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Abstract: Electrocatalytic CO2 reduction is regarded as a green and promising technology because
it can convert carbon dioxide into value-added fuel or chemicals in a flexible and sustainable way.
This research aimed to comprehensively analyze the research hotspots and trends in the field of
CO2 electroreduction from 2005 to 2022 using bibliometric methods based on the core database
of Web of Science. The results showed that 4546 papers on CO2 electroreduction were retrieved
from 2005 to 2022, with a clear increasing trend. The research direction was diversified, involving
multiple disciplines, and it is a comprehensive research field. ACS Catalysis is the journal with the
largest number of articles. China is the country with the largest number of documents and has made
significant contributions to the development and progress of this field. Copper-based catalysts are
still the research focus in recent years. It is of great practical significance to develop copper-based
catalysts with high efficiency, low cost, high stability, and high selectivity for the preparation of
C1 products.

Keywords: CO2 electroreduction; scientometric review; research focus; copper based catalysts;
selectivity; C1

1. Introduction

Demand and supply mismatch in the energy sector and global warming are two major
challenges faced by the world. Most of the energy consumed by human society is derived
from non-renewable fossil fuels [1,2], and carbon dioxide generated by the continuous
burning of fossil fuels is the main cause of global warming [3,4], which is a threat to human
survival and development that needs to be addressed immediately. Capturing carbon
dioxide emissions (carbon capture) is suitable to alleviate the environmental problems
faster than to minimize the emissions (minimizing the use of fossil fuels) [5]. One way
using of carbon capture is converting carbon dioxide into value-added fuels or chemicals;
converting CO2 not only captures excessive CO2 emissions, but it also addresses the energy
crisis to a certain extent [6]. CO2 conversion into value-added chemicals/fuels can be
achieved by various methods such as electrocatalysis [7,8], photocatalysis [9], photoelectric
catalysis [10,11], and biocatalysis [12,13]. Among these, electrocatalysis has attracted exten-
sive attention due to its unique advantages [14–16], including (1) mild reaction conditions
(ambient temperature and pressure); (2) flexible products adjusted by redox potential,
reaction temperature, electrolytes, and other parameters; (3) low yields of by-products
by optimizing the electrocatalyst; (4) utilization of intermittent renewable energy sources
(such as solar energy, wind energy, etc.), which is clean and energy saving.
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A wide range of valuable products can be achieved through the transfer of two, four,
six, eight, or twelve electrons in the electrocatalytic CO2 reduction reaction (eCO2RR)
process [4]. The most common products are carbon monoxide (CO), methane (CH4), formic
acid (HCOOH), methanol (CH3OH), ethylene (C2H4), ethanol (C2H5OH), etc. [17–21]. Nev-
ertheless, the carbon dioxide molecule is highly chemically stable due to its highly oxidized
nature. In addition, the reduction process of CO2 is challenged by the competitive hydrogen
evolution reaction (HER) [22], it poses high thermodynamic and kinetic barriers [23], and it
has limited selectivity towards specific products [24]. Significant efforts have been devoted
to solve these problems, making great contributions to the development and progress of
this process.

Comprehensive review articles [25] are available in the literature, indicating the im-
portance of this research. Nevertheless, no review from the perspective of bibliometrics
has been reported. Bibliometrics can identify the annual development trend of the ana-
lyzed field and the most influential contributors and journals, and it can analyze research
hotspots and development trends in this field. This information can help readers to better
understand the current situation and determine the future research direction from the
results of bibliometric analysis and is therefore urgently needed.

In this work, the research status of eCO2RR from 2005 to 2022 was analyzed and
discussed based on the core database of Web of Science, involving 4546 articles in terms of
literature type, annual trend, discipline category, main institutions, and main researchers.
The research focus and future development trend are also discussed, providing valuable
insights for future research in this field.

2. Methods
2.1. Data Collection and Processing

The data, i.e., information, on the articles published in the research area of this work,
which is eCO2RR, were obtained from the core database of Web of Science. Web of Science
core database is a large comprehensive, multidisciplinary, core journal citation index
database, which contains the most relevant, important, and influential academic journals
and international conferences in its records. On 28 December 2022, the relevant literature
in the field of CO2 electroreduction from 2005 to 2022 was searched in the Web of Science
core database. In order to obtain complete and effective data, this paper used the following
search conditions for literature retrieval.

TOPIC: “CO2 electroreduction”, OR TOPIC: “Electroreduction of carbon dioxide”, OR
TOPIC: “CO2 electrochemical reduction”, OR TOPIC: “Electrochemical reduction of carbon
dioxide”, OR TOPIC: “Electrocatalytic reduction of CO2”, OR TOPIC: “Electrocatalytic
reduction of carbon dioxide”, OR TOPIC: “CO2RR”, OR TOPIC: “eCO2RR”.

Timespan: 2005 to 2022.
The articles that resulted from the search were considered relevant for the work

only if the search term appeared in the title, abstract, or keywords of the publication.
The geographical distribution of the document was obtained from the affiliation details
provided by the authors in the article. The articles or papers were grouped into single
country publications (SP) and international cooperative publications (CP).

Seven types of information were retrieved for further analysis, as follows:

i. Types of literature and publishing languages;
ii. Annual trend of published literature during 2005–2022;
iii. Subject categories and journals;
iv. Author information;
v. Geographical distribution;
vi. Cited frequency;
vii. Research hotspots and future trends.
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2.2. Data Analysis

This paper analyzed the annual publication volume distribution, subject category and
journal distribution, author publication volume distribution, geographical distribution,
topic category distribution, keywords, and research hotspots through the retrieval result
analysis of the core database of Web of Science and the visualization function of VOS viewer
to understand the future development trend more clearly and to provide reference for
research in the field of eCO2RR.

3. Results and Discussion
3.1. Types of Literature and Publishing Languages

The literature retrieved from the Web of Science core database were divided into
12 categories. The literature was mainly in the form of research papers, accounting for
83.7% of the total number of published papers, followed by review papers, accounting
for 11.8% of the total number of published papers. The third is online publication (3.7%),
then conference abstracts (2.3%), and conference proceeding papers (1.3%). Other types of
literature were below 1%. The study showed that eCO2RR is mainly disseminated through
scientific papers, both as articles and reviews.

In terms of the language of publication, five languages were used, and 99.1% of
the publications were in English, followed by Chinese, accounting for 0.9% of the total
publications. The number of articles in other languages was less than 0.1%, and only a few
articles have been published.

3.2. Annual Trend of Published Literature during 2005–2022

From 2005 to 2022, 4546 articles were published in the core database of Web of Science.
Figure 1 shows the number of published literature per year. It can be seen from the figure
that the number of publications increased exponentially from 2005 to 2022, and the number
of literature in this field changed only slightly from 2005 to 2016. Nevertheless, since 2016,
publications on eCO2RR increased rapidly. From 2016 to 2018, the average annual growth
rate was 48.4%. Especially since 2018, the number of publications increased significantly.
The average annual growth rate from 2018 to 2021 increased to 50.4%, and by 2021, the
number of publications reached 1108, which fully shows that the research on eCO2RR has
attracted more and more attention.
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3.3. Subject Categories and Journals

According to statistics, related publications in the field of eCO2RR can be divided
into 55 subject categories. As shown in Table 1, most of the published papers belonged
to Chemistry Physical, accounting for 42.6% of the total number of published papers. In
addition, Chemistry Multidisciplinary accounted for 35.8% of the total number. Following
these, there were Material Science Multidisciplinary (33.1%), Nanoscience Nanotechnology
(18.6%), Energy Fuels (15.2%), Engineering Chemical (14.0%), Physics Applied (12.0%),
Electrochemistry (10.9%), Physics Condensed Matter (7.6%), and Green Sustainable Science
Technology (5.0%). This shows that most of the articles involve multiple disciplines such as
chemistry, materials, energy, and science, which is a comprehensive research field.

Table 1. Top ten subject categories.

Subject Categories Publications Percentage (%)

Chemistry Physical 1938 42.6%
Chemistry Multidisciplinary 1627 35.8%

Materials Science Multidisciplinary 1505 33.1%
Nanoscience Nanotechnology 844 18.6%

Energy Fuels 690 15.2%
Engineering Chemical 637 14.0%

Physics Applied 544 12.0%
Electrochemistry 496 10.9%

Physics Condensed Matter 346 7.6%
Green Sustainable Science Technology 229 5.0%

The results of the journal distribution analysis showed that these 4546 articles were
published in 422 different journals. Table 2 lists the top ten journals, among which ACS
Catalysis is the most prolific journal, accounting for 5.0% of total publications; the second
most prolific journal is Angewandte Chemie International Edition (4.4%), then Journal of
Materials Chemistry A (4.0%), and Journal of the American Chemical Society (2.7%) followed.
As can be seen, the most published journals are also closely related to chemistry and
materials, etc.

Table 2. Top ten most published journals during 2005–2022.

Journal IF (2021) TP %

ACS Catalysis 13.700 227 5.0%
Angewandte Chemie International Edition 16.823 200 4.4%

Journal of Materials Chemistry A 14.511 181 4.0%
Journal of the American Chemical Society 16.383 122 2.7%

Journal of Physical Chemistry C 4.177 118 2.6%
Applied Catalysis B Environmental 24.319 111 2.4%
ACS Applied Materials Interfaces 10.383 108 2.4%

Abstracts of Papers of the American
Chemical Society \ 105 2.3%

Journal of CO2 Utilization 8.321 97 2.1%
Electrochimica Acta 7.336 93 2.0%

IF is the impact factor; TP is the total number of publications; % is the proportion of publications.

3.4. Author Information

According to the results of this analysis, 11,122 authors were involved in the field
of eCO2RR over the past 16 years. Table 3 lists the top ten authors who published the
most in the field. According to their productivity rankings, all listed scholars had at least
30 publications. Han, Buxing of the Institute of Chemistry, CAS has published the largest
number of papers in the field of eCO2RR, with 53 articles so far, and he also has a high
H-index of 90, which indicates that he has great influence in the field and has made a
great contribution to the development of eCO2RR. He was followed by Roldan Cuenya,
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Beatriz, who published 45 articles with an H-index of 64, followed by Sargent, Edward H.
(44, H-index of 152), Wang, Guoxiong (43, H-index of 28), Sinton, David (42, H-index of
70), Koper, Marc T.M. (35, H-index 105), Bao, Xin (35, H-index 68), Dinh, Cao Thang (35,
H-index 56), Broekmann, Peter (32, H-index 28), and Irabien, Angel (30, H-index 55).

Table 3. Top ten most published authors during 2005–2022.

Authors Affiliations Publications Percentage (%) H-Index

Han, Buxing Institute of Chemistry, CAS 53 1.2% 90
Roldan Cuenya, Beatriz Fritz Haber Institute of the Max Planck Society 45 1.0% 64

Sargent, Edward H. University of Toronto 44 1.0% 152
Wang, Guoxiong State Key Laboratory of Catalysis, CAS 43 0.9% 28

Sinton, David University of Toronto 42 0.9% 70
Koper, Marc T. M. Leiden University 35 0.8% 105

Bao, Xin State Key Laboratory of Catalysis, CAS 35 0.8% 68
Dinh, Cao Thang Queen′s University 35 0.8% 56
Broekmann, Peter University of Bern 32 0.7% 28

Irabien, Angel Universidad de Cantabria 30 0.7% 55

3.5. Geographical Distribution

In order to determine the cooperative relationships among the major countries or
regions involved in eCO2RR research, the country/region distribution of literature authors
was analyzed. Authors from 77 countries/regions have published papers on eCO2RR.
China had the largest number of publications, with 2561, accounting for 56.3% of the total,
followed by the United States (20.4%), and Canada (5.4%), indicating that China plays
an important role in eCO2RR research to a large extent. Figure 2 shows the cooperative
relationship profile of the author’s country or region. As can be seen from Figure 2, China
and the United States have the closest international cooperation and are the two countries
most closely connected in the field of eCO2RR research. In addition, China also has closer
international cooperation with Germany, Canada, and other countries.
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3.6. Cited Frequency

The citation frequency of the paper reflects its importance in this field. In order to
determine the most influential literature in the field of eCO2RR, the top ten literature with
the number of citations were sorted out, as shown in Table 4. Of these articles, three were
cited more than 1500 times, and ten were cited more than 1000 times each. China had
three articles, followed by the United States (two), Denmark (one), Germany (one), France
(one), Netherlands (one) and Canada (one). It can be seen that the literature published by
American and Chinese researchers has been cited relatively frequently. The literature with
the most citation frequency was “How Copper Catalyzes the Electroreduction of Carbon
Dioxide into Hydrocarbon Fuels”, the paper by Peterson, AA et al., which described how
copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. The second
most cited document was “A Review of Catalysts for the Electroreduction of Carbon
Dioxide to Produce Low-Carbon Fuels”, written by Qiao, J.L. et al. The research progress
and challenges of catalysts for producing low carbon fuel by electroreduction of carbon
dioxide were reviewed. These results indicate the importance of catalysts in the field of
eCO2RR.

Table 4. Top ten most cited articles.

Authors Title Affiliations Total Citation References

Peterson, A.A. et al.
“How Copper Catalyzes the

Electroreduction of Carbon Dioxide into
Hydrocarbon Fuels”

Technical University
of Denmark 1969 [26]

Qiao, J.L. et al.
“A Review of Catalysts for the

Electroreduction of Carbon Dioxide to
Produce Low-Carbon Fuels”

Donghua University 1925 [14]

Kuhl, K.P. et al.
“New Insights into the Electrochemical

Reduction of Carbon Dioxide on Metallic
Copper Surfaces”

Stanford University 1834 [27]

Gao, S. et al.
“Partially Oxidized Atomic Cobalt Layers

for Carbon Dioxide Electroreduction to
Liquid Fuel”

University of Science and
Technology of China 1246 [28]

Kondratenko,
E.V. et al.

“Status and Perspectives of CO2
Conversion into Fuels and Chemicals by

Catalytic, Photocatalytic and
Electrocatalytic Processes”

Leibniz Institut fur Katalyse
e.V. an der Universitat

Rostock (LIKAT)
1200 [29]

Costentin, C. et al. “Catalysis of the Electrochemical
Reduction of Carbon Dioxide”

Centre National de la
Recherche

Scientifique (CNRS)
1171 [30]

Kortlever, R. et al.
“Catalysts and Reaction Pathways for the

Electrochemical Reduction of
Carbon Dioxide”

Leiden University 1154 [31]

Chen, Y.J. et al.
“Single-Atom Catalysts: Synthetic

Strategies and Electrochemical
Applications”

Tsinghua University 1104 [32]

Dinh, C.T. et al.
“CO2 Electroreduction to Ethylene via

Hydroxide-Mediated Copper Catalysis at
an Abrupt Interface”

Institute of Chemical Process
and Environmental
Technology, Canada

1076 [33]

Li, C.W. et al.
“Electroreduction of Carbon Monoxide to

Liquid Fuel on Oxide-Derived
Nanocrystalline Copper”

Stanford University 1057 [34]

3.7. Research Hotspots and Future Trends

According to the keyword statistics from 2019 to 2022, after merging similar key-
words and deleting keywords unrelated to eCO2RR, 7003 keywords were retrieved, and
35 keywords appeared more than 100 times, among which the most common keyword
was “CO2 electroreduction”, which appeared 2861 times. “Electrocatalysts” appeared next
with 1720 times, followed by “efficient” with 595 times, and “Cu” with 535 times, with
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15 keywords appearing 200 times or more. The results showed that research in the field of
eCO2RR is mainly focused on the study of electrochemical catalysts.

VOSviewer software was used to cluster the keywords and generate a cluster view of
keyword co-occurrence (as shown in Figure 3) to obtain the research hotspots in the field of
eCO2RR in recent years. There were five clusters in the keyword clustering in Figure 3, and
Table 5 shows the occurrences and proportion of cluster keywords.

Energies 2023, 16, x FOR PEER REVIEW 7 of 22 
 

 

35 keywords appeared more than 100 times, among which the most common keyword 
was “CO2 electroreduction”, which appeared 2861 times. “Electrocatalysts” appeared next 
with 1720 times, followed by “efficient” with 595 times, and “Cu” with 535 times, with 15 
keywords appearing 200 times or more. The results showed that research in the field of 
eCO2RR is mainly focused on the study of electrochemical catalysts. 

VOSviewer software was used to cluster the keywords and generate a cluster view 
of keyword co-occurrence (as shown in Figure 3) to obtain the research hotspots in the 
field of eCO2RR in recent years. There were five clusters in the keyword clustering in Fig-
ure 3, and Table 5 shows the occurrences and proportion of cluster keywords. 

  
Figure 3. Keyword clustering view of eCO2RR from 2019 to 2022. 

Table 5. The occurrences and proportion of cluster keywords. 

Cluster Occurrences Percentage 
1 (red) 7195 61.5% 
2 (blue) 2164 18.5% 

3 (green)  1114 9.5% 
4 (yellow) 1094 9.3% 
5 (purple) 136 1.2% 

3.7.1. Cluster 1 (Red): Classification of Catalysts and Product Types 
In addition to the general direction of “CO2 electroreduction”, electrocatalysts ap-

peared the most in this cluster, linking 34 other nodes, which were closely related to the 
other clusters. Electrochemical catalysts play a very important role in the process of 
eCO2RR. There are many kinds of catalysts, and different types of catalysts have different 
selectivity for the products of eCO2RR. 

As shown in Figure 4, catalysts can be divided into two main categories, namely me-
tallic catalysts and non-metallic catalysts. Metal catalysts include precious metal-based 

Figure 3. Keyword clustering view of eCO2RR from 2019 to 2022.

Table 5. The occurrences and proportion of cluster keywords.

Cluster Occurrences Percentage

1 (red) 7195 61.5%
2 (blue) 2164 18.5%

3 (green) 1114 9.5%
4 (yellow) 1094 9.3%
5 (purple) 136 1.2%

3.7.1. Cluster 1 (Red): Classification of Catalysts and Product Types

In addition to the general direction of “CO2 electroreduction”, electrocatalysts ap-
peared the most in this cluster, linking 34 other nodes, which were closely related to
the other clusters. Electrochemical catalysts play a very important role in the process of
eCO2RR. There are many kinds of catalysts, and different types of catalysts have different
selectivity for the products of eCO2RR.

As shown in Figure 4, catalysts can be divided into two main categories, namely
metallic catalysts and non-metallic catalysts. Metal catalysts include precious metal-based
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catalysts and non-precious metal-based catalysts. Non-metallic catalysts are mainly non-
metallic carbon material catalysts.
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(1) Metal catalyst

Precious/non-precious metal catalysts are the most used catalysts. Commonly used
precious metal-based catalysts mainly include gold (Au), silver (Ag), platinum (Pt), pal-
ladium (Pd), etc. Most of the precious metal-based catalysts are involved in the electro-
catalytic reduction of CO2 to CO, showing good conductivity and excellent CO selectiv-
ity [35,36].

Gold is one of the most active and selective catalysts for eCO2RR to produce CO.
However, in early studies, the cost of traditional precious metal materials hindered its
large-scale application, and its catalytic activity and reaction rate were low, which did not
meet the practical needs. At present, most of the traditional precious metal materials are
prepared into polymetallic nanoparticles or nanocomposites to reduce production costs
and improve catalytic performance [37]. For example, Liu et al. [38] made gold (Au) into
nanoneedles for eCO2RR to produce CO, and its Faraday efficiency reached more than 95%
at a low potential of −0.35 V (Figure 5a).

Compared to other precious metals, the cost of silver is relatively low, and silver also
has outstanding selectivity for CO generation, which makes silver a suitable catalyst to
achieve large-scale production. Thus far, significant improvements have been made in
the preparation of silver catalysts with high selectivity and activity [39–41]. As shown in
Figure 5b, Lu et al. [42] prepared a nanoporous Ag with a highly curved surface by the
two-step dealloying method for eCO2RR to produce CO. Compared to polycrystalline Ag,
the Faradaic efficiency (FE) of CO can reach 92% when the overpotential of nanoporous Ag
is less than 0.5 V, which is 3000 times higher than that of polycrystalline Ag.
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Palladium-based electrocatalysts are also considered one of the materials that can be
used for CO electrocatalysis from CO2. Similarly, due to the poor catalytic activity of poly-
crystalline Pd, nanostructured Pd was made to improve the catalytic activity and faradaic
yield. Nanoparticles of different sizes may correspond to different catalytic activities and
product selectivity. For example, Gao et al. [43] prepared Pd nanoparticles of different sizes
(2.4–10.3 nm) for CO2 reduction (Figure 5c) and found that, at the potential of −0.89 V
(vs. RHE), the Faradaic efficiency of producing CO from 10.3 nm Pd nanoparticles was only
5.8%, while the Faradaic efficiency of 3.7 nm PD nanoparticles was 91.2%, and the current
density increased by 18.4 times.

Common non-precious metal-based catalysts can also be divided into transition metal-
based catalysts and single-atomic dispersed catalysts. Although some of the above precious
metal-based catalysts show good catalytic performance, due to the high cost of precious
metals, resource shortages, and other characteristics, they cannot be used on a large scale;
thus, some non-precious metal catalysts are also widely used in the field of eCO2RR.

Transition metals have also been used as catalysts for eCO2RR due to their unique
electronic structure. Different transition metals and their oxides catalyze CO2 to obtain
different reduction products. For example, zinc (Zn) and its oxides can catalyze CO2
reduction to CO. Metal indium (In), tin (Sn), bismuth (Bi), and their oxides mainly catalyze
the reduction of CO2 to formic acid. Copper metal (Cu) and its oxides mostly catalyze
the reduction of CO2 to methane (CH4), ethanol (C2H5OH), methanol (CH4O), and other
hydrocarbon or polycarbon products [44]. For example, Feng et al. [45] prepared a porous
zinc nanoparticle catalyst (P-Zn) and found that the Faradaic efficiency of CO production
could reach 98.1% when the electric potential was −0.95 V. Reske et al. [46] prepared
copper nanoparticles of different sizes, and the results showed that, with the decrease of
nanoparticle size, the selectivity of H2 and CO increased, while the selectivity of CH4 and
C2H4 decreased. This may be because when the size of Cu nanoparticles decreases, the
proportion of unsaturated coordination sites on the surface increases, and these surface
atoms with low coordination numbers have a stronger binding energy, which increases the
selectivity of CO and H2, while it decreases the selectivity of hydrocarbons.

In metal-based catalysts, metal size, morphology, roughness, and so on affect the
catalytic activity of the catalyst. For example, iron, cobalt, nickel, palladium, and other
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metals have good electrocatalytic HER; thus, they are not suitable for eCO2RR. A single
atomic dispersed catalyst is a kind of heterogeneous catalyst with a high utilization rate
that disperses atomic metal catalysts on the surface of support. Single-atomic dispersed
catalysts are stable, have a high utilization rate of active center atoms and a low coordination
number of active center atoms, and they have the advantages of both homogeneous and
heterogeneous catalysts. Most of them reduce CO2 to CO electrocatalytically. At present,
there are many carbon materials doped with nitrogen atoms as carriers, and single-atom
transition metals are embedded in the carbon matrix to produce metal-nitrogen active
site-doped carbon materials [47,48]. For example, Ju et al. [49] used a series of transition
metal atoms to coordinate with nitrogen atoms to form a metal-nitrogen atom coordination
structure and to stabilize it on the surface of carbon materials. The M-N-C (M = Mn, Fe, CO,
Ni, Cu) catalyst was prepared. The results showed that the M-N-C material can catalyze
the reduction of CO2 to CO, and its catalytic activity is related to the type of transition
metal atoms, following the Ni > Fe > Mn > Cu > Co.

Due to their multiple active sites and high porosity [50], metal-organic frameworks
(MOFs) in non-noble metal based catalysts are also the research focus in recent years.
MOFs are crystalline porous materials with a periodic network structure formed by the
self-assembly of transition metal ions and organic ligands, such as metal porphyrins and
phthalocyanines, which show high eCO2RR potential [51]. For example, Xin et al. [52]
implanted metallocene (MCp2) with different metal centers into the pores of MOF-545
based on metal porphyrins. MOF-545 has high porosity, large pore diameter, and good
thermal stability, and it can interact with MCp2. The obtained composite material had
higher CO2 adsorption capacity, excellent electron transfer performance, and excellent
electrocatalytic activity, which greatly improved the Faraday efficiency of electrocatalytic
eCO2RR active CO by 97%. Xin et al. [50] inserted an electron-conducting polypyrrole
(PPy) molecule into the channels of MOFs through in situ low-temperature polymerization
and synthesized a series of PPy@MOF-545-M hybrid materials, which exhibit excellent
electrocatalytic properties. Among them, PPy@MOF-545-Co increased the selectivity of
CO2 to CO to 98%, almost twice that of MOF-545-Co. In addition, the catalyst can maintain
crystallinity and performance within 10 h.

(2) Non-metallic catalysts

Although a large number of metal catalysts are used in the research of eCO2RR, and
some achievements have been made, there are still obvious shortcomings of these catalysts,
such as high cost and serious HER, in order to achieve large-scale application. Therefore,
more and more attention has been paid to non-metallic catalysts, among which metal-free
carbon catalysts have become one of the common electrocatalyst materials for eCO2RR due
to their wide sources, low cost, good conductivity, and high stability. Metal-free carbon
material catalysts mostly reduce CO2 to CO, CH4, etc. Since Gong et al. [53] proposed that
doping heteroatom modification in carbon materials can significantly improve the catalytic
activity of carbon materials for electroreduction of oxygen, more and more researchers
chose the doping heteroatom modification in carbon materials to improve the catalytic
activity of eCO2RR in CO production [54,55]. For example, Sharma et al. [56] doped
nitrogen into carbon nanotubes. Compared to the original carbon nanotubes, this material
significantly reduced the overpotential of carbon nanotubes (−0.18V) and increased the
Faradaic efficiency of CO production to 80%, showing good catalytic performance.

3.7.2. Cluster 2 (Blue): Copper-Based Catalysts and Methods for Improving Product Selectivity

“Cu” is the largest node in this cluster, which indicates that the catalysts in recent
years are still mainly copper-based catalysts. The second is “selectivity”, probably because
most researchers are still concerned about selectivity.

Copper-based catalysts are widely used in the field of eCO2RR due to their good
catalytic effect and low cost. In addition, a copper-based catalyst is the only catalyst
that can reduce CO2 to CO, CH4, HCOOH, C2H4, and other hydrocarbons and multi
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carbon products. When different copper based catalysts are used for eCO2RR reaction, the
distribution of reduction products is different.

Thus far, most studies on cu-based catalysts have focused on the production of vari-
ous C2 products, such as ethylene, ethanol, and n-propanol, while C1 products (such as
methane) are difficult to obtain directly, and the product selectivity remains low. Copper-
based catalysts are still the focus of research because of their unique ability to selectively
reduce carbon dioxide to formic acid, CO, methane, and other hydrocarbons [7]. This
cluster mainly introduces the selectivity of copper-based catalysts and some common target
products (such as ethylene, monoxide, and other hydrocarbons) in recent years.

In this paper, some methods to improve product selectivity are summarized, mainly
from the aspects of size, composition, morphology, and structure of copper-based catalysts.

Changes in catalyst size cause changes in catalyst activity, product selectivity, and
catalyst stability. For example, Grosse et al. [57] synthesized a copper cube with adjustable
size on carbon-based support by a simple electrochemical method and found that the
morphology of the Cu cube changed dramatically. More and more researchers chose the
doping heteroatom modification in carbon materials to improve the catalytic activity of
eCO2RR in CO production. The selectivity of methane in the product is much higher than
that of ethylene, which can be used to produce C1 product.

Alloying to design the composition of catalysts is also a way to improve product
selectivity. For example, Nellaiappan et al. [58] used nanocrystalline high-entropy alloy
(HEA: AuAgPtPdCu) to convert CO2 into gaseous hydrocarbons, which showed limited
selectivity due to the large amount of hydrogen produced by copper-based materials.
Additionally, nanocrystalline high-entropy alloys still has mainly gas products CO, CH4,
C2H4, and H2, similar to the copper-based catalyst electricity. Although there are many
elements in the catalyst, the catalytic effect is only produced by copper, and other elements
only produce a synergistic effect; thus, the alloying can not only improve the product
selectivity, but it can also significantly enhance the catalytic activity.

The change of copper electrode morphology is also very sensitive to the activity of the
eCO2RR catalyst and the selectivity of products [59]. In the H-type electrolytic cell, single
crystal copper was used as a catalyst, and it was found that the surface of Cu (100) had
higher C2H4 selectivity, while the surface of Cu (111) had higher CH4 selectivity [60]. The
study of Gregorio et al. [61] also showed that, in 1 M KOH, the ethylene selectivity of cubic
copper was up to 57%, and the corresponding mass activity was 700 mA/mg. The methane
selectivity of octahedral copper was up to 51%, and the corresponding mass activity was
1.45 A/mg.

Changes in catalyst structure (such as surface modification, doping of metals [62–64],
metal-organic skeleton regulation [65,66], crystal structure change [67], load [68,69], etc.)
also lead to changes in product selectivity. For example, Xie et al. [7] used amino acids to
modify the surface of copper to selectively and electrochemically reduce carbon dioxide
to hydrocarbons. The results showed that, regardless of the shape of the copper electrode,
these modified copper electrodes significantly improved the generation of hydrocarbons.

Ethylene, monoxide, and other hydrocarbons are the most common reduction products
used in recent years. Lin et al. [70] proposed a simple, economic, and efficient method of
ethylene, which was a kind of by carbon nitride (CN)-coated copper oxide mixed compound
(CuxO/CN) heterostructure composed of catalysts, and it had a heterogeneous catalyst
structure interaction between metal and carbon nitride. The modification of the catalyst can
be made at the corner of the Cu and CN membrane enrichment of CO2. Because the CN
membrane can increase the charge density of the CuxO active center, the CO2 adsorption
capacity can be enhanced, and then the Faraday efficiency of C2H4 can be improved.

Ma et al. [71] prepared a Cu In bimetallic catalyst by the pyrolysis of a Cu In metal
organic framework (MOF) material. The structure of the Cu In bimetallic catalyst shows
a high CO selectivity of 85% at −0.75 V, which is nearly 7.9 times higher than that of the
In/C catalyst.
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Zhu et al. [72] proposed a metal-organic skeleton catalyst with a tri-pyramid Cu(I)N3 ac-
tive center, which can generate up to 92% FE of methane. This is the result of strong interplay
between Cu (I) and intermediates and the synergistic effect of organic ligands. It plays an
important role in stabilizing intermediates and inhibiting the hydrogen evolution reaction.

3.7.3. Cluster 3 (Green) and Cluster 4 (Yellow): Research Status of Preparation of C1 Product
with a Copper-Based Catalyst

Cluster 3 (green) and cluster 4 (yellow) mainly involve C1 products such as formate
(376 occurrences), formic-acid(205 occurrences), and methanol (143 occurrences).

Formate is commonly used as a power stable liquid fuel in fuel cells [73,74], and
it is also a key intermediate and important starting material in the chemical synthesis
industry [75]. The formation of formate from eCO2RR is also significant. Liu et al. [76]
designed and constructed BiCu bimetallic film on copper foam (BiCu/CF). The synthesized
copper foam stabilized the *OCHO intermediate and reduced the thermodynamic barrier
of eCO2RR. At the same time, electrons transferred from the catalyst position to the reaction
species also accelerated, and the yield of formic acid increased to 85.6%. It produced a record
current density of 856 mA cm−2, while having remarkable stability that outperformed
state-of-the-art bismuth-based catalysts.

Methanol as an alternative fuel is an ideal energy carrier and is one of the most
important commercial chemicals; however, methanol is currently mainly produced by
fossil syngas. In addition, it produces huge carbon emissions in the production process;
thus, the direct conversion of CO2 into methanol has great potential to change the mode
of methanol production [77]. Zhao et al. [78] prepared uniatomic copper immobilized
MXene by selectively etching the hybrid A layer (Al and Cu) in the quaternary MAX phases
(Ti3(Al1-xCux)C). After selectively etching the aluminum layer, copper atoms were well
retained and fixed on MXene (Ti3C2Clx). The monatomic Cu with unsaturated electronic
structure provided a low energy barrier for the rate-determining step, resulting in a Faradaic
efficiency of 59.1% for CH3OH formation and good electrocatalytic stability.

It can be seen from the first four clusters that the most studied catalysts are still
copper-based catalysts, and the reduction products are mostly C1 products such as CO,
CH4, methanol, formic acid, and formate. However, most of the Cu-based catalyst research
focused on the production of the C2 product, such as ethylene, ethanol, and normal propyl
alcohol, but C1 products (such as methane, etc.) are difficult to obtain directly. The
literature on this subject is relatively small, as shown in Figure 6, and below summarizes
some copper-based catalyst preparation and the research status of these products C1.
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(a). CO

Carbon monoxide (CO) is an important raw material for the synthesis of various
chemicals and fuels. It is the basis of C1 chemistry, and almost all basic chemicals can be
produced by converting CO and H2. ECO2RR provides an alternative green route for CO
production. In addition to precious metal catalysts such as gold (Au), silver (Ag), and
palladium (Pd), copper-based catalysts can also catalyze CO2 to CO.

Au is one of the effective electrocatalysts for eCO2RR to CO. However, the cost of
gold and the high potential demand hinder its large-scale application. The bimetallic
catalyst formed by the combination of gold and copper can effectively solve this problem.
In addition, adjusting the exposed crystal plane by controlling the morphology, structure,
and composition of the catalyst can also improve the electrocatalytic performance of the
catalyst. Among the 3D porous metal nanomaterials, including aerogel [79], nanowires [80],
nanoribbons [81], nanosheets [82], nanoparticles [83], hollow nanospheres [84], and aerogel,
they have the advantages of hydrophobicity, low density, high porosity, high specific
surface area, and good stability [79,85]. This is one of the most attractive catalysts right now.
Zhang et al. [86] synthesized Au0.95Cu0.05 foam by etching (Figure 7a), which showed the
excellent ability of eCO2RR to CO. At a low overpotential of 240 mV, a Faraday efficiency of
99.5% was achieved for CO, and the current density was 31.3 mA cm−2. The kinetic study
showed that the Cu-modified bimetallic foamed gold interface enhanced the adsorption
of CO2, enhanced mass transfer, promoted the activation of CO2, and thus improved the
production performance of CO.

Alloying has always been an important method to improve the selectivity and catalytic
activity of eCO2RR products [87]. Besides alloying copper with gold or silver, bimetallic
Cu-In electrocatalysts are also one of the effective electrocatalysts for eCO2RR, and they
have low cost, high Faradaic efficiency, and good stability of CO [88]. However, the
productivity to date has been rather low due to the low current density exhibited in
aqueous electrolytes. To solve this problem, Mahyoub et al. [89] prepared a 3D Cu/In NC
electrode by electrodeposition. When the CO2 pressure was 1 atmosphere, the potential
was −0.6V–−1.1V (vs. RHE), the current density reached −20 mA cm−2, and FE was 100%.
In addition, by increasing the CO2 pressure, the fractional current density of CO produced
reached −229.88 mA cm−2, which was a new record for most neutral pH electrolytes.

(b). CH4

Methane (CH4) is the main component of natural gas, biogas, and so on. It is a
kind of fuel with a high calorific value and raw material of hydrogen, carbon monoxide,
acetylene, and formaldehyde. ECO2RR offers a promising method for preparing methane.
In eCO2RR, *CO protonation to *CHO is an important step in the formation of methane,
which competes with C-C coupling in the formation of C2 products [26,90]. In addition,
since *CO protonation requires *H, it also competes with hydrogen evolution (HER) [91].
To improve the methane selectivity of eCO2RR products, both C-C coupling and HER
should be inhibited. Cu is a transition metal catalyst for the formation of methane and
C2+ products, but the product selectivity of monomaterial catalysts is very low. Therefore,
the introduction of the second metal into Cu is a promising way to adjust the product
selectivity in eCO2RR.

The catalyst prepared by Wang et al. [92] by introducing Au into Cu could not only
control the C-C coupling under low *CO coverage, which was conducive to *CO protona-
tion, but it also inhibited HER compared to monometallic Cu (Figure 7b). The selectivity
ratio of methane to H2 was improved by 1.6 times compared to the previous best study
operating at 100 mA cm−2 current density, and a Faraday efficiency (FE) of (56 ± 2)% of
CO2 to methane was achieved at a current density of (112 ± 4) mA cm−2.
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To date, most studies on Cu-based catalysts focus on the production of C2 and C2+
products, including ethylene, ethanol, ethane, and propanaldehyde, while C1 products
(such as methane) are difficult to obtain directly [93]. The reason is that eCO2RR is a
reduction reaction, and Cu2+ in the cathode catalyst is inevitably electroreduced to Cu0 or
Cu1+ [94]. The mixing of Cu0 and Cu1+ sites can significantly improve the thermodynamics
of *CO dimerization, thereby improving the selectivity of C2 and Cu2+ products [95,96].
Therefore, stabilizing Cu2+ in catalysts is also an important method to improve the selectiv-
ity of methane.

Zhou et al. [96] introduced Cu2+ ions into CeO2 matrix to form a Cu-Ce-Ox solid
solution, wherein CeO2 can stabilize Cu2+ during eCO2RR, and Ce3+ can inhibit electron
accumulation near Cu2+sites and protect them from reduction. The results showed that,
compared to the Cu-based catalyst with the Cu0 or Cu1+ active site, the catalyst containing
Cu2+ in solid solution significantly enhanced the adsorption of *CO intermediate and
promoted the generation of CH4 instead of C2 products.

(c). Methanol

Methanol (CH3OH), as one of the basic organic raw materials, is not only an important
fuel, but it is also a raw material for the preparation of a variety of organic products, such
as formaldehyde and acetic acid. ECO2RR provides a new path for methanol preparation.
However, this field still faces two major challenges: competitive hydrogen evolution (HER)
and low product selectivity [97,98]. In addition, methanol production from eCO2RR is
a combination of a six-proton and six-electron transfer process [99,100], which means
that its reaction kinetics is slower and the methanol production reaction is more difficult
compared to the two-electron reaction. Precious metal-based and copper-based catalysts
are two promising catalysts for methanol production from eCO2RR [85]. Among these
catalysts, Cu is still a research hotspot due to its low cost. However, the Cu catalytic
CO2 process usually produces a variety of liquid products, which makes methanol have
a very low selectivity. In order to improve the selectivity of methanol, it is often adopted
to change the morphology [61], structure [101], and oxidation state [102] of copper-based
catalysts to improve the selectivity of their products. In particular, Cu1+ based catalysts
have excellent performance in reducing CO2 to alcohol [103]. However, the Cu1+ site is
extremely unstable in the reduction reaction and is easy to be reduced to Cu0 site [104].
Therefore, maintaining the stability of the active site of Cu1+ is the key to achieving the
highly selective reduction of CO2 to CH3OH. MOFs have the advantages of large specific
surface area, high porosity, and adjustable pore diameter, and they are extensively used
in the field of eCO2RR [105,106]. Although MOFs show good performance in eCO2RR,
there are still problems such as low selectivity and poor conductivity and stability in the
preparation of methanol [107]. MOFs can be modified by means of calcination and doping
to improve the catalytic activity, stability, and selectivity of methanol [108,109].

Yang et al. [109] synthesized a new Cu@Cu2O electrocatalyst by the calcination of
Cu-BTC (1,3,5-phthalic acid) MOFs. The electrocatalyst was coated with a nitrogen-doped
carbon shell, and the Faradaic efficiency of methanol could reach 45%. This is because
the Cu(0)/Cu(I) active site of Cu-BTC moderately adsorbed CO* intermediates, which



Energies 2023, 16, 616 15 of 21

contributed to co-catalysis. In addition, the hydroxyl group adsorbed on the catalyst surface
was also conducive to the further hydrogenation of CO* to methanol.

(d). Formic acid and formate

Formic acid (HCOOH) or formate (HCOO−) is widely used in pharmaceutical, chemi-
cal, and other industries, and it is also a promising liquid fuel. Tin (Sn) is an ideal material
for large-scale eCO2RR to HCOOH due to its low price and abundant content [110,111].
Transition metal tin (Sn) and its oxides mainly catalyze CO2 to formic acid and formate, but
their overall activity, catalytic efficiency, and current density are low [112,113]. Cu-based
catalysts are favored by many researchers because of their high electro catalytic activity
in eCO2RR [94], selectivity, and ability to produce various hydrocarbons or multi carbon
products [114]. However, the poor selectivity of the single product of Cu-based catalysts
hinders its commercial application. Therefore, Sn can be introduced into Cu-based catalysts
to adjust the selectivity of eCO2RR [115].

Yan et al. [116] prepared a dendritic Sn/Cu catalyst, and the yield of HCOOH reached
890.4 µmol h−1 cm−2, which was higher than the yield of most reported Sn catalysts. The
results showed that polyethyleneimine enhanced the catalytic performance of the Sn/Cu
catalyst, stabilized the CO2

− intermediate, and thus increased the yield of HCOOH.
The structure and morphology of the catalyst affects the selectivity of the reduction

products. Chen et al. [117] electrodeposited Sn on Cu nanowires, showing lower charge
transfer resistance and higher specific surface area than the Sn/Cu and Sn foil. At −1.2 V
(vs. RHE), the Faraday efficiency of Sn/Nano-Cu electrode was 86.8%, the current density
was 38.0 mA cm−2, and the formate yield was 575.1 ± 24 µmol h−1 cm−2, which was
obviously higher than that of the other two electrodes, and the stability was also good.

3.7.4. Cluster 5 (Purple): Challenges and Future Trend

The only node in this cluster is design (136 times). “Design” is not only for the design
of efficient catalysts but also for the design of electrochemical reactors. Although there has
been much research on eCO2RR, there are still many difficulties and challenges in this field.
The challenges faced by eCO2RR mainly come from the following aspects.

(1) CO2 is a nonpolar linear molecule with very stable chemical properties, which is
difficult to activate and transform. In addition, the CO2 reduction process is also
subject to relatively high thermodynamic and kinetic barriers [118]. In eCO2RR,
the process of CO2 molecules adsorbing electrons into CO2 is the first one, which
requires a lot of energy. These characteristics of eCO2RR lead to high overpotential,
low selectivity, and competitive hydrogen evolution reaction, resulting in the low
energy conversion efficiency of eCO2RR. At the same time, the products of eCO2RR
are diverse, the selectivity of a single product is low, and the separation is difficult.
Therefore, it is still necessary to continue to develop catalysts with high activity, high
selectivity, and high stability (especially for a single product), especially copper-based
catalysts for C1 production.

At present, there is still much room for improvement of the copper-based catalyst
for C1 production. The adsorption of CO2 molecules, the stability of intermediates, and
the enhancement of mass transfer can be improved by modifying the size, composition,
morphology, and structure of the catalysts to promote the smooth progress of eCO2RR
and obtain chemicals and fuels with high selectivity and high energy density. In addition,
improving the stability of catalysts is also the focus of upcoming research. Most of the
existing catalysts are stable for tens to hundreds of hours, which is far from meeting the
current actual development needs, and researchers still need to continue to work hard.

(2) At present, although there have been many studies on eCO2RR, the mechanism of this
reaction process is still not clear enough. Most of the studies are still in a relatively
simple stage, and researchers need to continue to dig deeply.

(3) In addition, the low solubility of CO2 in aqueous solution limits the current density
of eCO2RR. For this problem, in addition to improving the catalyst, it can also be
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improved by optimizing the structure of the electrochemical reactor. In addition to
the most commonly used H-type reactor, the membrane electrode assembly (MEA)
reactor is also the focus of future research. The CO2 gas in the reactor is not in direct
contact with the electrolyte, which can not only enhance mass transfer and reduce
ohmic resistance, but it can also effectively avoid hydrogen evolution.

(4) At present, the research on eCO2RR is still in the stage of laboratory research, and
there is still a long way to go from commercial application. Therefore, it is of great
practical significance to develop a CO2 electrochemical reactor with industrial current
density considering the amplification of the CO2 electroreduction device [119,120].

4. Conclusions

In this study, we conducted a comprehensive scientometric review of the research
status and development trends of eCO2RR from 2005 to 2022 and drew some important
conclusions about the development of catalysts in the field of eCO2RR. Bibliometric research
results of eCO2RR showed that the scientific community has been increasingly interested in
the field of eCO2RR in the past 17 years, and the number of papers increased year by year.
Diverse research directions, covering 55 discipline categories, signals a comprehensive
research area. From 2005 to 2022, a total of 4546 articles were retrieved and published
in 422 different journals. China played an important role in eCO2RR research, and the
cooperation between China and the US was the most frequent.

In addition, as can be seen from keyword clustering, Cu-based catalysts are still
the research hotspot in recent years. Most studies on Cu-based catalysts focus on the
production of various C2 products, including ethylene, ethanol, n-propanol, etc. However,
C1 products (such as methane, etc.) are difficult to obtain directly, although the performance
of catalysts is constantly optimized. However, at present, most copper-based catalysts
for C1 production still have the problems of low activity, high cost, poor stability, and
low product selectivity. Therefore, copper-based catalysts with high efficiency, low cost,
high stability, and high selectivity can be developed to produce C1 products by modifying
catalyst size, composition, morphology, and structure.
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