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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS

AND APPLICATIONS

FEDERICO BINDA AND AMALENDU KRISHNA

Abstract. We show that for a smooth projective variety X over a field k and
a reduced effective Cartier divisor D ⊂ X, the Chow group of 0-cycles with
modulus CH0(X ∣D) coincides with the Suslin homology HS

0 (X ∖ D) under
some necessary conditions on k and D. We derive several consequences, and
we answer to a question of Barbieri-Viale and Kahn.
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1. Introduction

The theory of Chow groups with modulus is presently an active area of research
whose primary goal is to provide a cycle theoretic description of the relative K-
theory of smooth varieties and of the (ordinary) K-theory of singular varieties. As
such, this is a non-A1-homotopy invariant cohomology theory: this poses a major
hurdle while dealing with Chow groups with modulus. The question then arises
whether one can isolate a number of special cases in which the Chow groups with
modulus behave like a homotopy invariant cohomology theory. This note is an
attempt to answer this question.

More specifically, we exhibit a phenomenon which justifies the belief that the
Chow groups with modulus associated to a normal crossing divisor on a smooth
scheme over a field should behave like a homotopy invariant theory. The precise
result that we prove is the following.

1.1. Main result. Let k be a field and X a smooth projective scheme of pure
dimension d ≥ 0 over k. Let D ⊂ X be a reduced effective Cartier divisor (possibly
empty) on X with complement U . In this case, we shall say that (X,D) is a
reduced modulus pair. Let CH0(X ∣D) be the Chow group of 0-cycles on X with
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1446 FEDERICO BINDA AND AMALENDU KRISHNA

modulus D (see [29]). Let HS
0 (U) denote the (zeroth) Suslin homology of U (see

[39, Defn. 10.8], where it is called the algebraic singular homology). If k admits
resolution of singularities, thenHS

0 (U) coincides with the Suslin-Voevodsky motivic
cohomology with compact support H2d

c (U,Z(d)). There is a canonical surjection
(e.g., using [43, Thm. 5.1])

(1.1) φX ∣D ∶CH0(X ∣D) HS
0 (U).

This map is clearly an isomorphism if d ≤ 1. However, it is known (see [7,
Thm. 1.1]) that φX ∣D may not be an isomorphism if d ≥ 2 (even if k is algebraically
closed). The goal of this paper is to prove the following result.

Theorem 1.1. Assume that one of the following conditions holds.

(1) D is a simple normal crossing divisor on X.
(2) k is perfect, d ≤ 2 and D is seminormal.
(3) k is algebraically closed of positive characteristic.

(4) k ⊆ Q.

Then the map

φX ∣D ∶CH0(X ∣D) HS
0 (U)

is an isomorphism.

The case (3) of Theorem 1.1 is known by [7, Thm. 1.1] (we included it in the
theorem only for completeness). Hence, the new results are (1), (2) and (4). We
expect the condition d ≤ 2 in (2) to be unnecessary, but do not know how to show
it. However, the condition on char(k) in (3) and algebraicity of k over Q in (4)
cannot be relaxed (see [7, Thm. 4.4]). We also remark that φX ∣D is almost never
an isomorphism if D is not reduced.

1.2. Applications. As Theorem 1.1 identifies an a priori non-homotopy invariant
theory with a homotopy invariant one, we expect it to have many consequences.
We list some in this paper.

1.2.1. Class field theory of Kerz-Saito. The goal of geometric class field theory is
to describe the abelian fundamental group of a variety (say, defined over a finite
field) in terms of certain groups of algebraic cycles. The modern perspective on
the problem is given by the work of Kerz and Saito [29] (see also [8]), where the
class groups used to describe the abelian fundamental group of a variety X with
bounded ramification along a divisor D is precisely the Chow group of zero-cycles
with modulus.

By a clever induction argument on the ramification index, the proof of the main
theorem of [29] uses as key ingredient the existence of a reciprocity isomorphism

(1.2) ρX ∣D ∶CH0(X ∣D)0 πab
1 (X,D)0

≅

for a reduced simple normal crossing divisor D on a smooth projective surface
X over a finite field, where πab

1 (X,D)0 is (the degree zero part of) the abelian
fundamental group of X with modulus D, a quotient of the usual étale fundamental
group πab

1 (U), where U =X ∖D. For the proof of this fact, Kerz and Saito refer to
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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS 1447

a result of Kerz-Schmidt (see [30, Thm. 8.3]) that, reformulated in an appropriate
way, affirms the existence of an isomorphism

(1.3) ρtU ∶H
S
0 (U)0 πt,ab

1 (U)0,
≅

where πt,ab
1 (U) is the tame fundamental group of U (classifying tame finite étale

coverings of U), a further quotient of πab
1 (U). The comparison between (1.2) and

(1.3) is very indirect, and passes through non-trivial results in ramification theory.
An immediate application of Theorem 1.1 is that the isomorphism (1.2) is in fact

a direct corollary of (1.3), and holds in any dimension. It also follows immediately
from Theorem 1.1 and Kerz-Schmidt theorem that for any smooth projective variety
X over a finite field and a reduced simple normal crossing divisor D ⊂ X with
complement U , the canonical map

πab
1 (X,D) πt,ab

1 (U)

is an isomorphism of topological groups.

1.2.2. Reciprocity for Russell’s relative Chow group. An independent theory of rel-
ative Chow groups with modulus was introduced and extensively studied by Russell
(see [42]). For D ⊂ X an effective Cartier divisor, let us denote Russell’s relative

Chow group of 0-cycles by CHRus
0 (X ∣D). It is clear from the definition of this group

(see op. cit.) and [43, Thm. 5.1] that it coincides with HS
0 (U) when D is reduced.

We thus immediately get the following.

Corollary 1.2. Under the hypotheses of Theorem 1.1, the canonical map

(1.4) φX ∣D ∶CH0(X ∣D) CHRus
0 (X ∣D)

is an isomorphism.

Combining (1.4) with the main results of [8], [29] and [20, Thm. 1.4], we obtain
the following reciprocity theorem for Russell’s relative Chow group. Let πabk

1 (X,D)
be the log version (see [21, Defn. 9.6] or [4, Defn. 7.2]) of the non-log abelian
fundamental group with modulus πadiv

1 (X,D) (see [19, Defn. 7.5]). The latter
group coincides with the fundamental group with modulus πab

1 (X,D) used in [8]
and [29].

Theorem 1.3. Assume that k is finite and (X,D) is a reduced modulus pair over
k such that one of the following conditions holds.

(1) D is a simple normal crossing divisor.
(2) d ≤ 2 and D is seminormal.

Then the Frobenius substitution at the closed points of X ∖D gives rise to a reci-
procity isomorphism

ρX ∣D ∶CH
Rus
0 (X ∣D)0 πabk

1 (X,D)0
≅

of finite groups.

When char(k) ≠ 2 in case (1), the theorem was claimed by Barrientos (see [4,
Thm. 7.3]). For the proof, Barrientos only refers to the (highly intricate) arguments
of Kerz-Saito [29] in the non-log case. Note that the canonical map πadiv

1 (X,D) →
πabk
1 (X,D) is an isomorphism under the assumption of the corollary. This follows

directly from definitions.

Licensed to Indian Institute of Science. Prepared on Tue Feb  7 02:10:44 EST 2023 for download from IP 14.139.128.34.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1448 FEDERICO BINDA AND AMALENDU KRISHNA

1.2.3. Roitman’s theorem for Suslin homology. Assume that k is algebraically
closed. Let (X,D) be a reduced modulus pair over k with U =X ∖D. Let Alb(U)
denote the generalized Albanese variety of U , introduced by Serre [44]. This is
universal for morphisms from U to semi-abelian varieties. There is an Albanese
homomorphism albU ∶HS

0 (U)0 → Alb(U)(k), where HS
0 (U)0 is the kernel of the

push-forward map HS
0 (U)0 →HS

0 (π0(U)). A famous theorem of Roitman [41] says
that if U is projective (i.e., D = ∅ in our set-up), then albU induces an isomor-
phism between the torsion subgroups, away from char(k). The latter condition was
subsequently removed by Milne [37].

Spieß and Szamuely [45] showed that, away from char(k), albU induces an iso-
morphism between the torsion subgroups even if D ≠ ∅. Geisser [14, Thm. 1.1]
showed that the condition imposed by Spieß-Szamuely could be removed if one as-
sumed resolution of singularities. Recently, Ghosh-Krishna [17, Thm. 1.7] showed
that Geisser’s condition could be eliminated. But their proof is long and intricate.
Using Theorem 1.1, we can give a very quick proof (see § 3.6) of (the unconditional
version of) the torsion theorem of Spieß-Szamuely in positive characteristic. The
result is the following.

Theorem 1.4. Let (X,D) be a reduced modulus pair over k and U =X ∖D. Then
the Albanese map for U induces an isomorphism

albU ∶H
S
0 (U)tor

≅
�→ Alb(U)(k)tor.

1.2.4. Motivic cohomology of normal crossing schemes. Let k be a field and let X
be a reduced quasi-projective k-scheme. Let Hm(X,Z(n)) denote the Friedlander-
Voevodsky motivic cohomology of X (see § 4.2). This is an abstractly defined
cohomology theory forX which is homotopy-invariant. IfX is smooth over k of pure

dimension d, then it is well known that there is a canonical isomorphism CH0(X)
≅
�→

H2d(X,Z(d)). This is a special case of a more general result of Voevodsky that
identifies the motivic cohomology groups of smooth schemes over any field with the
higher Chow groups as defined by Bloch. See [49, Corollary 2].

As one knows, the cohomological analogue of CH0(X) is the Levine-Weibel Chow

group CHLW
0 (X) when X is singular. We let Λ be a commutative ring which is

Z if k admits resolution of singularities and is any Z[ 1
p
]-algebra if char(k) = p > 0.

The following is an open question in the theory of algebraic cycles.

Question 1.5. Let X be a seminormal1 quasi-projective k-scheme of pure dimen-
sion d. Is there a canonical isomorphism

CHLW
0 (X)Λ →H2d(X,Λ(d))?

We do not know if this question may have a positive answer. We can however
prove the following result using Theorem 1.1.

Let CHl.c.i.
0 (X) denote the lci version of the Levine-Weibel Chow group of X as

defined in [5, § 3] (see § 3.2). This is a modified form of CHLW
0 (X) with better

functorial properties. As another application of Theorem 1.1, we can prove the
following result with regard to Question 1.5.

1If one wants to replace Λ by Z, then one should replace seminormal by weakly normal.
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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS 1449

Theorem 1.6. Let k be any field and X a reduced quasi-projective scheme of pure
dimension d over k. Then the following hold.

(1) There exists a canonical homomorphism

λX ∶CH
l.c.i.
0 (X) →H2d(X,Z(d)).

(2) λX is surjective with Λ-coefficients if X is projective and the regular locus
of X is smooth over k.

(3) λX is an isomorphism with Λ-coefficients if X is a projective normal cross-
ing scheme over k.

The last part of Theorem 1.6 was earlier shown in [7, Thm. 1.6] if one assumes

that CHLW
0 (X)Λ ≅ CHl.c.i.

0 (X)Λ and one of the following holds.

(1) k is infinite and perfect of positive characteristic.
(2) char(k) = 0 and Λ = Z/m,m ≠ 0.

The assumption CHLW
0 (X)Λ ≅ CHl.c.i.

0 (X)Λ is usually very hard to check, even
though it is unavoidable in [7]. Note that it is automatically satisfied if e.g.
char(k) = 0 and k is algebraically closed. We refer the reader to [7, Lemma 8.1]
and the references in loc. cit. for a more detailed comparison.

1.2.5. A question of Barbieri-Viale and Kahn. Let k be an algebraically closed field
of characteristic zero. As an application of the comparison between the Levine-
Weibel Chow group of zero cycles and the (2d, d) motivic cohomology group, we
can give a positive answer to a question posed by Barbieri-Viale and Kahn in [3].
This can be interpreted as a comparison between the Roitman theorem for the
cdh-motivic cohomology, proved in [3], and the more classical Roitman theorem for
singular projective varieties in characteristic zero, proved in [9].

Theorem 1.7. Let k be an algebraically closed field of characteristic zero and let
X be a reduced projective k-scheme of pure dimension d. Then the morphism

λX ∶CH
LW
0 (X) →H2d(X,Z(d))

is surjective with uniquely divisible kernel, and there is a commutative diagram

CHLW
0 (X)tors H2d(X,Z(d))tors

Alb+(X)(k)tors L1Alb∗(X)(k)tors,

λX

a+ u

where all the arrows are isomorphisms. Here, Alb+(X)(k) is the universal semi-

abelian regular quotient of CHl.c.i.
0 (X), and L1Alb∗(X)(k) is the semi-abelian part

of the 1-motive LAlb(M(X)∗(d)[2d]).

We end the discussion of our main result and its application with the following
larger question. Let Λ be as in § 1.2.4.

Question 1.8. Let k be any field. Let X be a smooth projective k-scheme of
pure dimension d and let D ⊂ X be a reduced simple normal crossing divisor. Let
U =X ∖D. Is there a canonical isomorphism

CHm(X ∣D,n)Λ
≅
�→H2m−n

c (U,Λ(m))?
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1.3. Overview of proofs. We prove Theorem 1.1 by induction on dim(X). This
reduces the proof to the case when X is a surface. The case of surfaces is the most
delicate one and the main work goes into proving this case. The main steps are as
follows.

We use the decomposition theorem of [22] as first of the key tools. This result

provides an injective homomorphism p∗∶CH0(X ∣D) → CHl.c.i.
0 (SX), where SX is

the double of X along D. The proof of Theorem 1.1 is then essentially equivalent
to showing that p∗ factors through the quotient CH0(X ∣D) ↠HS

0 (U). The second
step is to show that if we compose p∗ with the pull-back CHl.c.i.

0 (SX) → CHl.c.i.
0 (Ssn

X ),
then p∗ does factor throughHS

0 (U), where S
sn
X is the seminormalization of SX . The

third step is to show that this pull-back map is an isomorphism (under the given
assumptions on k and D). To show the latter, we prove some results that compare
Quillen’s algebraic K-theory and Weibel’s homotopy KH-theory for certain types
of curves and surfaces.

Most of the applications given above are immediate consequences of Theorem 1.1,
with the exception of Theorem 1.6. To prove Theorem 1.6, we proceed as follows.
We first construct the map λX using the Gysin maps for Chow group and motivic
cohomology. This reduces the construction to dimension one case which we deduce
using the slice spectral sequence for singular schemes from [33]. The key idea then

is to replace CHl.c.i.
0 (X) with a cycle group CHEKW

0 (X), introduced by Esnault-
Kerz-Wittenberg [12]. This is possible, thanks to Theorem 1.1. We then use a
result of Cisinski-Déglise [11] on the perfection properties of various cycle groups
to pass to a perfect base field. Theorem 1.6 then follows.

In § 2, we collect the K-theoretic results that we need to prove Theorem 1.1 for
surfaces. In § 3, we prove the key factorization lemma which allows us to conclude
the proof. We also prove Theorem 1.4 in this section. We prove Theorem 1.6 in
§ 4. Finally, § 5 is dedicated to the proof of Theorem 1.7.

1.4. Notations. Throughout this note, we fix a field k. A k-scheme will mean a
separated and essentially of finite type k-scheme. We shall denote the category of
such schemes by Schk. We shall let Smk be the subcategory of Schk consisting of
smooth schemes over k. If X ∈ Schk is reduced, we shall let Xn (resp. Xsn) denote
the normalization (resp. seminormalization) of X.

Recall that for A a reduced commutative Noetherian ring and B a subring of
the integral closure of A in its ring of total quotients, which is finite as A-module,
we say that an ideal I ⊂ A is a conducting ideal for the inclusion A ⊂ B if I = IB.
More generally, if f ∶X ′ → X is a finite birational map, a closed subscheme Y of
X is called a conducting subscheme for f if the sheaf of ideals IY ⊂ OX is a sheaf
of conducting ideals for the inclusion of sheaves of rings OX → f∗(OX′). We shall
let k(X) denote the total ring of quotients of X. For a morphism f ∶X ′ → X of
k-schemes and D ⊂ X a subscheme, we shall write D ×X X ′ as f∗(D). If Y,Z ⊂ X
are two closed subschemes, then Y ∩Z will mean the scheme theoretic intersection
Y ×X Z unless we say otherwise. We shall let Z0(X) denote the free abelian group
on the set of closed points on X.

2. Algebraic and homotopy K-groups of a double

The goal of this section is to show that if SX is the double of a regular surface
X over a field along a reduced Cartier divisor, then SK0(SX) coincides with an
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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS 1451

analogous subgroup of KH0(SX) under some necessary conditions on k and D. We
shall begin by recollecting necessary concepts. We shall then prove some prelimi-
nary K-theoretic results before reaching the goal. We fix a field k throughout this
section.

2.1. Review of double along a divisor. Let X ∈ Schk be a regular scheme and
let D ⊂ X be an effective Cartier divisor. Recall from [5, § 2.1] that the double of
X along D is the push-out SX ∶=X ∐D X. One knows that

(2.1)

D X+

X− SX

ι

ι ι+

ι−

is a bi-Cartesian square. Moreover, there is a finite and flat morphism Δ∶SX → X
whose composition with ι± is identity. SX is a reduced Cohen-Macaulay scheme
with two irreducible components X± and its normalization Sn

X is canonically iso-
morphic to X+ ∐X− (see again [5, Prop. 2.4]). For the normalization morphism
π∶Sn

X → SX , the smallest conductor subscheme inside SX is D whose inverse image
in Sn

X is D ∐D. It follows that SX is a seminormal scheme if D is reduced (see
[32, Prop. 4.2]).

If C± are two closed subschemes ofX not contained inD such that C+∩D = C−∩D
as closed subschemes, then the join C+ ∐D C− along D ∩C± is canonically a closed
subscheme of SX . If ν ∶C ↪ X is a regular closed immersion whose image is not
contained in D, then the double of C along C ∩ D (which we shall also denote
by SC) has the property that the inclusion ν′∶SC ↪ SX is also a regular closed
immersion (again by [5, Prop. 2.4(5)]). We shall use this fact often in this paper.

2.2. Review of homotopy K-theory. Recall (e.g., see [34, § 5]) that the homo-
topy K-theory spectrum (introduced by Weibel [51]) of a k-scheme is defined as the
homotopy colimit spectrum KH(X) = hocolimnK(X ×Δn), where Δ● is the stan-
dard cosimplicial scheme defined by setting Δn = Spec (k[t0, . . . , tn]/(∑i ti − 1)).
There is a natural transformation between the presheaves of S1-spectra K(X) →
KH(X) on Schk, which is a weak equivalence if X is regular. Furthermore, if
f ∶X ′ → X is a proper local complete intersection morphism (or, more generally, a
morphism of finite Tor-dimension), then so is f × id∶X ′ ×Δ● → X ×Δ●. It follows
from [48, Prop. 3.18] that there is a push-forward map between the simplicial spec-
tra f∗∶K(X ′ ×Δ●) →K(X ×Δ●). Taking the homotopy colimits, we see that there
is a push-forward map f∗∶KH(X ′) →KH(X). This map satisfies usual properties
such as the composition law and commutativity with pull-back.

Let τ ∶ (Schk)cdh → (Schk)zar be the canonical morphism of sites, where
(Schk)cdh denotes the category Schk equipped with the cdh topology (e.g., see
[39, Chap. 12]). Since KH(X) is homotopy equivalent to the cdh-fibrant replace-
ment of the spectrum K(X) (see [10], [23]), there is a commutative diagram of
strongly convergent spectral sequences

(2.2) Ep,q
2 =Hp

zar(X,Kq,X)

��

⇒ Kq−p(X)

��
′Ep,q

2 =Hp
cdh(X,Kq,X) ⇒ KHq−p(X),
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1452 FEDERICO BINDA AND AMALENDU KRISHNA

where the top one is the Zariski descent spectral sequence due to Thomason-
Trobaugh [48, Thm. 10.3].

Let us describe the edge homomorphisms of these spectral sequences in low
degrees. First, there is a natural map rk∶KH0(X) →H0(X,Z) whose composition

with K0(X) → KH0(X) is the (classically defined) rank map. We let K̃0(X)
and K̃H0(X) denote the respective kernels. Using the above spectral sequences

again, we get a natural map det∶ K̃H0(X) → H1
cdh(X,O×X), which is surjective if

dim(X) ≤ 2. We let SKH0(X) denote its kernel. We let SK0(X) be the kernel of

the (surjective) determinant map det∶ K̃0(X) ↠ H1
zar(X,O×X) = Pic(X) [50, Thm.

II.8.1].
Applying the above spectral sequences toKH1(X), we get an edge mapKH1(X)

→ H0
cdh(X,O×X). We let SKH1(X) denote its kernel. Similarly, we let SK1(X)

denote the kernel of the edge map K1(X) → H0
zar(X,O×X). Let Xsn → X denote

the seminormalization morphism when X is reduced (see [32, § 4.1]).

Lemma 2.1. Let X ∈ Schk be a reduced scheme. Then we have the following.

(1) The canonical map H0
zar(X,O×X) →H0

cdh(X,O×X) has a factorization

H0
zar(X,O×X) ��

��

H0
zar(X

sn,O×Xsn)

≅

����

H0
cdh(X,O×X)

≅ �� H0
cdh(X

sn,O×Xsn),

where the horizontal arrows are induced by the projection Xsn →X and the
vertical arrows are induced by the change of topology. Moreover, the bottom
horizontal and the right vertical arrows are isomorphisms.

(2) There is a commutative diagram of short exact sequences

(2.3) 0 �� SK1(X)

��

�� K1(X) ��

��

H0
zar(X,O×X) ��

��

0

0 �� SKH1(X) �� KH1(X) �� H0
cdh(X,O×X) �� 0,

which split functorially in X.

Proof. The first part is well known (e.g., apply [25, Prop. 6.14] with Y = Gm). It is
shown in [31, Lem. 2.1] that the top sequence is split exact such that the splitting
is functorial in X. The bottom sequence is left exact by definition. We now show
that it is actually split exact.

Using [51, Prop. 3.2] and Zariski descent for KH-theory, it follows that the
canonical map KH(X) →KH(Xsn) is a weak equivalence. Hence, we can assume
X to be seminormal to prove the split exactness of the bottom sequence in (2.3).
Using the split exact property of the top sequence, it suffices to show that the
change of topology map H0

zar(X,O×X) →H0
cdh(X,O×X) is an isomorphism. But this

is the first part of the lemma. �
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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS 1453

The spectral sequences of (2.2) imply that there is a commutative diagram of
short exact sequences

(2.4) 0 �� H1
zar(X,Ki+1,X) ��

��

Ki(X) ��

��

H0
zar(X,Ki,X) ��

��

0

0 �� H1
cdh(X,Ki+1,X) �� KHi(X) �� H0

cdh(X,Ki,X) �� 0

for every i ≥ 0 if dim(X) ≤ 1. Combining Lemma 2.1 and (2.4), we get

(2.5) SK1(X) ≅H1
zar(X,K2,X) and SKH1(X) ≅H1

cdh(X,K2,X)

if dim(X) ≤ 1.
For a closed immersion W ⊂ Z in Schk, we letK(Z,W ) be the relative homotopy

K-theory spectrum of the pair (Z,W ). It is defined as the homotopy fiber of the
restriction map of spectra K(Z) → K(W ). If f ∶Z′ → Z is a morphism of k-
schemes such that W ′ =W ×ZZ′, we let K(Z,Z′,W ) (the double relative K-theory
spectrum) denote the homotopy fiber of the canonical pull-back map f∗∶K(Z,W ) →
K(Z′,W ′). We define KH(Z,W ) and KH(Z,Z′,W ) in analogous fashion.

2.3. Algebraic and homotopy K2-groups of normal crossing curves. We
shall now compare K2(X) and KH2(X) when X is a normal crossing curve. We
first recall the definition of normal crossing schemes that we shall use in this paper.

Let X ∈ Schk be a reduced scheme of pure dimension d ≥ 0. Let {X1, . . . ,Xn} be
the set of irreducible components of X. We shall say that X is a normal crossing
k-scheme if for every non-empty subset J ⊂ [1, n], the scheme theoretic intersection
XJ ∶= ⋂

i∈J
Xi is either empty or a smooth k-scheme of pure dimension d+1−∣J ∣. Recall

that X ∈ Schk is called Ki-regular if the map Ki(X) → Ki(X ×Δn), induced by
the projection, is an isomorphism for all n ≥ 0.

Lemma 2.2. Let X ∈ Schk be a normal crossing curve. Then X is Ki-regular for
i ≤ 1.

Proof. It is well known (e.g., use the Bass fundamental exact sequence) that the
lemma is equivalent to the assertion that X is K1-regular. We first assume that
X is affine. We let μ(X) denote the number of irreducible components of X and
write X(n) = X ×Δn. We shall prove K1-regularity of X by induction on μ(X).
The case μ(X) = 1 is trivial because X is then smooth, and one knows that smooth
(more generally, regular) schemes are Ki-regular for all i. Let us now assume that
μ(X) > 1. We let X1 be an irreducible component of X and let X2 be the scheme
theoretic closure of X∖X1 in X. We let Y =X1∩X2. Then X2 is a normal crossing
curve such that μ(X2) = μ(X) − 1 and Y is a 0-dimensional smooth k-scheme. We
have a commutative square

(2.6) Y (n) ��

��

X1(n)

��

X2(n) �� X(n)

of affine schemes for every n ≥ 0, which is Cartesian as well as co-Cartesian and in
which all arrows are closed immersions.
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By [38, Thm. 6.4], there exists a commutative diagram of exact sequences

(2.7) K2(Y ) ��

��

K1(X) ��

p∗X
��

K1(X1) ⊕K1(X2) ��

��

K1(Y )

��

K2(Y (n)) �� K1(X(n)) �� K1(X1(n)) ⊕K1(X2(n)) �� K1(Y (n)),

in which the vertical arrows are induced by the projection maps. The left-most and
the right-most vertical arrows are isomorphisms because Y is smooth. The vertical
arrow involving X1 and X2 is an isomorphism by induction on μ(X). It follows via
a diagram chase that p∗X is surjective. As this map is always (split) injective, the
affine case of the lemma follows.

If X is not necessarily affine, we choose a dense open affine subscheme U ⊂ X
such that Xsing ⊂ U and let Y =X ∖U with the reduced induced closed subscheme
structure. Then Y is a regular k-scheme. Using the Thomason-Trobaugh localiza-
tion sequence [48, Thm. 7.4]

KY (n)(X(n)) →K(X(n)) →K(U(n))

and the weak equivalence K(Y (n))
∼
�→ KY (n)(X(n)) (this uses excision and the

fact that Y = Yreg ⊂ Xreg), we get a commutative diagram of exact sequence of
homotopy groups

(2.8) K1(Y ) ��

��

K1(X) ��

p∗X
��

K1(U) ��

p∗U
��

K0(Y )

��

K1(Y (n)) �� K1(X(n)) �� K1(U(n)) �� K0(Y (n)).

The left-most and the right-most vertical arrows are isomorphisms because Y
is regular. The arrow p∗U is an isomorphism because U is affine. It follows via a
diagram chase that p∗X is surjective. As this map is always (split) injective, the
lemma follows. �

Lemma 2.3. Let X ∈ Schk be a normal crossing curve. Then the canonical
map K2(X) → KH2(X) is surjective. In particular, the map H0

zar(X,K2,X) →
H0

cdh(X,K2,X) is surjective.

Proof. It follows from the spectral sequences (2.2) that the edge maps K2(X) →
H0

zar(X,K2,X) and KH2(X) →H0
cdh(X,K2,X) are surjective. Hence, we only need

to prove the first assertion of the lemma. In view of Lemma 2.2, the spectral
sequence

Ep,q
1 =Kq(X ×Δp) ⇒KHp+q(X)

degenerates to an exact sequence

(2.9) K2(X ×Δ1)
∂∗1−∂

∗
0���→K2(X) →KH2(X) → 0.

This finishes the proof. �

2.4. Algebraic and homotopy K1-groups of curves. For the rest of § 2, we
shall work with the following set-up. We let X be a regular integral quasi-projective
surface over k andD ⊂X a reduced effective Cartier divisor. Recall that SX denotes
the double of X along D. The goal of this subsection is to prove Lemmas 2.4 and
2.5.
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Lemma 2.4. The map SK1(D) → SKH1(D) is an isomorphism under any of the
following conditions.

(1) k is perfect and D is seminormal.

(2) k ⊆ Q.

Proof. Let π∶Dn →D be the normalization morphism. Let E ⊂D be a conducting
closed subscheme for π and let E′ = π∗(E). We then have an exact sequence of
relative and double relative K-groups:

(2.10) ⋯→Ki(D,Dn,E) →Ki(D,E) →Ki(D
n,E′) →Ki−1(D,Dn,E) → ⋯.

Since dim(D) = 1 and D is reduced, the conducting subscheme E is supported on
a finite set of closed points (hence it is affine). It follows from [15, Thm. 0.2] and
the Thomason-Trobaugh descent spectral sequence [48] that K0(D,Dn,E) = 0 and
K1(D,Dn,E) ≅ IE/I2

E ⊗E′ Ω
1
E′/E, where IE is the Zariski sheaf of ideals on D

defining E.
Assume that (1) holds. Since D is seminormal, we can choose our conducting

subschemes E and E′ to be reduced (in fact, E can be chosen to be V (I) where
I is the largest conducting ideal for the map OD ⊂ π∗ODn , see [32, Prop. 4.2(1)]).
It follows that the coordinate rings of E and E′ are finite products of finite and
separable extensions of k, and that the extension E′/E is separable (this uses the
perfectness hypothesis). It follows that Ω1

E′/E = 0, hence K1(D,Dn,E) = 0. This

gives a Mayer-Vietoris exact sequence

(2.11) K2(D
n) ⊕K2(E) →K2(E

′) → SK1(D) → SK1(D
n) → 0,

where E′ is reduced (note that SK1(E) = SK1(E′) = 0 since E and E′ are semilo-
cal).

If D is not seminormal, the conducting subscheme E cannot be chosen to be re-
duced. However, for m sufficiently large, we have that E ⊂mEred and E′ ⊂mE′red.
It follows from the above expression of K1(D,Dn,E) that there is some conduct-
ing closed subscheme E ⊂ D, having the same support as that of the maximal
conducting subscheme such that one has an exact Mayer-Vietoris sequence

(2.12) K2(D
n) ⊕K2(E) →K2(E

′) → SK1(D) → SK1(D
n) → 0.

We are interested in estimating the term K2(E′). We claim that if (2) holds then
K2(E′) = K2(E′red). Since Dn is a normal curve, the coordinate ring A of E′ is a
finite product A = ∏r

i=1Ai of Artinian k-algebras Ai, each of which is isomorphic to
a truncated polynomial ring of the form Ai = ki[t]/(tni), where ki/k is a finite field
extension and ni ≥ 1 is an integer (this follows, for example, from Cohen’s structure
theorem). In order to prove the claim, we can clearly assume that r = 1. Let k′ be
the residue field of A.

Let J be the kernel of the augmentation ideal A → k′ and write Ω1
(A,J) for the

kernel of the map Ω1
A/Z → Ω1

k′/Z. If k is a Q-algebra, a result of Bloch (see, e.g.,

[35, Thm. 4.1]) gives an isomorphism

K2(A,J) ≅HC1(A,J) ≅ Ω1
(A,J)/d(J).

By computing these groups for truncated polynomial rings, we conclude that if
k ⊂ Q, then K2(A,J) = 0. Since the map K2(A) → K2(A/J) = K2(k′) is anyway
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surjective, we conclude that K2(A) = K2(A/J) = K2(k′) in this case. This proves
the claim. It follows from the claim that (2.12) is of the form

(2.13) K2(D
n) ⊕K2(E) →K2(E

′
red) → SK1(D) → SK1(D

n) → 0.

We now compare the sequences (2.11) and (2.13) with the corresponding ones
for KH. Since KH-theory satisfies cdh-descent (see [10], [23]), we always have an
exact sequence (see [50, Cor. IV. 12.6])

(2.14) KH2(D
n) ⊕KH2(Ered) →KH2(E

′
red) → SKH1(D) → SKH1(D

n) → 0.

Putting things together, we get a commutative diagram (in both cases (1) and (2))
with exact rows
(2.15)

K2(Dn) ⊕K2(E) ��

��

K2(E′red) ��

��

SK1(D) ��

��

SK1(Dn) ��

��

0

KH2(Dn) ⊕KH2(Ered) �� KH2(E′red) �� SKH1(D) �� SKH1(Dn) �� 0.

The left vertical arrow is surjective, since K2(Dn) = KH2(Dn) (because Dn

is regular) and K2(E) → K2(Ered) = KH2(Ered) is surjective because E is semi-
local. The second vertical arrow (from left) is an isomorphism, since E′red is regular.
Similarly, the right vertical arrow is an isomorphism. A diagram chase now finishes
the proof. �

Lemma 2.5. The map SK1(D) → SKH1(D) is an isomorphism if k is infinite
and D is a normal crossing curve.

Proof. By (2.5), the lemma is equivalent to showing that the map

(2.16) H1
zar(D,K2,D) →H1

cdh(D,K2,D)

is an isomorphism. Let μ(D) denote the number of irreducible components of D.
We shall prove the above isomorphism of cohomology groups by induction on μ(D).
If μ(D) = 1, then D is regular in which case (2.16) is clear, since K1(D) =KH1(D).
Otherwise, we let D1 be an irreducible component of D and let D2 be the scheme
theoretic closure of D ∖D1 in D. Then D2 is a normal crossing curve such that
μ(D2) < μ(D) and D3 ∶=D1 ∩D2 is a 0-dimensional smooth k-scheme.

We now consider the commutative diagram of Zariski sheaves

(2.17) 0 �� K2,(D,D2)
��

��

K2,D
��

��

K2,D2
��

��

0

0 �� K2,(D1,D3)
�� K2,D1

�� K2,D3
�� 0,

where the terms K2,(D,D2) and K2,(D1,D3) in the first and the second row are defined
to be the kernels of the right horizontal arrows. Since k is infinite, the Quillen
K2-sheaf coincides with the Milnor KM

2 -sheaf on the big Zariski site of Schk (see
[28, Prop. 2]). In particular, sections of K2 are given by symbols, thus the two right
horizontal arrows of (2.17) are indeed surjective and thus both rows in (2.17) are
exact.

Licensed to Indian Institute of Science. Prepared on Tue Feb  7 02:10:44 EST 2023 for download from IP 14.139.128.34.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS 1457

By [28, Prop. 2] again, the terms K2,(D,D2) and K2,(D1,D3) coincide with the rel-

ative Milnor K-sheaves of Kato-Saito [26, 1.3]. In particular, the map KM
2,(D,D2)

→

KM
2,(D1,D3)

is surjective by [26, Lem. 1.3.1]. Furthermore, the kernel of this map is

supported on D3. It follows that the left vertical arrow in the above diagram is
surjective whose kernel is supported on D3. In particular, the induced map between
the first Zariski cohomology groups is an isomorphism.

Using a diagram chase of the cohomology groups induced by (2.17), we therefore
get a Mayer-Vietoris exact sequence for the Zariski cohomology in low degrees:
(2.18)
H0

zar(D1,K2,D1
)

⊕
H0

zar(D2,K2,D2
)
→H0

zar(D3,K2,D3
) →H1

zar(D,K2,D) →
H1

zar(D1,K2,D1
)

⊕
H1

zar(D2,K2,D2
)
→ 0.

We next observe that the square

(2.19) D3
��

��

D1

��

D2
�� D

defines a cdh cover {D1 ∐D2 → D} of D, so that we have an associated exact se-
quence of cdh cohomology groups similar to (2.18). Comparing these two sequences,
we get a commutative diagram of exact sequences
(2.20)

H0
zar(D1,K2,D1

)
⊕

H0
zar(D2,K2,D2

)

��

��

H0
zar(D3,K2,D3

) ��

��

H1
zar(D,K2,D) ��

��

H1
zar(D1,K2,D1

)
⊕

H1
zar(D2,K2,D2

)

��

��

0

H0
cdh(D1,K2,D1

)
⊕

H0
cdh(D2,K2,D2

)

�� H0
cdh(D3,K2,D3

) �� H1
cdh(D,K2,D) ��

H1
cdh(D1,K2,D1

)
⊕

H1
cdh(D2,K2,D2

)

�� 0.

The left vertical arrow is surjective by Lemma 2.3. The second vertical arrow
(from left) is an isomorphism because D3 is smooth. The right vertical arrow is an
isomorphism by induction on μ(D). By a diagram chase, it follows that (2.16) is
an isomorphism. This concludes the proof of the lemma. �
2.5. Algebraic and homotopy K0-groups of the double. We continue with
the set-up described in § 2.4. In this subsection, we shall compare SK0(SX) with
the analogous subgroup of KH0(SX). Let π∶Sn

X → SX denote the normalization
map.

Lemma 2.6. There exists an exact sequence

0→
SK1(Sn

X)

SK1(SX)
→ SK1(D) → SK0(SX)

π∗

�→ SK0(S
n
X) → 0.

Proof. This is a consequence of (the proof of) [2, Thm. 3.3] or [20, Prop. 2.7],
noting that we can choose Y (in the notation of op. cit.) to be D. The claimed
exact sequence exists if excision holds for the K0. The obstruction for this excision
is controlled by ID/I2

D ⊗D′ Ω
1
D′/D. As D′ =D ∐D, this term vanishes. �
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Remark 2.7. It is worth noting that the proof of Lemma 2.6 did not use our assump-
tion that D is reduced. Hence, the lemma remains valid for any effective Cartier
divisor D.

The analogue of Lemma 2.6 also holds for the KH-groups by the cdh-descent,
as we show now. We consider the abstract blow-up square

(2.21) D ∐D ��

��

Sn
X

π

��

≅ �� X+ ∐X−

����
��
��
��

D �� SX

Applying the spectral sequence (2.2) and the cdh-excision [50, IV.12.6] to this
abstract blow-up square, we get a commutative diagram of exact sequences
(2.22)

KH1(SX) ��

��

KH1(S
n
X)

��

��

KH1(D) ��

��

K̃H0(SX) ��

��

K̃H0(S
n
X)

��

H0
cdh(SX ,O×SX

) �� H0
cdh(S

n
X ,O×Sn

X
) �� H0

cdh(D,O×D)
�� H1

cdh(SX ,O×SX
) �� H1

cdh(S
n
X ,O×Sn

X
).

It follows from Lemma 2.1 that the first three vertical arrows from left in (2.22)
are surjective. The map H0

cdh(SX ,O×SX
) → H0

cdh(S
n
X ,O×Sn

X
) is clearly injective be-

cause SX is reduced and Sn
X → SX is a cdh cover. Using a diagram chase and taking

the kernels of the vertical arrows, we get an exact sequence

(2.23) 0→
SKH1(Sn

X)

SKH1(SX)
→ SKH1(D) → SKH0(SX) → SKH0(S

n
X).

The main result of § 2 is the following.

Proposition 2.8. The map SK0(SX) → SKH0(SX) is an isomorphism under any
of the following conditions.

(1) k is perfect and D is seminormal.

(2) k ⊆ Q.
(3) k is infinite and D is a normal crossing curve.

Proof. A comparison of (2.23) with the exact sequence of Lemma 2.6 gives rise to
a commutative diagram of exact sequences

(2.24) 0 �� SK1(S
n
X)

SK1(SX)
��

����

SK1(D) ��

≅

��

SK0(SX)
π∗ ��

��

SK0(Sn
X) ��

≅

��

0

0 �� SKH1(S
n
X)

SKH1(SX)
�� SKH1(D) �� SKH0(SX)

π∗ �� SKH0(Sn
X) �� 0.

Note that π∗ on the bottom is surjective because the same holds for the corre-
sponding arrow on the top and the right vertical arrow is an isomorphism by the
regularity of the scheme Sn

X . The latter also implies that the left vertical arrow
is surjective. The vertical arrow involving D is an isomorphism by Lemmas 2.4
and 2.5. The desired assertion now follows by a diagram chase. �
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3. Proof of the main result

In this section, we shall prove our main result Theorem 1.1. We shall also give
proofs of some of its applications. We begin by recalling the definitions of the Chow
group of 0-cycles with modulus and Suslin homology. To prove Theorem 1.1, we
shall use two other 0-cycle groups, namely, the Levine-Weibel Chow group and its
modified version called the lci Chow group of the double. We shall recall these too.
We fix a field k.

3.1. Review of Chow group with modulus and Suslin homology. Let X
be an integral quasi-projective k-scheme of dimension d ≥ 1 and let D ⊂ X be an
effective Cartier divisor. Let j∶U ↪ X be the inclusion of the complement of D
in X. Assume that U is regular. Recall from [29, § 1] that the Chow group of
0-cycles on X with modulus D is the quotient of Z0(U) by the subgroup R0(X ∣D)
generated by ν∗(div(f)), where ν ∶C → X is a finite (and birational to its image)
morphism from an integral normal curve C whose image is not contained in D and
f ∈ Ker(O×C,ν−1(D)↠O×ν∗(D)). This group is denoted by CH0(X ∣D).

Recall that the Suslin-Voevodsky singular homology HS
n (U) of U (also called

Suslin homology in the literature) is defined as the n-th homology of a certain
explicit complex of algebraic cycles, introduced by Suslin and Voevodsky [46]. We
do not need to recall this complex. Instead, we shall use the following equivalent
definition of HS

0 (U) in this paper. This equivalence was shown by Schmidt [43,
Thm. 5.1].

Lemma 3.1. Assume that X is projective. Then HS
0 (U) is canonically isomorphic

to the quotient of Z0(U) by the subgroup RS
0 (U) generated by ν∗(div(f)), where

ν ∶C →X is a finite (and birational to its image) morphism from an integral normal
curve C whose image is not contained in D and f ∈ Ker(O×C,ν−1(D)↠O×ν∗(D)red).

It is clear that there is a canonical surjection

(3.1) φX ∣D ∶CH0(X ∣D) ↠HS
0 (U).

From the definition one gets immediately that φX ∣D is an isomorphism if X is of
dimension 1 and D is reduced. It was shown in [7, Thm. 4.4] that φX ∣D may have
a non-trivial kernel, even if D is reduced and k is algebraically closed as soon as
dim(X) ≥ 2, so that the relationship between the two objects is quite subtle. This
relationship is the main object of study in this paper.

3.2. Review of Levine-Weibel and lci Chow groups. Let X be an equidimen-
sional reduced quasi-projective k-scheme of dimension d ≥ 1. Let Xsing denote the
singular locus of X with reduced closed subscheme structure and let Xreg denote
the complement of Xsing in X. Let C ⊂ X be a curve (i.e., an equidimensional
one-dimensional k-scheme). Recall (see [36, § 1]) that C is called a Cartier curve
on X if no component of C lies in Xsing, no embedded point of C lies away from

Xsing, OC,η is a field if {η} is a component of C disjoint from Xsing and, C is defined
by a regular sequence at every point of C ∩Xsing. We let k(C,C ∩Xsing)× be the

image of the natural map O×C,S →
s
⊕
i=1

O×C,ηi
, where {η1, . . . , ηs} is the set of generic

points of C and S is the union of the closed subset C ∩Xsing and the set of generic

points ηi of C such that {ηi} is disjoint from Xsing.
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For f ∈ k(C,C ∩Xsing)×, we let div(f) =
s

∑
i=1

div(fi), where fi is the projection

of f onto O×C,ηi
, and div(fi) is the divisor of the restriction of fi to the maximal

Cohen-Macaulay subscheme Ci of C supporting ηi. If C is reduced, then k(C,C ∩
Xsing)× = O×C,S and for f ∈ O×C,S , div(f) is the sum of div(fi), where the sum runs

through the divisors (in the classical sense, see [13, Chap. 1]) of the restrictions

of f to the components of C. The Levine-Weibel Chow group CHLW
0 (X) is the

quotient of Z0(Xreg) by the subgroup RLW
0 (X) generated by div(f), where f ∈

k(C,C ∩X)sing)× for a Cartier curve C on X.
One says that C a good curve (relative to Xsing) if it is reduced and there is

a finite local complete intersection (lci) morphism ν ∶C → X such that ν−1(Xsing)
is nowhere dense in C. The lci Chow group of 0-cycles CHl.c.i.

0 (X) is the quotient
of Z0(Xreg) by the subgroup Rl.c.i.

0 (X) generated by ν∗(div(f)), where ν ∶C → X

is a good curve and f ∈ k(C, ν−1(Xsing))×. We let CHF
0 (X) denote the classical

homological Chow group of 0-cycles on X as defined in [13, Chap. 1]. Clearly, there

are canonical maps CHLW
0 (X) ↠ CHl.c.i.

0 (X) → CHF
0 (X).

3.3. The fundamental exact sequence. Assume that X is a regular quasi-
projective scheme and D ⊂ X is an effective Cartier divisor with complement U .
To prove Theorem 1.1, we shall use the following fundamental exact sequence (see
[5, Thm. 1.9] when k is perfect, [8, Thm. 2.11] if dim(X) = 2 and [22, Thm. 1.1] in
the general case).

Theorem 3.2. There is a split short exact sequence

0→ CH0(X ∣D)
p∗
�→ CHl.c.i.

0 (SX)
ι∗

�→ CHF
0 (X) → 0.

In this sequence, p∗ takes a 0-cycle on U identically onto U+ and ι∗ takes a
0-cycle on U+ ∐U− onto U− via projection.

In order to prove our main result, we shall modify slightly the set of relations
used to define the Kerz-Saito Chow group of zero-cycles with modulus in the spirit
of the Levine-Weibel Chow group. We proceed as follows. We let CHLW

0 (X ∣D) be
the quotient of Z0(U) by the subgroup RLW

0 (X ∣D) generated by div(f), where

(1) C ⊂X is an integral curve with the property that C /⊂D;
(2) C is regular at every point of E ∶= C ∩D;
(3) f ∈ Ker(O×C,E ↠O×E).

Clearly, the difference between CHLW
0 (X ∣D) and CH0(X ∣D) is in the require-

ment that the curves giving the rational equivalence (that we see here as embedded
in X) are regular in a neighborhood of every point of intersection with the divisor
D. By taking normalizations, each such curve gives rise to a curve allowed in the
definition of R0(X ∣D), hence there is a canonical surjection

CHLW
0 (X ∣D) ↠ CH0(X ∣D).

Note also that the inclusion Z0(U+) ↪ Z0((SX)reg) = Z0(U+) ⊕ Z0(U−) induces a

push-forward map p∗∶CH
LW
0 (X ∣D) → CHLW

0 (SX) (see the proof of [5, Prop. 5.9]).

3.4. The factorization lemma. We now fix an integral and smooth projective
k-scheme X of dimension d ≥ 1. Let D ⊂ X be a reduced effective Cartier divisor.
Let U denote the complement of D. The key step in the proof of Theorem 1.1 is
the following factorization lemma.
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Lemma 3.3. Assume that k is infinite and one of the conditions (1), (2) and (4)

of Theorem 1.1 holds. Then the (injective) map CH0(X ∣D)
p∗
�→ CHl.c.i.

0 (SX) has a
factorization

CH0(X ∣D)
φX∣D

���→HS
0 (U)

p̃∗
�→ CHl.c.i.

0 (SX).

Proof. We let C be an integral normal curve and let ν ∶C →X be a finite morphism
whose image is not contained in D such that ν is birational to its image. We let E =
ν∗(D) and let f ∈ Ker(O×C,E ↠O×Ered

). We need to show that p∗(ν∗(div(f))) = 0.
We do it in few steps. We write V = C ∖E.

Step 1. We can factorize ν as

(3.2) C
ν′ ��

ν
��
��
��
��
� Pn

X

π

��

X

for some n ≥ 0 such that ν′ is a regular closed immersion and π is the canonical
projection. We let X ′ = Pn

X . Then note that SX′ ≅ Pn
SX

by [5, Prop. 2.3(7)]. We
let D′ = π∗(D) = Pn

D and U ′ = X ′ ∖D′ = Pn
U . Note that D′ is a reduced divisor

on X ′. Furthermore, if D satisfies any of the conditions given in the statement of
Theorem 1.1, then so does D′. This is a consequence of the smoothness of π. Let
π′∶SX′ → SX be the projection map.

Suppose that the image of div(f) under the composite map

(3.3) Z0(V )
ν′∗�→ Z0(U

′) ↠ CHLW
0 (X ′∣D′)

p∗
�→ CHLW

0 (SX′)

is zero. By composing further with the canonical surjection CHLW
0 (SX′) ↠

CHl.c.i.
0 (SX′), we see that div(f) dies in CHl.c.i.

0 (SX′) under p∗. Let π′∗∶CH
l.c.i.
0 (SX′)

→ CHl.c.i.
0 (SX) be the push-forward map, which exists by [5, Prop. 3.18]. It is then

clear that

p∗ ○ ν∗(div(f)) = π′∗ ○ p∗ ○ ν
′
∗(div(f)) = 0.

We thus need to show that if ν ∶C ↪ X is a regular closed immersion, then the

image of div(f) under the composite map Z0(V ) ↪ Z0(U) ↠ CHLW
0 (X ∣D)

p∗
�→

CHLW
0 (SX) is zero.

Step 2. If X is a curve, then CHLW
0 (X ∣D) =HS

0 (U) and there is nothing to prove.

We now assume that X is a surface. Let cycSX
∶CHLW

0 (SX) →K0(SX) denote the
cycle class map which takes the class [x] of a closed point x ∈ (SX)reg to the class
[Ox] ∈ K0(SX) (see [5, Lem. 3.13]). It is shown in [8, Thm. 7.7] (based on the
original result due to Levine) that cycSX

is injective and its image is SK0(SX). It
suffices therefore to show that cycSX

○p∗(div(f)) = 0 inK0(SX). By Proposition 2.8
(which can be applied if one of the conditions (1), (2) or (4) of Theorem 1.1 holds),
it suffices to show that cycSX

○p∗(ν∗ div(f)) dies in KH0(SX).
We let SC and Ssn

C be the doubles of C along E and Ered, respectively. It is then
easy to see that the canonical map ψ∶Ssn

C → SC is the seminormalization morphism
(for example, one can use [32, Prop. 4.2(1)] noting that the conductor subscheme
of Sn

C = C ∐C → Ssn
X is reduced and that Ssn

C is Cohen-Macaulay, hence S2). We let
h ∈ O×Ssn

C
,E be the rational function on Ssn

C such that h∣C+ = f and h∣C− = 1. Note
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that the condition f ∈ Ker(O×C,E ↠ O×Ered
) and the exact sequence (e.g., see the

proof of [5, Lem. 2.2])

0→O×Ssn
C

,E →O×C,E ×O×C,E → O×Ered
→ 0

imply that h is well defined. Note that h is also a rational function on SC but may
not lie in O×SC ,E .

To simplify the notation, let us write p∗ also for the (injective) maps

p∗∶CH0(C ∣E) → CHl.c.i.
0 (SC), p∗∶CH0(C ∣Ered) → CHl.c.i

0 (Ssn
C )

given by the fundamental sequence applied to the pairs (C,E) and (C,Ered) re-
spectively. It follows from the above discussion that p∗(divC(f)) = divSsn

C
(h) = 0 in

CHl.c.i
0 (Ssn

C ) ≅ CHLW
0 (Ssn

C ) (the latter isomorphism holds for any 1-dimensional re-
duced scheme [5, Lem. 3.12]). By the same token, we get that cycSsn

C
(p∗(divC(f)))

= 0 in K0(Ssn
C ), and a fortiori that p∗(div(f)) dies in KH0(Ssn

C ). On the other
hand, it easy to see using the excision sequence forKH-theory [50, IV.12.6] that the

canonical map KH0(SC)
ψ∗

�→KH0(Ssn
C ) is an isomorphism. We conclude that the

image of div(f) under the composite map Z0(C ∖ E) ↠ CH0(C ∣E) → K0(SC) →
KH0(SC) is zero.

Since ν′∶SC ↪ SX is a regular closed immersion (see § 2.1), there is a push-
forward map ν′∗∶KH(SC) →KH(SX) (see § 2.2). We now consider the commuta-
tive diagram

Z0(C ∖E) CH0(C ∣E) KH0(SC)

Z0(U) CH0(X ∣D) KH0(SX).

cycSC
○p∗

ν∗ ν′∗
cycSX

○p∗

Using this, we get

cycSX
○p∗ ○ ν∗(div(f)) = ν′∗ ○ cycSC

○p∗(div(f)) = 0.

This concludes the proof of the lemma when X is a surface (in particular, this
covers the case where (2) holds).

Step 3. We now assume d ≥ 3 and fix a closed embedding X ↪ Pn
k . Let {D1, . . . ,Dr}

be the set of all irreducible components of D. Let {E1, . . . ,Es} be the set of
irreducible components of Dsing. We let Δ(X) ⊂ X be the set defined in such a
way that x ∈ Δ(X) if and only if x is a generic point of one of the schemes X,D
and Dsing. We assume that we are in the case (1), namely, D is a normal crossing
k-scheme. In particular, each Di is smooth over k of dimension d − 1 and each Ej

is smooth over k of dimension d − 2 ≥ 1. Since C is regular and not contained in
any of the Di’s, it follows that the scheme theoretic intersection C ∩Di is a finite
closed subscheme of C. Since the dimension of the closure of each of the points of
Δ(X) is at least one, it follows that Δ(X) ∩C = ∅.

Given the above arrangement of X,Di,Ej and C in Pn
k , we can apply either the

Bertini theorem of Altman-Kleiman [1, Thm. 7] or of Ghosh-Krishna [16, Thm. 3.9]
to find a complete intersection hypersurface H =H1∩⋯∩Hd−2 in Pn

k of large enough
degrees containing C such that Y =X ∩H satisfies the following.

(1) Y is a smooth k-scheme of pure dimension two.
(2) Each Y ∩Di is a smooth k-scheme of dimension one.
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(3) Each Y ∩Ej is a smooth k-scheme of dimension zero.
(4) Y ∩DJ = Y ∩ (⋂

i∈J
Di) = ∅ if ∣J ∣ ≥ 3.

Since dim(Di) ≥ 2, it follows (for instance, from [24, Cor. 6.2]) that Y as well
as each Y ∩Di is connected, hence integral. Furthermore, Y ∩D is a curve which
is reduced away from C by [16, Thm. 3.2]. Since C ∩ D is finite, Y is regular
and Y ∩D is a Cartier divisor on Y , it follows that Y ∩D is a Cohen-Macaulay
curve which is generically reduced. This implies that Y ∩D must be reduced (see
[18, Prop. 14.124]). We let F = Y ∩D. Then we conclude from (1), (2) and (3)
above that Y is a complete intersection smooth integral surface inside X which
contains C and F = Y ∩D is a normal crossing curve on Y .

If condition (4) holds, i.e., if k ⊂ Q, then we can repeat the above argument to
find a complete intersection smooth integral surface Y ⊂ X which contains C and
F = Y ∩D is a reduced Cartier divisor on Y . The only difference is that we cannot
no longer guarantee that the irreducible components of F are regular.

In any case, let (Y,F ) be the pair constructed above, and let τ ∶Y ↪ X be the
inclusion map. Let W = Y ∖F = U ∩Y . Let τ ′∶SY ↪ SX denote the inclusion map,
where SY is the double of Y along F . Then τ ′ is a regular closed embedding by
[5, Prop. 2.4] (see § 2.1). It follows from Step 2 that the image of div(f) under the

composite map Z0(V ) ↪ Z0(W ) ↠ CHLW
0 (Y ∣F )

p∗
�→ CHLW

0 (SY ) is zero. We now
consider the commutative diagram

(3.4) Z0(W ) �� ��

��

CHLW
0 (Y ∣F )

p∗ ��

τ∗

��

CHLW
0 (SY )

τ ′∗
��

Z0(U) �� �� CHLW
0 (X ∣D)

p∗ �� CHLW
0 (SX).

We note that τ ′∗ exists because τ
′ is a regular closed immersion and SY ∩(SX)reg =

(SY )reg. One easily checks that the push-forward map τ∗ also exists and the dia-
gram commutes. We thus get

p∗(div(f)) = p∗ ○ τ∗(div(f)) = τ ′∗ ○ p∗(div(f)) = 0.

This concludes the proof of the lemma.

�

To take care of the case when k is a finite field, we shall need the following result.
For any X ∈ Schk and k′/k a field extension, we let Xk′ =X ×Spec (k) Spec (k

′) with
projection v∶Xk′ →X.

Lemma 3.4 ([43], p.191). Let X be a smooth quasi-projective k-scheme and let
k′/k be an algebraic field extension. Then the flat pull-back on 0-cycles induces a
homomorphism

v∗∶HS
0 (X) →HS

0 (Xk′).

If k′/k is finite, then the push-forward on 0-cycles induces a homomorphism

v∗∶H
S
0 (Xk′) →HS

0 (X)

such that v∗ ○ v∗ is multiplication by [k′ ∶ k].

We remark that the pull-back map v∗ is defined in [43] for finite field extensions.
But this implies the case of arbitrary algebraic extensions by an easy limit argument.
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3.5. Proof of Theorem 1.1. We let X,D and U be as in Theorem 1.1. We first
assume that k is infinite and one of the conditions (1), (2) and (4) of Theorem 1.1

holds. In this case, the map p∗∶CH0(X ∣D) → CHl.c.i.
0 (SX) is injective by Theorem

3.2. Combining this injectivity with Lemma 3.3, one immediately concludes that
φX ∣D must be an isomorphism.

We now assume that k is finite and one of the conditions (1), (2) and (4) of
Theorem 1.1 holds. We only have to show that φX ∣D is injective. Let α ∈ CH0(X ∣D)
be a class such that φX ∣D(α) = 0. Let �1 ≠ �2 be two primes different from char(k).
Let ki/k be the pro-�i field extension of k for i = 1, 2.

Using [20, Prop. 8.5], we have a commutative diagram

CH0(X ∣D) ��

��

HS
0 (U)

��

CH0(Xki
∣Dki

) �� HS
0 (Uki

),

where the vertical arrows are the base change maps. The right vertical arrow
exists by Lemma 3.4. Using the case of infinite fields, it follows that α dies in
CH0(Xki

∣Dki
). In particular, it dies in CH0(Xk′i

∣Dk′i
) for a finite extension k′i

whose degree is a power of �i for each i = 1, 2. Using the projection formula for
Chow groups with modulus (see [20, Prop. 8.5]), we conclude that �n1

1 α = �n2

2 α = 0
in CH0(X ∣D) for some n1, n2 ≥ 1. It follows that α = 0. This concludes the proof
of Theorem 1.1 under the conditions (1), (2) and (4). The remaining case (3) is
already shown in [7, Thm. 1.1]. This concludes the proof of Theorem 1.1. �

3.6. Proofs of some applications. In this subsection, we shall give the proofs
of some of the applications of Theorem 1.1 mentioned in § 1. Corollary 1.2 and
Theorem 1.3 are immediate from Theorem 1.1 using the references given before
their statements. We shall therefore prove Theorem 1.4.

Proof of Theorem 1.4. Since the theorem is already known for torsion away from
the characteristic by [45], we shall assume that k is algebraically closed of positive
characteristic. We consider the diagram

(3.5)

CH0(X ∣D)0 HS
0 (U)0

Jd(X ∣D)(k) Alb(U)(k),

φX∣D

albX∣D albU

λX∣D

where Jd(X ∣D) is the semi-abelian Albanese variety with modulus, constructed in
[5, § 11.1]. This diagram is commutative and the bottom horizontal arrow is an
isomorphism by [7, Thm. 3.2]. The left vertical arrow is an isomorphism on the
torsion subgroups by [32, Thm. 6.7]. The top horizontal arrow is an isomorphism
by Theorem 1.1. The desired assertion follows. �

4. Motivic cohomology of normal crossing schemes

The goal of this section is to prove Theorem 1.6. We shall need few ingredients
in order to achieve this. The first is a perfection property of the cycle groups which
we recall below.
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4.1. Perfection property of cycle groups. We let k be a field of exponential
characteristic p. We let Λ be a commutative ring which we assume to be Z if
char(k) = 0 or any Z[ 1

p
]-algebra if char(k) = p > 0. We begin with a short recap

about motivic cohomology of k-schemes, and related motivic invariants. Recall our
notation that for a field extension k′/k and X ∈ Schk, we write Xk′ for the base
change of X by k′ over k and v∶Xk′ →X denotes the projection map.

4.2. Motivic homology and cohomology of singular schemes. Let X ∈ Schk

with the structure map f ∶X → Spec (k) and let m,n ∈ Z.

Definition 4.1. The motivic cohomology groups of X are defined as

Hm(X,Λ(n)) = HomDM(k,Λ)(M(X),Λ(n)[m]),

where DM(k,Λ) is Voevodsky’s non-effective category of motives for the cdh-
topology (also known as the ‘big’ category of motives) with Λ-coefficients, Λ(n)
is the motivic complex, and M(X) is the motive of X (see [47] or [11, § 1]).

Let SH(X) be the monoidal stable homotopy category of smooth schemes overX
and SHcdh(k) the stable homotopy category of Schk with respect to the cdh topol-
ogy (e.g., see [33, § 2]). There is an adjoint pair of functors (ψX , φX)∶ SH(X) →
DM(k,Λ). By [11, Thm. 5.1] and [33, Thm. 2.14], these functors give rise to
functorial isomorphisms

(4.1)
Hp(X,Λ(q))

≅
�→ HomSH(X)(SX ,Σp,q(HΛX))
≅
�→ HomSHcdh(k)(Σ

∞
T X+,Σ

p,qHΛ),

where SX is the sphere spectrum (the unit object) of SH(X), HΛ is the motivic
Eilenberg-MacLane spectrum in SH(k), and HΛX = Lf∗(HΛ) for the structure
map f ∶X → Spec (k). We refer to, e.g., [33, § 2,3] for the definitions of the suspen-
sion operators Σ∞T and Σp,q.

In a similar fashion, one can define motivic cohomology groups with compact
support and motivic homology as follows.

Hm
c (X,Λ(n)) = HomDM(k,Λ)(Mc(X),Λ(n)[m]),

Hm(X,Λ(n)) = HomDM(k,Λ)(Λ(n)[m],M(X)),

where Mc(X) is the motive of X with compact support [39, Defn. 16.13]. In
particular, there is a canonical isomorphism [39, Prop. 14.18]:

Hn(X,Λ(0))
≃
�→HS

n (X)Λ,

where the right-hand side is the n-th Suslin homology group of X recalled in 3.1.
We recall the following result of Cisinski-Déglise [11, Prop. 8.1].

Theorem 4.2. Let k′/k be a purely inseparable field extension and let v∶Spec (k′) →
Spec (k) be the projection map. Then the pull-back functor

u∗∶DM(k,Λ) →DM(k′,Λ)

is an equivalence of triangulated categories.

Using Theorem 4.2 and the description of various groups above, we get the
following result which we shall use in our proofs.
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Corollary 4.3. Let k′/k be a purely inseparable field extension and let u∶Spec (k′)
→ Spec (k) be the projection map. Then for any X ∈ Schk, the pull-back maps

v∗∶Hm(X,Λ(n)) �→Hm(Xk′ ,Λ(n)),

v∗∶Hm
c (X,Λ(n)) �→Hm

c (Xk′ ,Λ(n))

are isomorphisms.

Assume now that X is smooth of pure dimension d over k. Duality in motivic
homotopy theory makes it possible to identify motivic cohomology and homology
groups (as well as their compactly supported version) with the appropriate twist
and shift. We shall need an explicit description, in the bi-degree (2d, d), of the
map realizing such duality isomorphism for later applications. We quickly recall its
construction. For every closed point x ∈ X, the inclusion Spec (k(x)) ↪ X gives a

Gysin map Mc(X) →M{x}(X)
≅
�→M(k(x))(d)[2d]. Taking cohomology, we get

(4.2) Z
≃
�→H0(k(x),Z(0)) →H2d

c (X,Z(d)),

and extending (4.2) by linearity, we get φX ∶ Z0(X) →H2d
c (X,Z(d)).

Lemma 4.4. The map φX descends to an isomorphism

φX ∶H
S
0 (X)Λ

≅
�→H2d

c (X,Λ(d)).

Proof. Let k′ be a perfect closure of k and consider the commutative diagram

(4.3)

HS
0 (X)Λ H2d

c (X,Λ(d))

HS
0 (Xk′)Λ H2d

c (Xk′ ,Λ(d)).

φX

v∗ v∗

φXk′

The left vertical arrow is an isomorphism by Lemma 3.4 using a limit argument
and the right vertical arrow is an isomorphism by Corollary 4.3. The bottom
horizontal arrow is an isomorphism (e.g., by [27, Thm. 5.5.14]). The lemma now
follows. �

4.3. The snc subcurves. We fix a normal crossing k-scheme X of dimension d ≥ 1
and let {X1, . . . ,Xn} be the set of irreducible components of X. An snc subcurve
C ⊂ X (see [12, § 2.1]) is a reduced closed subscheme of pure dimension one such
that the scheme theoretic intersection of C with each irreducible component Xi of
X is either empty or smooth of pure dimension one, its intersections with Xi ∩Xj

(for all i ≠ j) are either empty or smooth and 0-dimensional, and its intersections
with Xi ∩Xj ∩Xl (for all i ≠ j ≠ l ≠ i) are empty.

Remark 4.5. We note that the above definition of snc subcurves is more restrictive
than the one given in [12, § 2.1] because the latter only requires the intersections
C ∩Xi ∩Xj (for i ≠ j) to be reduced (not necessarily smooth) and 0-dimensional.
The stronger assumption allows us to prove the following result. But this distinction
disappears if k is perfect.

Lemma 4.6. Let X ∈ Schk be a normal crossing scheme and let C ⊂ X be an
snc subcurve. Let k′/k be a finite purely inseparable field extension. Then Xk′ is a
normal crossing k′-scheme and Ck′ ⊂Xk′ is an snc subcurve.
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Proof. Let v∶Xk′ →X be the base change morphism. Then v is a universal homeo-
morphism. In particular, there is a bijective correspondence between the irreducible
components of X and Xk′ . We let X ′i = (Xi)k′ for 1 ≤ i ≤ n. Since Xi ∈ Smk, it
follows each X ′i is integral and smooth over k′. In turn, this implies that Xk′ is
generically reduced (i.e., Xk′ satisfies Serre’s R0-condition). Since v is finite and
flat, and X satisfies Serre’s S1-condition (because it is reduced), it follows that Xk′

also satisfies Serre’s S1-condition. It follows thatXk′ is reduced. By the same token,
for every non-empty subset J ⊂ [1, n], the scheme theoretic intersection X ′J ∶= ⋂

i∈J
X ′i

is a smooth k′-scheme (unless empty) of pure dimension d+ 1− ∣J ∣. In other words,
Xk′ is a normal crossing k′-scheme. An identical proof shows that Ck′ ⊂ Xk′ is an
snc subcurve. �
4.4. The cycle group CHEKW

0 (X). Let X ∈ Schk be a normal crossing scheme as

above. The cycle group CHEKW
0 (X) is the quotient of Z0(Xreg) by the subgroup

REKW
0 (X) generated by div(f), where f ∈ k(C)× is a rational function on a curve

C ⊂X such that the pair (C, f) satisfies either of the conditions (1) and (2) below.

(1) C is an integral curve not contained in Xsing with normalization ν ∶ Cn →
C ↪X and f ∈ O×Cn,ν∗(Xsing)

such that f(x) = 1 for all x ∈ ν∗(Xsing).
(2) C ⊂X is an snc subcurve and f ∈ O×C,(C∩Xsing)

.

Let Y = Xsing for the normal crossing scheme X. The inclusion Spec (k(x)) ↪

Yreg gives a Gysin homomorphism k(x)×
≅
�→ H1(k(x),Z(1)) → H2d−1(Y,Z(d)) for

every closed point x ∈ Yreg. Note that Yreg ∈ Smk since X is a normal crossing

k-scheme. Hence, we get the global Gysin map ⊕
x∈Y

(d−1)
reg

k(x)× → H2d−1(Y,Z(d)),

where Y
(d−1)
reg is the set of closed points of Yreg.

Lemma 4.7. The map

αY ∶ ⊕
x∈Y

(d−1)
reg

k(x)× ⊗Z Λ →H2d−1(Y,Λ(d))

is surjective.

Proof. This is [12, Prop. 6.4] if k is perfect. The general case follows from the perfect
one using Corollary 4.3 in order to identify H2d−1(Y,Λ(d)) with H2d−1(Yk′ ,Λ(d)),
where k′ is a perfect closure of k. �

Let us now assume that X is a projective normal crossing k-scheme. The next
step for proving Theorem 1.6 is the description of the motivic cohomology groups
H2d(X,Λ(d)) for normal crossing varieties discussed in [12]. We have seen in (4.2)
that there is a canonical map φXreg

∶ Z0(Xreg) →H2d
c (Xreg,Z(d)). Composing with

the map H2d
c (Xreg,Z(d)) →H2d(X,Z(d)), we get λ̃X ∶ Z0(Xreg) →H2d(X,Z(d)).

Proposition 4.8. The map λ̃X induces an isomorphism

λ̃X ∶CH
EKW
0 (X)Λ

≅
�→H2d(X,Λ(d)).

Proof. This is [12, Thm. 7.1] when k is perfect. The same proof works in the general
case, using Lemma 4.7 instead of [12, Prop. 6.4] and passing to a perfect closure
of k. The latter is achieved using Corollary 4.3 and Lemma 4.6. The vanishing
H2d(Y,Λ(d)) = 0 for Y =Xsing, that is also used in the proof of [12, Thm. 7.1], can
be deduced from [33, Thm. 5.1] using again Corollary 4.3. �
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4.5. Proof of Theorem 1.6(1). Let k be any field and let X ∈ Schk be as in
part (1) of Theorem 1.6. In other words, X is a reduced quasi-projective k-scheme

of pure dimension d. To construct the map λX ∶CH
l.c.i.
0 (X) → H2d(X,Z(d)), we

proceed as follows.
Using (4.1) and [40, Defn. 2.30, Thm. 2.31], we have a Gysin map τx∶Z ≅

H0(k(x),Z(0)) → H2d(X,Z(d)) for any closed point x ∈ Xreg. Extending this

linearly, we get a homomorphism λX ∶ Z0(Xreg) →H2d(X,Z(d)).
When d = 1, it is shown in the proof of [33, Lem. 7.12] that λX factors through the

Chow group (this uses the slice spectral sequence for singular schemes). For d ≥ 2,
we let ν ∶C → X be a good curve and let f ∈ O×C,S , where S = ν−1(Xsing) ∪ Csing.

By [5, Lem. 3.4], we can assume that ν is a lci morphism. In particular, there
is a Gysin homomorphism ν∗∶H2(C,Z(1)) → H2d(X,Z(d)) by [40, Defn. 2.31,
Thm. 2.31]. We now consider the diagram

(4.4)

Z0(C ∖ S) H2(C,Z(1))

Z0(Xreg) H2d(X,Z(d)).

λC

ν∗ ν∗

λX

It is immediate from the construction of λX and Gysin maps that this diagram
is commutative. By the curve case, we have that λC(div(f)) = 0. It follows that

λX(div(f)) = λX ○ ν∗(div(f)) = ν∗ ○ λC(div(f)) = 0.

This shows that λX factors through a homomorphism λX ∶CH
l.c.i.
0 (X) →

H2d(X,Z(d)).
By construction, for a regular closed immersion f ∶X ′ ↪ X of equidimensional

schemes such that dim(X ′) = d′ and f−1(Xsing) ⊂ X ′sing, there is a commutative
diagram

(4.5)

CHl.c.i.
0 (X ′) H2d′(X ′,Z(d′))

CHl.c.i.
0 (X) H2d(X,Z(d)),

λX′

f∗ f∗

λX

in which the left and the right vertical arrows are the Gysin homomorphisms of
[5, Prop. 3.18] and [40, Defn. 2.30, Thm. 2.31], respectively.

4.6. A key lemma. We shall need the following key result about the lci Chow
group of normal crossing schemes. Let X be a normal crossing k-scheme of dimen-
sion d as above and let Y be an irreducible component of X. We let Z ⊂ X be
the scheme theoretic closure of X ∖ Y and let E = Y ∩ Z. Then Xsing and E are
normal crossing k-schemes of dimension d − 1 and E is a simple normal crossing
divisor on Y . We let V = Y ∖E so that there is an inclusion of the 0-cycle groups
ι∗∶ Z0(V ) ↪ Z0(Xreg), where ι∶Y ↪X is the inclusion.

Lemma 4.9. Assume that k is infinite. Then the map ι∗ descends to a homomor-
phism

ι∗∶CH0(Y ∣E) → CHl.c.i.
0 (X).

Proof. This is shown in [7, Thm. 8.3] when either k is algebraically closed or d ≤ 2.
We shall closely follow that proof. We can assume that d ≥ 3 and that the lemma
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holds in smaller dimensions. We fix a locally closed embedding X ↪ PN
k . Let C ⊂ Y

be an integral curve not contained in E and let f ∈ Ker(O×Cn,ν∗(E) → O×ν∗(E)), where
ν ∶ Cn → Y ↪ X is the canonical map from the normalization of C. We need to
show that div(f) dies in CHl.c.i.

0 (X).

We can write ν as the composition of two maps Cn ν′

�→ Pm
X

π
�→ X for some

integer m ≥ 0, where ν′ is a regular closed immersion and π is the projection.
Note that ν′ factors through Pm

Y . We now note that Pm
X is a normal crossing k-

scheme of dimension d ≥ 3 and Pm
Y is an irreducible component of Pm

X . Using

the push-forward map π∗∶CH
l.c.i.
0 (Pm

X) → CHl.c.i.
0 (X) (see [5, Prop. 3.18]) and the

canonical map CHLW
0 (Pm

X) → CHl.c.i.
0 (Pm

X), it suffices to show that ν∗(div(f)) dies

in CHLW
0 (Pm

X). We can therefore replace CHl.c.i.
0 (X) with CHLW

0 (X) and assume

that C is normal. Note that the map CHLW
0 (X) → CHl.c.i.

0 (X) is an isomorphism
for d ≤ 2 by [8, Thm. 8.1] (see also [5]). Hence, the base case of the induction holds
for the modified problem too.

We can now repeat the argument of the proof of [7, Thm. 8.3] (without using
any blow-up) to find a hypersurface section X ′ ⊂ X inside PN

k containing C such
that X ′ is a (d − 1)-dimensional normal crossing k-scheme, X ′reg = Xreg ∩H and
Y ′ = X ′ ∩ Y = H ∩ Y is a smooth irreducible component of X ′. It follows by
induction that ν∗(div(f)) dies in CHLW

0 (X ′). In particular, it dies in CHLW
0 (X)

via the push-forward map CHLW
0 (X ′) → CHLW

0 (X), induced by the regular closed
immersion X ′ ↪X. This concludes the proof. �

4.7. Proof of Theorem 1.6(2, 3). If X is projective and Xreg is smooth over
k, then the surjectivity of λX (as asserted in part (2)) follows from the surjection
H2d

c (U,Λ(d)) ↠H2d(X,Λ(d)) and Lemma 4.4. We now prove the last part of the
theorem. We are given that X is a projective normal crossing k-scheme and need
to show that λX is an isomorphism. To prove this, we first assume that k is infinite
and look at the diagram

(4.6) Z0(U) �� ��

�� ���
��

��
��

��
CHEKW

0 (X)Λ

ψX

��

λ̃X

����
���

���
���

CHl.c.i.
0 (X)Λ

λX �� H2d(X,Λ(d)).

It suffices to show that ψX exists such that the resulting left triangle commutes.
This is shown in the proof of [7, Thm. 8.4]. But we do not need Λ-coefficient for
constructing ψX , thanks to Theorem 1.1. We sketch the steps. We let Y =Xsing.

We let C ⊂X be a reduced curve and f ∈ k(C)× a rational function, where k(C)
is the ring of total quotients for C. We now observe that if the pair (C, f) is of type
(1) in the definition of CHEKW

0 (X) in § 4.4, then C must be integral. In particular,
it must be contained in one and only one irreducible component X ′ of X. Moreover,
for this component X ′, the intersection E = Z∩Y must be a simple normal crossing
divisor on X ′, where Z is the scheme theoretic closure of X ∖X ′. We now conclude
from Theorem 1.1 that div(f) dies in CH0(X ′∣E). Hence, it dies in CHl.c.i.

0 (X) by
Lemma 4.9. If (C, f) is of type (2) in the definition of CHEKW

0 (X) in § 4.4, then
C ⊂X is a Cartier curve (see § 3.2) by [7, Lem. 7.6] and hence, div(f) already dies

in CHLW
0 (X). This concludes the proof of part (3) when k is infinite.
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We now assume that k is finite. Since we already showed surjectivity of λX

above, we only need to show that it is injective. We let k′ be the pro-p-extension
of k where char(k) = p. We then get a commutative diagram

(4.7)

CHl.c.i.
0 (X)Λ H2d(X,Λ(d))

CHl.c.i.
0 (Xk′)Λ H2d(Xk′ ,Λ(d)),

λX

v∗ v∗

λX
k′

where v∶Xk′ → X is the base change map. The left vertical arrow exists and is
injective by [5, Prop. 6.1]. Since k′ is infinite, the bottom horizontal arrow is
injective. It follows that λX must be injective too. This concludes the proof of
Theorem 1.6. �

5. A question of Barbieri-Viale and Kahn

Let k be an algebraically closed field of characteristic zero and let X be a projec-
tive and reduced k-scheme of pure dimension d. We shall now prove our application
of the existence of the map λX given by Theorem 1.6.

In [3, 13.7.6], the authors refer that in a private correspondence, Marc Levine

outlined the construction of a cycle map c� from CHLW
0 (X) to H2d(X,Z(d)) in-

ducing, in particular, a morphism

c�tors∶CH
LW
0 (X)tors �→H2d(X,Z(d))tors

that they conjecture to satisfy a number of properties. We can now give a positive
answer to their conjecture.

We shall verify the expectations of Barbieri-Viale and Kahn by working with the
modified version CHl.c.i.

0 (X) instead of CHLW
0 (X), keeping in mind that the two

Chow groups actually agree under the above assumption on k, by [5, Thm. 3.17].
First, let Jd(X) be the universal regular semi-abelian variety quotient of

CHLW
0 (X)deg 0, constructed in [9]. This is universal for regular homomorphisms

(see op. cit. for the definition of a regular homomorphism) from CHLW
0 (X) to

semi-abelian varieties. It was shown in [5, Prop. 9.7] that Jd(X) is also the uni-

versal regular semi-abelian variety quotient of CHl.c.i.
0 (X)deg 0.

Next, let L1Alb∗(X) be the 1-motive

L1Alb∗(X) =Ht
1(LAlb(M(X)∗(d)[2d])),

where M(X)∗ is the dual of M(X) in DM(k), the homology Ht
1(−) denotes the

H1(−) homology with respect to the t-structure (introduced in [3, 3.1]) on Deligne’s
category of 1-motives Db(M1), and finally LAlb(−) denotes the integrally defined
derived Albanese functor

LAlb∶DMeff
gm(k) �→Db(M1),

introduced in [3, Def. 2.1.1] (note that M(X)∗(d)[2d] is effective, so that the defi-
nition makes sense, and that we are working in characteristic zero). In particular,
L1Alb∗(X) is a semi-abelian variety. By [3, (13.7.1)], there is a canonical map

(5.1) u∶H2d(X,Z(d)) �→ L1Alb∗(X)(k)

that is an isomorphism on the torsion subgroups by [3, Corollary 13.7.4].
We now have all the ingredients to state and prove the following result. This

verifies all expectations of Barbieri-Viale and Kahn.
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Theorem 5.1. Let X and k be as above. Then the morphism

λX ∶CH
l.c.i.
0 (X) →H2d(X,Z(d))

is surjective with uniquely divisible kernel, and there is a commutative diagram

(5.2)

CHl.c.i.
0 (X)tors H2d(X,Z(d))tors

Alb+(X)(k)tors L1Alb∗(X)(k)tors

λX

a+ u

where all the arrows are isomorphisms.

Proof. The existence and explicit construction of λX was shown in Theorem 1.6.
To check that (5.2) commutes, it suffices to check it for the cycle class of a closed
point x ∈ Xreg. This reduces to checking the commutativity for points where this
is well known.

Now, the left vertical arrow in (5.2) is an isomorphism by the main result of [9].
The right vertical arrow is an isomorphism by [3, 13.7.5]. The bottom horizontal
arrow is an isomorphism by [3, Thm. 12.12.6]. Thus every arrow in (5.2) is an
isomorphism. Finally, recall (see, e.g., [6, Lemma 5.1]) that since k is algebraically

closed, the subgroup CHl.c.i.
0 (X)deg 0 is divisible. Since λX is an isomorphism on

torsion by the above discussion, an easy diagram chase implies that the kernel of
λX is uniquely divisible, completing the proof of the theorem. �
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Boston, MA, 1990, pp. 247–435, DOI 10.1007/978-0-8176-4576-2 10. MR1106918

[49] Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in
any characteristic, Int. Math. Res. Not. 7 (2002), 351–355, DOI 10.1155/S107379280210403X.
MR1883180

[50] Charles A. Weibel, The K-book, Graduate Studies in Mathematics, vol. 145, American
Mathematical Society, Providence, RI, 2013. An introduction to algebraic K-theory, DOI
10.1090/gsm/145. MR3076731

[51] Charles A. Weibel, Homotopy algebraic K-theory, Algebraic K-theory and algebraic number
theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI,
1989, pp. 461–488, DOI 10.1090/conm/083/991991. MR991991

Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano,
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