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ABSTRACT

Heavy metal/ferromagnet interfaces in systems with perpendicular magnetic anisotropy (PMA) hosts chiral Néel wall with the assistance of
interfacial Dzyaloshinskii–Moriya interaction (iDMI). We have investigated field induced domain wall motion in the creep regime to esti-
mate the effective iDMI strength, Deff of sputter-deposited Ta/Pt/Co/Pt and Ta/Pt/Co/Au/Pt thin films that exhibit PMA. Two similar Pt/Co
interfaces on either side of the Co layer in the Ta/Pt/Co/Pt system lead to a small Deff with a negative sign that supports the Néel type
domain wall of right-handed chirality. Ultrathin Au layers of different thicknesses have been deposited at the top Co/Pt interface to intro-
duce asymmetry around the Co layer and control the Deff . Here, two interfaces (Pt/Co and Au/Co) of opposite iDMI polarity have been
chosen to invert the domain wall chirality to the left-handed chirality instead of the right-handed chirality found in the Ta/Pt/Co/Pt system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0117198

I. INTRODUCTION

Tuning the interfacial Dzyaloshiniskii–Moriya interaction
(iDMI)1–4 in heavy metal (HM)/ferromagnet (FM)/heavy metal
(HM) and HM/FM/metal-oxide thin film systems with perpendicu-
lar magnetic anisotropy (PMA) has allured massive attention in the
recent past because of their ability to construct next-generation
high-density magnetic data storage devices5,6 with lower power
consumption. Structural inversion asymmetry at the HM/FM inter-
face introduces iDMI in the FM layer that is known to stabilize
chiral Néel walls7–10 in PMA systems, magnetic skyrmions,11,12 and
many other spin textures. Spin-polarized current from heavy metal
provides spin–orbit torque (SOT) that helps us to achieve high
domain wall (DW) velocity13–15 and current-induced magnetiza-
tion reversal of the FM layer’s magnetization with15–18 or
without19–23 bias magnetic field in HM/FM/HM trilayers.

Several complicated methods9,10,24–31 have been proposed to
estimate the iDMI strength, Deff of ultrathin magnetic films.
Methods, which include electrical current, causes Joule heating. On
the other hand, field induced domain wall motion (FIDWM) study
proposed by Je et al.32 is a straightforward and non-destructive
method to calculate iDMI. In the FIDWM model, iDMI can be

considered as an in-plane (IP) magnetic field (HDMI), which is
dominant inside the domain wall and the direction of HDMI defines
the chirality of Néel type domain walls. Je et al.32 showed that a cir-
cular bubble domain nucleated in Pt/Co/Pt trilayers expands sym-
metrically in the radial direction when it is driven by only out of
plane (OP) magnetic field (Hz). With the application of an
in-plane (IP) magnetic field (Hx), in addition to Hz , the IP field
can be added to HDMI on one side and subtracted from HDMI on
the other side of the domain wall (DW) producing different
domain wall velocities giving rise to the asymmetric expansion of
bubble domain.32,33 The Hx dependence of the domain wall veloc-
ity at a particular Hz is symmetric around HDMI where the velocity
becomes minimum. A small asymmetric contribution in velocity
dependence has been confirmed in some studies due to chiral
damping,34 or tilt in the magnetization.35,36 Precise tuning of Deff

has been achieved by introducing material asymmetry as reported
in Pt=Co=AuxPt1�x trilayers where iDMI increases gradually with
an increase in x.37 It has been observed that the interface
quality38,39 of Pt/Co plays a major role in iDMI interaction. In this
work, asymmetric expansion of bubble domains in Ta/Pt/Co/Au/Pt
multilayers with varying Au layer thickness has been studied to
estimate iDMI strength, Deff , and determine the DW chirality.
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II. EXPERIMENTAL DETAILS

Ta(3 nm)/Pt(3 nm)/Co(0.4 nm)/Au(t nm)/Pt(1 nm) samples
have been deposited using a d.c. magnetron sputtering system kept
at a base pressure below 3� 10�8 mbar where x ¼ 0, 0:3, 0:5, and
0:7. Samples were deposited on an oxidized silicon wafer at room
temperature with an Argon pressure 5� 10�3 mbar. The average
deposition rates for Ta, Pt, Co, and Au were 0.027, 0.038, 0.019,
and 0.056 nm/s, respectively. The uniformity of the deposited films
was ensured by rotating the substrate with a stepper motor at a
rotation speed of 30 rpm. Room temperature magnetic characteri-
zations were performed using the vibrating sample magnetometry
(VSM) technique. FIDWM study has been carried out on all
samples using a wide field differential Kerr microscopy
(Evico-Magnetics) in the polar mode in presence of an OP mag-
netic field, Hz driven by a Kepco power supply (Model BOP
100-4ML provides maximum field up to 10 mT and minimum pul-
sewidth of 1 ms) and an IP biasing magnetic field, Hx driven by a
polytronics power supply (Model BCS-100 provides maximum
field up to 200 mT). To calculate domain wall velocity, at first, the
sample was magnetized in þz direction applying large þHz . Then,
a bubble domain was nucleated by applying a pulsed magnetic field
in �Hz of appropriate magnitude and pulsewidth (Δt). The
domain image was captured by a CCD camera. A MATLAB
program was used to determine the domain wall velocity from

consecutive pulses. The detailed measurement technique is also
described by Guddeti et al.21

III. RESULT AND DISCUSSION

A. Growth characterization

The thickness and interface roughness of individual layers
present in each multilayer film were estimated performing x-ray
reflectivity (XRR) measurements and fitting XRR data using
ReMagX software40 (shown in Fig. 1). The fitting results that are
presented in Table I show a high quality of the interfaces in the
samples.

B. Magnetic characterization

The PMA behavior has been confirmed from the hysteresis
loop of all the samples at room temperature. The magnetization
data have been obtained using vibrating sample magnetometry
(VSM) for both applied OP and IP magnetic fields (Fig. 2). The
effective anisotropy energy, Keff ¼ MS � HK=2, and the domain
wall width, λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

A=Keff

p
, was calculated from the VSM data and is

presented in Fig. 3, where Ms, HK , and A stands for saturation
magnetization, anisotropy field, and exchange stiffness constant,
respectively. The value of exchange stiffness constant, A ¼ 16 pJ/m

FIG. 1. XRR data fitted with ReMagX software for sample (a) Au (0 nm), (b) Au (0.3 nm), (c) Au (0.5 nm), and (d) Au (0.7 nm).
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was taken from the literature41 for a similar system. The increment
of the Keff with the increase in Au thickness suggests a strong PMA
behavior in these samples.

C. Field induced domain wall motion

To obtain Deff from the FIDWM technique, we study the
velocity of DWs driven by the OP field, Hz , in the presence of the
IP bias field, Hx in the creep regime. The IP bias field primarily
modulates the domain wall energy of a bubble domain present in
our samples and an asymmetric bubble expansion is observed. In
the creep regime, the DW velocity, v can be expressed as34,42,43

v ¼ v0 exp �ζ(μ0Hz)
�1=4

h i
, (1)

where v0 is the characteristic velocity and ζ is a scaling coefficient
related to total IP field present in the system that comprises of both
effective IP field due to iDMI, HDMI and applied IP field, Hx . ζ can
be expressed as

ζ ¼ ζ0[σ(Hx)=σ0]
1=4, (2)

where ζ0 is a scaling coefficient, σ(Hx) is the domain wall
energy density expressed as a function of Hx , and σ0 is the
energy density of Bloch wall. The domain wall energy density

can be expressed as7,44

σ(Hx) ¼ σ0 � π2λμ0M
2
s

8KD
(Hx þ HDMI)

2: (3)

where KD ¼ (Nxμ0M
2
s )=2 is the DW energy density45 and

Nx ¼ (ln(2)tCo)=(πλ) is the DW demagnetization factor. When
HDMI is small enough such that jHx þ HDMI j , 4KD=πμ0Ms, DW
remains in Bloch state and Eq. (3) is valid. If HDMI is large
enough such that jHx þHDMI j . 4KD=πμ0Ms, DW transforms
into the Néel state from the Bloch state. The DW energy density
for a Néel wall as described in Eq. (4) is needed to be used
instead of Eq. (3). The magnetization inside the Néel wall
rotates in a plane perpendicular to the DW plane. Depending
on the sense of rotation, Néel walls can exhibit left-handed or
right-handed chirality. The direction of HDMI fixes the chirality
of the Néel wall. The DW energy density for the Néel wall is
given as7,32,44

σ(Hx) ¼ σ0 � 2λKD � πλμ0MsjHx þ HDMI j: (4)

In PMA systems, large iDMI stabilizes the chiral Néel wall.
Substituting the energy density for the Néel wall into Eqs. (2)
and (1), the domain wall velocities obtained as a function of Hx

TABLE I. Thickness t and roughness σ in nm of all the layers in each multilayer.

Multilayer σSiO2=Ta tTa σTa/Pt tPt σPt/Co tCo σCo/Pt tPt σPt/air … …

Au 0.0 0.42 3.71 0.62 2.91 0.70 0.38 0.20 0.90 0.46 … …

Multilayer σSiO2=Ta tTa σTa/Pt tPt σPt/Co tCo σCo/Au tAu σAu/Pt tPt σPt/air

Au 0.3 0.52 3.67 0.57 2.82 0.50 0.41 0.16 0.30 0.42 0.90 0.46
Au 0.5 0.44 3.45 0.59 2.68 0.30 0.38 0.31 0.47 0.40 0.90 0.31
Au 0.7 0.40 3.55 0.69 2.65 0.20 0.39 0.35 0.70 0.49 0.92 0.43

FIG. 2. Hysteresis plot for applied (a) out of plane magnetic field, Hz and (b) in-plane magnetic field, Hx .
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have a velocity minimum at Hx ¼ HDMI . This method can be
employed to measure the HDMI experimentally.

In the absence of the IP field (Hx ¼ 0), the velocity is the
same throughout the DW since the domain wall energy is also the
same. Thus, the symmetric expansion of DWs has been seen in
the presence of only pulsed Hz , which is shown in Fig. 4(a).
However, in the presence of an IP field (Hx = 0), the DW energy
gets modified according to Eq. (4) due to the chiral nature of the
Néel wall. The modification of DW energy leads to asymmetric
expansion of the domain wall. To determine HDMI , the DW veloc-
ity of the left wall (LW) with respect to Hx has been extracted for
different Hz and fitted with Eq. (1) as described by Hrabec et al.46

The left wall velocity for a fixed Hz is shown and the fitted curve

using the creep law is shown in Fig. 4(b). The velocity minima
were obtained at Hx = Hmin after fitting. The Hmin for different Hz

has been found, and the average value is denoted as HDMI . The
contour plot of DW velocity as a function of Hz and Hx is also
presented in Fig. 5, where HDMI is indicated with a dotted line.
The HDMI sign reverses with the insertion of Au at the top Co/Pt
interface.

The asymmetric expansion of bubble domains in the pres-
ence of Hx reveals the chirality of domain walls. The schematic
of magnetization configuration inside DW has been presented in
Fig. 6 along with the asymmetric DW expansion. In Ta/Pt/Co/Pt
sample [Fig. 6(a)], the right wall of the nucleated bubble
domain has a faster velocity than the left wall, indicating that
the right wall has a lower DW energy. As per Eq. (4), the DW
energy lowers when HDMI and Hx are directed in the same
direction. The possible magnetization configuration (as shown in
Fig. 6) can be predicted knowing the direction of HDMI . The
magnetization configuration unveils that the Ta/Pt/Co/Pt system
has DW with right-handed chirality. When an ultrathin layer of
Au is introduced at the top Co/Pt interface, the right wall
expands slower than the left wall, suggesting HDMI directs oppo-
site to the Hx inside the right wall. The magnetization configu-
ration in Ta/Pt/Co/Au/Pt samples [Figs. 6(b)–6(d)] shows that
these samples host DW with left-handed chirality. The FIDWM
study has been performed to estimate HDMI in epitaxial
Pt=Co=AuxPt1�x trilayers37 for x = 0, 0.5, 1. The top layer in
Pt=Co=Au0:5Pt0:5 is an alloy achieved using the co-sputtering
technique. Pt/Co/Pt system shows negligibly small HDMI ,
Pt/Co/Au shows a higher HDMI and Pt=Co=Au0:5Pt0:5 have HDMI

of intermediate strength. The HDMI stabilizes the domain wall
with left-handed chirality in all these systems. On the contrary,
in our study, the Ta/Pt/Co/Pt system stabilizes the domain wall
with right-handed chirality. The domain wall chirality reverses
to left-handed in Ta/Pt/Co/Au/Pt multilayers.

FIG. 3. The anisotropy energy, Keff (dashed line), and domain wall thickness, λ
(solid line), as a function of Au thickness (t).

FIG. 4. (a) Symmetric expansion of a nucleated bubble domain for pulsed Hz ¼ �7:5 mT of pulsewidth, Δt ¼ 200 ms and an applied in-plane magnetic field, Hx ¼ 0.
The left and right wall has been labeled with LW and RW, respectively. (b) Domain wall velocity as a function of Hx for Ta/Pt/Co/Pt system is plotted (squares) and fitted
with creep law (solid line). The minimum of the velocity has been indicated with Hmin.
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The Deff value has been estimated using the formula
Deff ¼ μ0HDMIMsλ

7,32 and displayed in Fig. 7. Deff in the HM/FM/
HM system consists of iDMI contribution from both the bottom
HM/FM and top FM/HM interface. Individual Pt/Co interface
produces positive iDMI47 as shown in Fig. 8(a). Also, the
iDMI depends on interface roughness or intermixing.39,48 In the
Pt/Co/Pt system, iDMI of bottom Pt/Co counters top Co/Pt inter-
face [Fig. 8(c)]. It has been observed that Deff becomes negligibly
small for an epitaxial Pt/Co/Pt system.46 Two similar interfaces
on either side of Co produce a resultant iDMI that is small in
magnitude. The iDMI strength, Deff ¼ �0:29mJ=m2, was
obtained for such a symmetric Ta/Pt/Co/Pt system. This small
value of Deff can be attributed to the difference between the inter-
face roughness of the two Pt/Co interface. In Ta/Pt/Co/Au/Pt
systems, an ultrathin layer of Au was inserted at the top Co/Pt

interface to introduce asymmetry around Co layer. The Deff

enhanced as more asymmetry to the Ta/Pt/Co/Pt system was
introduced by increasing the thickness of the Au layer. The
maximum iDMI strength (Deff ¼ 0:60mJ=m2) was achieved for
the sample having highest degree of asymmetry (Au thickness,
t ¼ 0:7 nm). In addition, for the samples with an Au layer, the
iDMI strength was inverted. Pt/Co and Au/Co have opposite
polarity of iDMI as predicted theoretically.47,49,50 The iDMI con-
figuration of the Au/Co interface has been shown in Fig. 8(b).
The sign of iDMI at the Au/Co interface is flipped due to the
inversion of stacking geometry from Au/Co to Co/Au in order to
produce Pt/Co/Au trilayer [see Fig. 8(d)]. Unlike the Ta/Pt/Co/Pt
system, the combined effect of bottom Pt/Co and top Co/Au
interfaces with the same iDMI polarity reverses the effective iDMI
of Ta/Pt/Co/Au/Pt multilayers.

FIG. 5. Contour plot of left wall velocity as a function of Hx and Hz for Au thickness (a) 0 nm, (b) 0.3 nm, (c) 0.5 nm, and (d) 0.7 nm. The colorbar represents the domain
wall velocity in μm/s. The HDMI is indicated with black dotted line in each plot.
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IV. CONCLUSIONS

We deposited Ta/Pt/Co/Au/Pt multilayer thin films of varying
Au thickness using the sputter deposition technique and character-
ized them with proper thickness and interface roughness fitting
x-ray reflectivity data. We determined the magnetic properties
using a Vibrating sample magnetometer. We have studied the field-
driven asymmetric expansion of the bubble domain in presence
of an in-plane bias magnetic field to determine the effective
strength of the interfacial Dzyaloshinskii–Moriya interaction
(iDMI). Ta/Pt/Co/Pt multilayer exhibits negative iDMI with the
Néel type domain wall of right-handed chirality. We can alter the
chirality of the Néel wall from right-handed to left-handed as effec-
tive iDMI strength is reversed with the introduction of an ultrathin
layer of Au at the top Co/Pt interface. This study demonstrates that
two different HM/FM (Pt/Co and Au/Co) interfaces having oppo-
site polarity of iDMI can be used to achieve higher iDMI strength
as well as reverse the chirality of the domain wall. Also, the varia-
tion of iDMI strength as a function of the Au layer provides precise
control over the iDMI in HM/FM/HM multilayers.
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FIG. 6. Asymmetric expansion of bubble domain at an in-plane magnetic field,
Hx ¼ 30 mT. (a) Au (t ¼ 0 nm), (b) Au (t ¼ 0:3 nm), (c) Au (t ¼ 0:5 nm), and
(d) Au (t ¼ 0:7 nm) after application of pulsed Hz ¼ �7:8 mT of Δt ¼ 400 ms,
Hz ¼ �7:8 mT of Δt ¼ 260 ms, Hz ¼ �7:8 mT of Δt ¼ 200 ms and
Hz ¼ �8:0 mT of Δt ¼ 210 ms, respectively. Each image contains four succes-
sive pulses. A different color shade is provided to distinguish the domain expan-
sion after each pulse. The magnetization of the nucleated bubble is along �z
direction as pointed by the cross at the center of the domain. The schematic of
magnetization configuration inside the domain wall (xz plane) is shown under
each image. The domain wall velocity along x-direction is indicated with white
arrow. Neél walls with right-handed chirality were found in Au (0 nm) sample,
whereas left-handed Neél walls were observed after the introduction of the Au
layer with thickness (t ¼ 0:3, 0.5, 0.7 nm) at Co/Pt interface.

FIG. 7. Effective in-plane field of iDMI, HDMI (circles) and iDMI strength, Deff
(squares) as a function of Au layer thickness. iDMI sign reverses with the intro-
duction of the ultrathin layer of Au.

FIG. 8. Schematic diagram of iDMI configuration. The direction of iDMI points
either into the paper or out of the plane of the paper. The magnetization has
been represented with the arrows attached to Co. (a) Pt/Co interface with posi-
tive iDMI. (b) Au/Co interface with negative iDMI.47 (c) Pt/Co/Pt system involves
iDMI contribution from both bottom Pt/Co and top Co/Pt interfaces that cancels
each other. (d) In Pt/Co/Au multilayer, bottom Pt/Co interface and top Co/Au
interface have same iDMI polarity that adds up to produce enhanced iDMI.
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