
Γð−z2Þ

Γð3
7
þ z1 þ z2ÞΓð23 þ z1Þ
Γð1

2
þ z1 þ z2Þ

Γð− 3
5
− z2ÞΓð85 þ z2Þ
Γð2

5
− z2Þ

ð7Þ

where now all the gamma functions in the numerator
have arguments with positive real parts for the chosen
contours c1 ¼ 7

3
and c2 ¼ − 3

2
.

As, for c1 ¼ 7
3
and c2 ¼ − 3

2
, this MB integral is now

satisfying the main constraint for the use of the original
version of our MBConicHulls.wl package (see Fig. 1
(right) where the point ðc1; c2Þ ¼ ð7

3
;− 3

2
Þ is not anymore

located between singular lines having the same color),
it can be computed with the latter (i.e. without specifying
the contours of integrations). However, there are now 15
different conic hulls, which lead to 5 possible series
representations for the MB integral of Eq. (7) and the
package gives, for the first series representation, the
following result:

Iðx1; x2Þ ¼
jx1j<1∧jx2j<1

ð−x1Þ3
X∞

n1¼0;n2¼0

Γð11
3
þ n1ÞΓð− 3

5
− n2ÞΓð85 þ n2ÞΓð247 þ n1 þ n2Þ

Γð4þ n1ÞΓð25 − n2ÞΓð72 þ n1 þ n2Þ
xn11

xn22
n2!

þ ð−x1Þ3ð−x2Þ−3
5Γ
�
3

5

�X∞
n1¼0

Γð11
3
þ n1ÞΓð9935 þ n1Þ

Γð4þ n1ÞΓð2910 þ n1Þ
xn11 ð8Þ

FIG. 1. Singular structure, in the ðℜðz1Þ;ℜðz2ÞÞ-plane, of the integrand of Left: Eq. (2) and Right: Eq. (7). All the poles (represented
as singular lines in the figures) of a given gamma function of the numerator of the corresponding MB integrands are plotted with
the same color (for instance, the poles of Γð3

7
þ z1 þ z2Þ are the oblique lines shown in light blue). In the right figure, Γð−2þ z1Þ

[resp. Γð− 3
5
− z2Þ] has only 3 [resp. 1] singular lines, as the others are cancelled by the denominator of the MB integrand. The red point

is ðc1; c2Þ ¼ ð− 1
7
;− 1

9
Þ and the blue one is ðc1; c2Þ ¼ ð7

3
;− 3

2
Þ.
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One can check that this result is correct by directly
computing Eq. (2) with c1 ¼ 7

3
and c2 ¼ − 3

2
using the

computational approach of [24] (see also [25,26]). Indeed,
it can be seen from Fig. 2 that the cone corresponding to

this series representation has two different sets of singular
points from which Eq. (8) can be reobtained. The first set
is ðz1; z2Þ ¼ ð3þ n1; n2Þ which gives the contribution

I1 ¼ −ð−x1Þ3
Γð24

7
ÞΓð11

3
ÞΓð3

5
Þ

Γð7
2
ÞΓð4Þ F1∶2;1

1∶1;0

"
24
7
∶ 11

3
;1; 3

5

7
2
∶ 4; −

����x1; x2
#

ð9Þ
where F1∶2;1

1∶1;0 is a Kampé de Fériet double hypergeometric
series [2,27]. I1 matches with the first term of Eq. (8)
once Eq. (4) is used in the latter. The second set is
ðz1; z2Þ ¼ ð3þ n1;− 3

5
Þ, whose associated residues give

I2 ¼ ð−x1Þ3ð−x2Þ−3
5Γ
�
3

5

�
Γð99

35
ÞΓð11

3
Þ

Γð4ÞΓð29
10
Þ

× 3F2

�
99

35
;
11

3
; 1; 4;

29

10
; x1

�
ð10Þ

which is equal to the second term of Eq. (8).
We have seen above, as a motivating example, how to treat

a simple case of multifold MB integral with arbitrary straight
contours, by hand. We now show how the same calculations
can be performed in an automatic way using the new version
of our MBConicHulls.wl package that we have imple-
mented and which now allows the user to choose, if needed,
arbitrary straight contours of integration for multifold MB
integrals (details about some of the commands that are used
in this calculations can be found in [10]).

For this, we first load in a Mathematica notebook the package as follows:

In[1]:SetDirectory[NotebookDirectory[]];
In[2]:=<<MBConicHulls.wl;

where we assume that the MBConicHulls.wl package is kept in the same directory as the notebook. The
MultivariateResidues.m package [28] also has to be put in this directory since it will be called internally by
MBConicHulls.wl.
Then we input our MB integral with the above chosen contours, using the MBRep[] command, as follows:

In ½3�∶MBRepOut ¼ MBRep½1; fz1→
7
3 ;z2→ − 3

2g; f−z1;−z2; 37 þ z1 þ z2; 23 þ z1; 35 þ z2gf12 þ z1 þ z2g�;
which gives as an output

Straightcontours∶ fReðz1Þ → 7
3 ;Reðz2Þ → − 3

2g
One can then find the series representations of MBRepOut using the ResolveMB[] command. Let us compute the first of
the five possible series representations by the instruction
In[4]: ResolveMBOut=ResolveMB[MBrepOut,1];

where 1 indicates that we are interested in only the first series solution. This gives
Degenerate case with 15 conic hulls
Series solution 1:: Intersecting conic hulls fC1;2;C2;5g. The set of poles is ::

fð3þ n2;n1Þ; ð3þ n1;− 3
5 − n2Þg with master series characteristic list and varia-

bles fðn1;n2Þ; ð−x1;−x2Þg.
From the information given by the package about the master series, it is clear that the convergence region of the first

series representation is the same as the one indicated under the equal sign of Eq. (8).
Therefore, in order to obtain the explicit expression of this first series representation, one inputs
In[5]:EvaluateSeries[ResolveMBOut,1];

which indeed exactly gives Eq. (8) (we do not reproduce the final result here).

FIG. 2. Cone (shaded area in light blue) associated with the
series representation of Eq. (2) computed in the text. We refer
the reader to [24] for details about the derivation of the cone using
the dashed black line.
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Let us now consider a nontrivial physical application of
our approach.

III. THE ONE-LOOP MASSLESS
PENTAGON IN D= 4− 2ϵ

In this section, we apply our method to the computation
of the dimensionally regularized massless one-loop
pentagon integral in general kinematics and D ¼ 4 − 2ϵ
space-time dimensions. Indeed, in the MB representation
approach, the ϵ-expansion of this object obtained from the
Mathematica packages MBresolve.m [19] or MB.m [29]
requires the computation of a combination of eleven MB
integrals (up to 4-fold) with straight contours, which gives
us the opportunity to test the new features of our
MBConicHulls.wl package in a nontrivial physical
case. The results will be checked by direct numerical
integration of the involved multifold MB integrals, as well
as by computing the pentagon using FIESTA [30]. We will

also compare our results with those obtained from the
package MBsums.m [21].
The MB representation of the pentagon was first given

in [31] for general powers of the propagators and D
dimensions, and it was studied in detail in [13], in the
limit of multi-Regge kinematics, for unit propagator
powers and D ¼ 6 − 2ϵ. In the present work, we also
focus on the resonant unit powers of propagators case,
but for D ¼ 4 − 2ϵ and general kinematics (see [32] for
investigations in D dimensions with another approach). In
this situation, the MB representation of the pentagon reads
(using the same notation as in [13]):

I4−2ϵ5 ð1; 1; 1; 1; 1;Q2
i Þ ¼

−eγEϵð−sÞ−3−ϵ
Γð−1 − 2ϵÞ I4MB ð11Þ

where

I4MB ¼
Zþi∞

−i∞

dz1
2πi

� � �
Zþi∞

−i∞

dz4
2πi

uz11 u
z2
2 u

z3
3 u

z4
4

Y4
i¼1

Γð−ziÞΓð1þ z12ÞΓð−2 − ϵ − z123Þ

× Γð1þ z23ÞΓð−2 − ϵ − z234ÞΓð1þ z34ÞΓð3þ ϵþ z1234Þ ð12Þ

where u1 ¼ s2
s , u2 ¼ t1

s , u3 ¼ t2
s and u4 ¼ s1

s . We use the
shorthand notation zij��� ¼ zi þ zj þ � � � and in the follow-
ing we work in the Euclidean region where s, s1, s2, t1 and
t2 are negative.
It is implicit, in the notation of this 4-fold MB integral,

that the contours of integrations are nonstraight, and this
integral represents the pentagon integral when the contours
satisfy the usual assumption that the set of poles of each of
the gamma functions of the integrand (there is no denom-
inator in this example) is not split into different subsets.
We note here that it is possible, for this integral, to find
straight contours having this property, but not for ϵ ¼ 0 (for
instance if we choose the contours such that ℜðziÞ ¼ −0.1
for i ¼ 1;…; 4 then we must have −3.4 < ϵ < −1.7).
At this point we remark that as the MB integral in Eq. (12)

has nonstraight contours which satisfy the condition for
using the original version of MBConicHulls.wl, it is a
simple exercise (although this is a nontrivial resonant
case [10]) to derive with the package some of its various
series representations for general kinematics and general ϵ.
We performed this exercise, which can be found in the
Pentagon.nb Mathematica notebook given as a supple-
mentary material to this paper. One of the 70 possible
series representations that can be extracted from a direct
evaluation of the pentagon MB integral representation is
also given explicitly in Appendix B, see Eq. (B1). To our
knowledge, this expression is new. We have checked it
numerically with FIESTA (as well as two other series

representations that we do not give here) for 3
Euclidean points and we got perfect agreement when
choosing a small value of ϵ and some values of the ui such
that Eq. (B1) converges (for instance u1 ¼ 0.0001,
u2 ¼ 0.001, u3 ¼ 0.01 and u4 ¼ 0.1). It is also possible,
fixing for instance ϵ ¼ −2, to use MBsums.m in order to
compute Eq. (12) if one chooses the straight contours
mentioned above (ℜðziÞ ¼ −0.1 for i ¼ 1;…; 4) and,
therefore, one can compare the obtained results with ours.
We found a complete numerical agreement between both
analytic expressions, although the number of terms given
by our approach is 14 while MBsums.m gives a less
compact expression involving 48 terms (we recall how-
ever that the expression given by MBsums.m can only be
used for a particular numerical check, because it is not
valid for ϵ ≠ −2). We also got agreement with the direct
numerical integration of Eq. (12) obtained (still for these
particular values of the contours and ϵ) with the help of the
MBintegrate[] command of MB.m.
While the results discussed above for general ϵ are

interesting (in particular because, to our knowledge, our
MBConicHulls.wl package is the only available tool
for such analytic calculations with nonstraight contours),
in the rest of this section we will focus on first performing
the ϵ-expansion of the MB integral using MBresolve.m
(or MB.m). Indeed, this leads to the evaluation of several
MB integrals with straight contours on which we can apply
the techniques discussed earlier in this paper and
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demonstrate the efficiency of our approach in deriving
analytic solutions.
As shown in the Pentagon.nb notebook, the result of

the ϵ-expansion given by the package MBresolve.m is a
sum of a constant term, five 1-fold, three 2-fold, two 3-fold
andone4-foldMBintegralswith straight contours, all of them
not satisfying the constraint of positivity of the real part of the
arguments of their gamma functions for the contours given by
this package. Therefore, this provides an ideal nontrivial
situation to test our computational technique and its imple-
mentation in MBConicHulls.wl. We have listed all these
(resonant) MB integrals and the constant term in Appendix A
and a detailed analysis can be found in Pentagon.nb
where we derived series representations for each of the MB
integrals and cross-checked them with direct numerical
integration using MB.m. Alternatively, we numerically
cross-checked our results using the corresponding analytic
series solutions derived from MBsums.m, although the latter
often yields more lengthy series solutions than our approach.
We also got a perfect numerical matching with FIESTA.
At the sample points where we performed the numerical

checks in this section, the series representations were
rapidly converging and the corresponding numerical results
were obtained in a few seconds by summing 10 to 15 terms
for each of the summation indices.
As a final (side) remark, we note that the first version of

MBConicHulls.wl could not evaluate 1-fold MB inte-
grals, therefore we upgraded our package so that the new
version can now also evaluate this class of integrals (with
straight or nonstraight contours). Hence, the checks men-
tioned above have been performed by including, in the
automatic evaluation, the 1-fold MB integrals of the
pentagon given in Eqs. (A3)–(A7).

IV. CONCLUSIONS

In this work, we have shown how the computational
method of [10], dedicated to the evaluation of multifoldMB
integrals, can be adapted to deal with the case of arbitrary
straight contours of integration. We have detailed, on a
2-fold example, how this can be achieved by using simple
transformations of theMB integrand andwe have automated
this procedure in a newversion of theMBConicHulls.wl
package (see [20]). This package has been tested on several
examples, including the nontrivial computation of the ϵ-
expansion of the (resonant) one-loop massless pentagon in
D ¼ 4 − 2ϵ with unit propagator powers, which involves a
combination of eleven MB integrals with straight contours
(and up to 4-fold).An excellent agreement has been obtained
when comparing the evaluation of the pentagon from the
analytic computation of these integrals, derived with
MBConicHulls.wl, with the direct numerical evaluation
of this Feynman integral with the help of FIESTA [30] (as well
as with the numerical evaluation of each of the eleven MB
integrals separately using MB.m [29]). We have also
compared our results with those derived from MBsums.m

[21], an alternative Mathematica package available for the
analytic computation ofMB integrals with straight contours.
Although we got complete numerical agreement with the
expressions derived from the latter, our approach givesmore
compact results, confirming the concluding remarks of [10].
This is probably due to the fact that MBsums.m computes
the multifold MB with straight contours iteratively, one
integral after the other, whereas our package is based on a
noniterative technique based on multidimensional residue
theory. A deeper analysis is needed to better understand the
difference between the results obtained from these two
methods, which is left for future investigations.
We conclude this work by mentioning that, although our

MBConicHulls.wl package is, to our knowledge, the
unique tool that can treat the automatic analytic calculations
of multifold MB integrals with both straight and nonstraight
contours,1 which is of considerable interest in the theory of
MB integrals, as well as for the study of multivariable
hypergeometric functions, their transformation theory, and
for other domains where these integrals appear, there is still
one progress that has to be achieved in order that our
computational technique and package can be more widely
used for phenomenological applications in particle physics.
Indeed, in its present version MBConicHulls.wl can be
used only when the number of xi in Eq. (1) is equal to the
number of integration variables zi. It would thus be
important to find a way to apply the method in the case
where this number of xi is smaller than the number of folds
of the MB integrals (and when Barnes lemmas cannot be
straightforwardly applied to lower the number of folds),
because this is a common situation met when computing
Feynman diagrams in particle physics. This interesting
problem will have to be addressed in the future.

APPENDIX A: ϵ-EXPANSION OF THE
PENTAGON INTEGRAL

After ϵ-expansion up to order ϵ0, the 4-fold MB integral
in Eq. (12) can be written as

I4MB ¼ J0 þ
X5
i¼1

J1MB
i þ

X3
i¼1

J2MB
i þ

X2
i¼1

J3MB
i þ J4MB

ðA1Þ

whereStrategyAhas beenused throughMBresolve.m [19]
(MB.m [29] gives a similar result).

1Indeed, the MBsums.m package is restricted to the calculation
of MB integrals whose contours are straight lines parallel to the
imaginary axis in the complex planes of the integration variables
and, therefore, cannot be used to compute multifold MB integrals
with nonfixed values of the Pochhammer parameters (for which
one cannot have straight contours) or when these parameters are
fixed, but in such a way that the contours are nonstraight. Both of
these situations can be treated by MBConicHulls.wl.
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All the terms on the right-hand side, except J0, involveMB
integrals with straight contours which split the sets of poles of
some of the numerator gamma functions in different subsets
and thus for which the method presented in this paper is
necessary in order to apply the conic hull approach to compute
these integrals analytically.We emphasize that these integrals

are nontrivial as they belong to the resonant class [10]. A
detailed analysis can be found in the Pentagon.nb file.
However, for completeness, we present each of the terms in
the right-hand side of Eq. (A1) below along with the number
of conic hulls associated and number of series solutions
obtained from the extended conic hull approach.

(i) The integral-less first term in the right-hand side of Eq. (A1) is

J0¼u1−ϵ−1u2−ϵ−1u3ϵu4−ϵ−1Γð−2ϵ−1ÞΓð−ϵÞ2Γðϵþ1Þ3−u1−ϵu2−ϵ−1u3ϵu4−ϵ−1Γð1−ϵÞΓð−2ϵÞΓð−ϵÞΓðϵÞΓðϵþ1Þ2
þu1−ϵ−1u2ϵu3−ϵ−1u4−ϵ−1Γð−2ϵ−1ÞΓð−ϵÞ2Γðϵþ1Þ3þu1−ϵ−1u2ϵu3−ϵ−1u4ϵΓð−2ϵ−1ÞΓð−ϵÞ2Γðϵþ1Þ3
þu1ϵu2−ϵ−1u3−ϵ−1u4ϵΓð−2ϵ−1ÞΓð−ϵÞ2Γðϵþ1Þ3þu2−ϵ−1u3ϵu4−ϵ−1Γð−ϵ−1ÞΓð−ϵÞ2Γðϵþ1Þ2 ðA2Þ

(ii) 1-fold MB integrals:
There are five 1-fold integrals. These integrals contribute from the ϵ−1 term of the ϵ-expansion, therefore, we keep

their ϵ dependency explicit as we perform the ϵ-expansion on the series solutions derived using our approach.

J1MB
1 ¼ u2−ϵ−1u3ϵu4−ϵ−1Γð−ϵÞΓ2ðϵþ 1Þ

Z45þi∞

4
5
−i∞

dz1
2πi

u1z1Γð−z1ÞΓð1þ z1ÞΓð−ϵþ z1ÞΓð−1 − ϵ − z1Þ ðA3Þ

J1MB
2 ¼ u3−ϵ−1u4ϵu1−1Γð−ϵÞΓ2ðϵþ 1Þ

Z−4
5
þi∞

−4
5
−i∞

dz2
2πi

�
u2
u1

�
z2
Γð−z2ÞΓð1þ z2ÞΓð−ϵþ z2ÞΓð−1 − ϵ − z2Þ ðA4Þ

J1MB
3 ¼ u1−ϵ−1u4−1−ϵu2−1Γð−ϵÞΓ2ðϵþ 1Þ

Z−4
5
þi∞

−4
5
−i∞

dz3
2πi

�
u3
u2

�
z3
Γð−z3ÞΓð1þ z3ÞΓð−ϵþ z3ÞΓð−1 − ϵ − z3Þ ðA5Þ

J1MB
4 ¼ u2−ϵ−1u3−1Γð−ϵÞΓðϵþ 1Þ

Z−4
5
þi∞

−4
5
−i∞

dz4
2πi

�
u4
u3

�
z4
Γð−z4ÞΓð1þ z4ÞΓðþz4ÞΓð−1 − ϵ − z4Þ ðA6Þ

J1MB
5 ¼ u1−ϵ−1u2ϵu3−1−ϵΓð−ϵÞΓ2ðϵþ 1Þ

Z−4
5
þi∞

−4
5
−i∞

dz4
2πi

u4z4Γð−z4ÞΓð1þ z4ÞΓð−ϵþ z4ÞΓð−1 − ϵ − z4Þ ðA7Þ

J1MB
1 has 5 conic hulls while the other four integrals have 6 conic hulls each. All these integrals have 2 possible

series solutions that are analytic continuations of each other.
(iii) 2-fold MB integrals:

There are three 2-fold integrals. These integrals and all the remaining integrals contribute from the ϵ0 term of the
ϵ-expansion. Therefore, we set ϵ ¼ 0 at the integrand level before evaluating their series solutions.

J2MB
1 ¼ 1

u2u3

Z110þi∞

1
10
−i∞

dz1
2πi

Z− 1
15
þi∞

− 1
15
−i∞

dz4
2πi

u1z1
�
u4
u3

�
z4
Γð−z1ÞΓð−z4ÞΓðz1ÞΓðz1 þ 1ÞΓð−z4 − 1ÞΓðz4 þ 1ÞΓðz4 − z1Þ ðA8Þ

SUMIT BANIK and SAMUEL FRIOT PHYS. REV. D 107, 016007 (2023)

016007-8



has 26 associated conic hulls and 6 series solutions.

J2MB
2 ¼ 1

u1u3

Z−7
5
þi∞

−7
5
−i∞

dz2
2πi

Z−1
2
þi∞

−1
2
−i∞

dz4
2πi

�
u2
u1

�
z2
�
u4u1
u3

�
z4
Γð−z2ÞΓð−z4ÞΓð−z2−1ÞΓðz2−z4ÞΓðz2−z4þ1ÞΓðz4ÞΓ2ðz4þ1Þ

ðA9Þ

has 31 associated conic hulls and 5 series solutions.

J2MB
3 ¼ 1

u1u2

Z−1
3
þi∞

−1
3
−i∞

dz3
2πi

Z−2
5
þi∞

−2
5
−i∞

dz4
2πi

�
u3
u2

�
z3
u4z4Γð−z3ÞΓð−z4ÞΓð−z3−1ÞΓðz3þ1ÞΓð−z4−1ÞΓðz4þ1ÞΓðz3þz4þ1Þ

ðA10Þ

has 24 associated conic hulls and 5 series solutions.
(iv) 3-fold MB integrals:

There are two 3-fold integrals:

J3MB
1 ¼ 1

u22

Z−2
5
þi∞

−2
5
−i∞

dz1
2πi

Z−4
5
þi∞

−4
5
−i∞

dz3
2πi

Z−11
10
þi∞

−11
10
−i∞

dz4
2πi

u1z1
�
u3
u2

�
z3
�
u4
u2

�
z4
Γð−z1ÞΓð−z3ÞΓð−z4Þ

× Γðz1 þ 1ÞΓð−z4 − 1ÞΓðz1 − z3 − z4 − 1ÞΓðz4 − z1ÞΓðz3 þ z4 þ 1ÞΓðz3 þ z4 þ 2Þ ðA11Þ

J3MB
2 ¼ 1

u12

Z−3
5
þi∞

−3
5
−i∞

dz2
2πi

Z−11
10
þi∞

−11
10
−i∞

dz3
2πi

Z−1
2
þi∞

−1
2
−i∞

dz4
2πi

�
u2
u1

�
z2
�
u3
u1

�
z3
u4z4Γð−z2ÞΓð−z3ÞΓð−z4Þ

× Γð−z3 − 1ÞΓðz2 þ z3 þ 1ÞΓðz2 þ z3 þ 2ÞΓð−z2 − z3 − z4 − 2ÞΓðz4 þ 1ÞΓðz3 þ z4 þ 1Þ ðA12Þ

Both the above 3-fold MB integrals have 91 associated conic hulls and 20 associated series solutions.
(v) 4-fold MB integrals:

There is only one 4-fold integral

J4MB ¼
Z−1
5
þi∞

−1
5
−i∞

dz1
2πi

Z−1
2
þi∞

−1
2
−i∞

dz2
2πi

Z−2
5
þi∞

−2
5
−i∞

dz3
2πi

Z−2
5
þi∞

−2
5
−i∞

dz4
2πi

u1z1u2z2u3z3u4z4
Y4
i¼1

Γð−ziÞΓð1þ z12Þ

× Γð−2 − z123ÞΓð1þ z23ÞΓð−2 − z234ÞΓð1þ z34ÞΓð3þ z1234Þ ðA13Þ

with 245 associated conic hulls and 70 series solutions.

APPENDIX B: SERIES REPRESENTATION OF THE PENTAGON INTEGRAL

In this appendix, we present one series representation (denoted as S below) of the pentagon diagram obtained by applying
the conic hull method on the resonant 4-fold MB integral in Eq. (12) for general values of ϵ. 69 other series representations
can be easily derived from this MB integral using the MBConicHulls.wl package.
This series representation S is a sum of 14 terms

S ¼
X14
i¼1

Si ðB1Þ
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where

S1 ¼
X∞
ni¼0

Γðn1 þ n2 þ 1ÞΓðn2 þ n3 þ 1ÞΓðn3 þ n4 þ 1ÞΓð−ϵ − n1 − n2 − n3 − 2Þ

× Γð−ϵ − n2 − n3 − n4 − 2ÞΓðϵþ n1 þ n2 þ n3 þ n4 þ 3Þ ð−u1Þ
n1ð−u2Þn2ð−u3Þn3ð−u4Þn4

n1!n2!n3!n4!
ðB2Þ

S2 ¼ u−2−ϵ4

X∞
ni¼0

Γðn1 þ n2 þ 1ÞΓðn2 þ n3 þ 1ÞΓðn1 þ n4 þ 1ÞΓð−ϵ − n1 − n2 − n3 − 2Þ

× Γðϵþ n2 þ n3 − n4 þ 2ÞΓð−ϵ − n2 þ n4 − 1Þ ð−u1Þ
n1ð−u2=u4Þn2ð−u3=u4Þn3ð−u4Þn4

n1!n2!n3!n4!
ðB3Þ

S3 ¼ u−2−ϵ3

X
n1>n3þn4

Γðn1 þ n2 þ 1ÞΓðn1 − n3 − n4ÞΓðn3 þ n4 þ 1ÞΓðϵþ n1 þ n2 − n4 þ 2Þ

× Γð−ϵ − n1 þ n4 − 1ÞΓð−ϵ − n1 − n2 þ n3 þ n4 − 1Þ ð−u1=u3Þ
n1ð−u2=u3Þn2ð−u4Þn3ð−u3Þn4

n1!n2!n3!n4!
ðB4Þ

S4 ¼ −u−2−ϵ3

X
n1≤n3þn4

Γðn1 þ n2 þ 1ÞΓðn3 þ n4 þ 1ÞΓðϵþ n1 þ n2 − n4 þ 2ÞΓð−ϵ − n1 þ n4 − 1Þ
Γð1 − n1 þ n3 þ n4Þ

× Γð−ϵ − n1 − n2 þ n3 þ n4 − 1Þðψð−ϵ − n1 − n2 þ n3 þ n4 − 1Þ − ψðn3 þ 1Þ

þ ψðn3 þ n4 þ 1Þ − ψð−n1 þ n3 þ n4 þ 1Þ þ logðu4ÞÞ
ðu1=u3Þn1ð−u2=u3Þn2un34 un43

n1!n2!n3!n4!
ðB5Þ

S5 ¼ u−2−ϵ3

X
n3>n1þn4

Γðn1 þ n2 þ 1ÞΓð−n1 þ n3 − n4ÞΓðn1 þ n4 þ 1ÞΓðϵþ n1 þ n2 − n3 þ 2Þ

× Γð−ϵ − n1 þ n3 − 1ÞΓð−ϵ − n2 þ n4 − 1Þ ð−u1u4=u3Þ
n1ð−u2=u3Þn2ð−u3=u4Þn3ð−u4Þn4

n1!n2!n3!n4!
ðB6Þ

S6 ¼ u−1−ϵ2 u−14
X∞
ni¼0

Γðn2 þ n3 þ 1ÞΓðn1 þ n4 þ 1ÞΓðϵ − n3 − n4 þ 1ÞΓð−ϵþ n1 þ n3 þ n4Þ
Γð2þ n1 þ n2 þ n3 þ n4Þ

× Γð−ϵþ n2 þ n3 þ n4Þðψð−ϵþ n2 þ n3 þ n4Þ − ψðn2 þ 1Þ þ ψðn2 þ n3 þ 1Þ

− ψðn1 þ n2 þ n3 þ n4 þ 2Þ þ logðu3Þ − logðu4ÞÞ
un11 ðu3=u4Þn2ðu2=u4Þn3un42

n1!n2!n3!n4!
ðB7Þ

S7 ¼ u−1−ϵ2 u−13
X

n1>n2þn4

Γðn2 þ n3 þ 1ÞΓðn1 − n2 − n4ÞΓðn2 þ n4 þ 1ÞΓðϵþ n1 − n2 − n3 − n4 þ 1Þ

× Γð−ϵ − n1 þ n4 − 1ÞΓð−ϵþ n2 þ n3 þ n4Þ
ð−u1=u2Þn1ð−u2u4=u3Þn2ð−u2=u3Þn3ð−u2Þn4

n1!n2!n3!n4!
ðB8Þ

S8 ¼ −u−1−ϵ2 u−13
X

n1≤n2þn4

Γðn2 þ n3 þ 1ÞΓðn2 þ n4 þ 1ÞΓðϵþ n1 − n2 − n3 − n4 þ 1Þ
Γð1 − n1 þ n2 þ n4Þ

× Γð−ϵ − n1 þ n4 − 1ÞΓð−ϵþ n2 þ n3 þ n4Þð−ψðϵþ n1 − n2 − n3 − n4 þ 1Þ
þ ψð−ϵþ n2 þ n3 þ n4Þ − ψðn2 þ 1Þ þ ψðn2 þ n3 þ 1Þ þ ψðn2 þ n4 þ 1Þ

− ψð−n1 þ n2 þ n4 þ 1Þ þ logðu2Þ − logðu3Þ þ logðu4ÞÞ
ðu1=u2Þn1ðu2u4=u3Þn2ð−u2=u3Þn3un42

n1!n2!n3!n4!
ðB9Þ
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S9 ¼ u−1−ϵ2 u−13
X

n3>n1þn4
1þn1þn2þn4>n3

Γð−n1 þ n3 − n4ÞΓðn1 þ n4 þ 1ÞΓðn1 þ n2 − n3 þ n4 þ 1ÞΓð−ϵ − n1 þ n3 − 1Þ

× Γðϵ − n2 − n4 þ 1ÞΓð−ϵþ n1 þ n2 þ n4Þ
ð−u1u4=u3Þn1ð−u2=u3Þn2ð−u3=u4Þn3ð−u2u4=u3Þn4

n1!n2!n3!n4!
ðB10Þ

S10 ¼ u−1−ϵ1 u−13
X

n2>n1þn3

Γð−n1 þ n2 − n3ÞΓðn1 þ n3 þ 1ÞΓðn2 þ n4 þ 1ÞΓð−ϵ − n2 þ n3 − 1Þ

× Γðϵ − n3 − n4 þ 1ÞΓð−ϵþ n1 þ n3 þ n4Þ
ð−u2=u3Þn1ð−u4Þn2ð−u1=u3Þn3ð−u1Þn4

n1!n2!n3!n4!
ðB11Þ

S11 ¼ −u−1−ϵ1 u−13
X

n2≤n1þn3

Γðn1 þ n3 þ 1ÞΓðn2 þ n4 þ 1ÞΓð−ϵ − n2 þ n3 − 1Þ
Γð1þ n1 − n2 þ n3Þ

× Γðϵ − n3 − n4 þ 1ÞΓð−ϵþ n1 þ n3 þ n4Þð−ψð−ϵþ n1 þ n3 þ n4Þ þ ψðn1 þ 1Þ

− ψðn1 þ n3 þ 1Þ þ ψðn1 − n2 þ n3 þ 1Þ − logðu2Þ þ logðu3ÞÞ
ðu2=u3Þn1un24 ðu1=u3Þn3ð−u1Þn4

n1!n2!n3!n4!
ðB12Þ

S12 ¼ ðu1u4Þ−1−ϵu−13
X∞
ni¼0

Γðn1 þ n2 þ 1ÞΓðϵ − n2 − n3 þ 1ÞΓð−ϵþ n1 þ n2 þ n3ÞΓðϵ − n2 − n4 þ 1Þ

× Γð−ϵ − n1 þ n4 − 1ÞΓð−ϵþ n2 þ n3 þ n4Þ
ð−u2=u3Þn1ð−u1u4=u3Þn2ð−u1Þn3ð−u4Þn4

n1!n2!n3!n4!
ðB13Þ

S13 ¼ u−1−ϵ1 u−13
X

n2>n1þn3

Γð−n1 þ n2 − n3ÞΓðn1 þ n3 þ 1ÞΓðn1 þ n4 þ 1ÞΓð−ϵ − n1 þ n2 − 1Þ

× Γðϵ − n2 − n4 þ 1ÞΓð−ϵþ n1 þ n3 þ n4Þ
ð−u2u4=u3Þn1ð−u1=u2Þn2ð−u2=u3Þn3ð−u1Þn4

n1!n2!n3!n4!
ðB14Þ

S14 ¼ ðu1u2u4Þ−1−ϵuϵ3
X∞
ni¼0

Γðϵ − n1 − n3 þ 1ÞΓðϵ − n1 − n4 þ 1ÞΓðϵ − n2 − n4 þ 1Þ

× Γð−ϵþ n1 þ n2 þ n4ÞΓð−ϵþ n1 þ n3 þ n4ÞΓð−2ϵþ n1 þ n2 þ n3 þ n4 − 1Þ

×
ð−u1u4=u3Þn1ð−u2=u3Þn2ð−u1Þn3ð−u2u4=u3Þn4

n1!n2!n3!n4!
ðB15Þ
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