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The interplay of topology and non-Hermiticity has led to diverse, exciting manifestations in a plethora
of systems. In this work, we systematically investigate the role of non-Hermiticity in the Chern insulating
Haldane model on a dice lattice. Due to the presence of a nondispersive flat band, the dice-Haldane model
hosts a topologically rich phase diagram with the nontrivial phases accommodating Chern numbers 2. We
introduce non-Hermiticity into this model in two ways—through balanced non-Hermitian gain and loss, and by
nonreciprocal hopping in one direction. Both these types of non-Hermiticity induce higher-order exceptional
points of order three. Remarkably, the exceptional points at high-symmetry points occur at odd integer values
of the non-Hermiticity strength in the case of balanced gain and loss, and at odd integer multiples of 1/+/2 for
nonreciprocal hopping. We substantiate the presence and the order of these higher-order exceptional points using
the phase rigidity and its scaling. Furthermore, we construct a phase diagram to identify and locate the occurrence
of these exceptional points in the parameter space. Non-Hermiticity has yet more interesting consequences on a
finite-sized lattice. Unlike for balanced gain and loss, in the case of nonreciprocal hopping, the nearest-neighbor
lattice system under periodic boundary conditions accommodates a finite, nonzero spectral area in the complex
plane. This manifests as the non-Hermitian skin effect when open boundary conditions are invoked. In the more
general case of the dice-Haldane lattice model, the non-Hermitian skin effect can be caused by both gain and
loss or nonreciprocity. Fascinatingly, the direction of localization of the eigenstates depends on the nature and
strength of the non-Hermiticity. We establish the occurrence of the skin effect using the local density of states,
inverse participation ratio, and the edge probability and demonstrate its robustness to disorder. Our results place

the dice-Haldane model as an exciting platform to explore non-Hermitian physics.
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I. INTRODUCTION

In condensed-matter physics, most of the intricate phases
of matter, including magnetic and superconducting states, can
be understood in the framework of the celebrated Landau
theory [1]. However, the two-dimensional electron gas at very
low temperatures and under a strong transverse magnetic field
exhibits a quantized Hall conductance [2]—such a quantiza-
tion is not subject to any spontaneous symmetry breaking.
Consequently, new concepts have been developed based on
single-particle dynamics in topological band theory to unravel
the advent of the integer quantum Hall effect. Haldane, in his
seminal work, demonstrated that Dirac points in honeycomb
lattices such as graphene are protected by both inversion and
time-reversal symmetry [3-8]. The absence of any of these
symmetries essentially leads to gapped spectra with distinct
topological nature. In particular, Semenoff mass assigns an
energy offset between the two sublattices of graphene and
breaks the inversion symmetry [9]. These inversion symmetry
broken systems give rise to the normal or trivial insulators at
half filling. In contrast, a staggered magnetic field that turns
the second-nearest-neighbor hoppings complex also breaks
the time-reversal symmetry of the system without violating
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its translational symmetry. These time-reversal symmetry bro-
ken Chern insulators are at the heart of realizing quantized
transverse Hall conductance in zero external magnetic field
condition, namely the quantum anomalous Hall effect. In
other words, the Haldane model is an elegant Chern insulator
model on a honeycomb lattice that allows tunability between
topologically trivial and nontrivial phases by tuning the model
parameters. The topological phase diagram of the Haldane
model has successfully been realized in experiments using
ultracold fermionic atoms in optical lattices [10].

Moreover, unlike graphene, some of the bipartite lattices
possess an unequal number of sublattices that offer an in-
triguing platform to realize perfectly or compact localized
states. These compact localized states exhibit nondispersive
flat bands, i.e., the energy is independent of momentum in the
electronic band structure. The underlying mechanism behind
such flat bands can be well explained in terms of destructive
interference through various network paths. For example, the
bipartite dice lattice [11-20] is one of the first and most promi-
nent examples where such flat-band physics was introduced.
In a dice lattice, atoms are not only placed at the vertices of
hexagons but also at the centers. Therefore, the number of
sites with coordination number three is twice those with coor-
dination number six. In contrast to usual honeycomb lattices,
three-component fermions invariably govern the low-energy
spectrum of the lattice. The two dispersive bands form Dirac
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cones and touch each other at symmetry points K and K’
of the Brillouin zone (BZ), while the remaining one is flat
and lies at the Fermi level. The flat bands in the bipartite
lattices occur because of the chiral symmetry. In other words,
the bipartite model systems (such as dice) with a majority
of one kind of sublattice invariably exhibit chiral flat bands
[11]. The flat bands have- recently been experimentally real-
ized in photonic crystals employing ultrafast laser technology
[21-24]. Motivated by these interesting properties of the dice
lattice, the Haldane model has been extended in the form of
a three-band model with broken inversion and time-reversal
symmetry [25]. As expected, the topological phase diagram
of the Haldane dice lattice is richer compared with that of the
graphene with more interesting phases both within and outside
the topologically nontrivial region [26].

Non-Hermitian physics [27-33], on the other hand, is a
topic of growing widespread interest. Non-Hermiticity finds
applicability in various fields of photonics, optics, and elec-
tronics, among others [34—40]. Since these are open systems,
the corresponding non-Hermitian Hamiltonian can accommo-
date for the gain and loss of particles or energy. Unusual
properties, such as complex band spectra and non-orthogonal
eigenstates, are the outcomes of such non-Hermitian Hamil-
tonians [41]. In particular, non-Hermitian systems can show
a distinct class of spectral degeneracies known as exceptional
points (EPs) [42-53], as well as exceptional contours [54,55].
At an EP the eigenvalues and the eigenvectors simultaneously
coalesce making the Hamiltonian defective, i.e., nondiago-
nalizable. The number of eigenstates undergoing coalescence
determines the order of the EP. The study of EPs has gained
immense interest in the field of photonic systems [56,57] and
microwave cavities [58,59] among others, with interesting
applications such as unidirectional sensitivity [60,61], laser
mode selectivity [62,63] and optomechanical energy transfer
[64]. The non-Hermitian skin effect (NHSE), on the other
hand, is a feature unique to non-Hermitian systems where a
macroscopic fraction of eigenstates migrate to a boundary of
the system as soon as open boundary conditions (OBCs) are
imposed [65-74]. This extreme sensitivity of non-Hermitian
systems to the boundary conditions leads to an anomalous
bulk-boundary correspondence [75-78]. The NHSE has been
experimentally observed recently in photonic systems [79],
electrical circuits [80,81], and acoustic topological insulators
[82,83], among others.

In this paper, we systematically study the interplay be-
tween the effect of non-Hermiticity and different kinds of
hopping terms in the dice lattice model. Later, we also study
the role of disorder [84-93] in the context of the nontriv-
ial effects brought about by non-Hermiticity. We start with
only the nearest-neighbor hopping, then subsequently allow
complex next-nearest-neighbor hopping terms similar to the
Haldane model, and, finally, introduce the inversion-breaking
mass terms. For each case, we tune-up a non-Hermitian
balanced gain and loss and investigate the changes in the
eigenspectra and characterize the EPs which arise. We dis-
cover that third-order EPs arise at odd integer values of the
non-Hermiticity strength in each case. Their occurrence can
be characterized using the phase rigidity which vanishes at
the EP. Furthermore, the scaling of phase rigidity with respect
to the non-Hermiticity strength helps determine the order of

the EP. When a nonreciprocal hopping is introduced instead of
gain and loss, we find that third-order EPs occur at odd integer
multiples of 1/+/2. We also elucidate the complete phase
diagram to determine the regions where such higher-order EPs
can be found in the parameter space. Nonreciprocal hopping
has interesting consequences when we consider a finite-sized
dice-Haldane nanoribbon. For the dice lattice with only near-
est neighbor coupling, under periodic boundary conditions
(PBC), the spectrum under nonreciprocal hopping accommo-
dates a finite, nonzero spectral area in the complex plane
unlike the gain and loss case where the complex spectrum
has an arc-like structure. This finite spectral area results in the
occurrence of the NHSE when OBC are imposed on the lattice
with nonreciprocal hopping. However, for the dice-Haldane
model both gain and loss and nonreciprocal hopping exhibits
finite spectral area under PBC and hence displays NHSE un-
der OBC. The direction of the localization can be controlled
by the choice of the non-Hermiticity and its strength. We char-
acterize the NHSE using the local density of states, inverse
participation ratio (IPR) and the edge probability. This NHSE
turns out to be fairly robust to disorder owing to its topological
protection. However, at sufficiently large disorder strengths
there is a complete destruction of NHSE accompanied by the
bulk localization of all the eigenstates.

II. DICE-HALDANE LATTICE MODEL

In this section, we introduce the Haldane model applied to
the dice lattice. The system can be viewed as a honeycomb
lattice with an additional atom at the center of each hexagonal
plaque, as depicted in Fig. 1(a). Therefore, each unit cell of
the lattice possesses three basis atoms denoted by A, B, and
C in our work. Among these three lattice sites, A and C are
equivalent with coordination number three, while B lattice
sites have a coordination number of six. There are two main
schemes to obtain dice lattice—using cold atoms confined in
optical lattices [14] and growing a trilayer structure of cubic
lattices, viz. SrTiO3-SrIrO3-SrTiO3 along the crystallographic
(111) direction [15]. Under the tight-binding framework, this
model allows the nearest-neighbor (nn) hopping (#) between
the sites A-B and B-C. Furthermore, in the spirit of the Hal-
dane model, we consider a complex next-nearest-neighbor
(nnn) hopping (t;) among the A and C lattice sites, such
that there is a nonzero flux enclosed by the path formed
by the nnn hopping terms. Hence, t, — te™®, where ¢, +,
and — indicate staggered flux and the sign of the phase for
counterclockwise and clockwise hopping about B lattice sites,
respectively. Additionally, a Semenoff mass +m on A and
—m on C brings us to the full dice-Haldane lattice model.
The complete lattice model and the corresponding BZ are
schematically represented in Figs. 1(b) and 1(c), respectively,
for convenience (note that for the Hermitian case, § = 0).
The full Hamiltonian of the lattice model can be expressed
as follows:

H = H,, + Hy,, + Hy, (1)

where H,, corresponds to the contribution from only nearest-
neighbor hopping. In our calculations, we fix ¢ = 1/4/2,
which sets the energy scale of our system. H,,, corresponds
to the contribution from next-nearest neighbor hopping
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FIG. 1. Illustration of the model, its Brillouin zone, and the
Hermitian phase diagram. (a) Schematic of the non-Hermitian dice-
Haldane lattice model. A, B, and C are the three sublattice sites.
Hopping potential ¢ is the nearest-neighbor hopping between sub-
lattices A-B and B-C. Lattice sites A (shown in green) in general
can have a Semenoff mass +m and a non-Hermitian gain +i8, while
lattice sites C (orange) can have a Semenoff mass —m and non-
Hermitian loss —i§. Panel (b) illustrates the next-nearest neighbor
Haldane-type hopping with strength #, and the flux enclosed by
these hopping potentials is ¢. (c) The BZ of the lattice showing the
high-symmetry points M, K', K, and I'". (d) The phase diagram of
the Hermitian dice-Haldane model where the region enclosed within
the curves £m™* sin ¢ has a nontrivial Chern number. Outside the
curve lies the topologically trivial region. Furthermore, we can
find three additional phases—AG: all-gapped (shown in blue),
VG: valence-gapped (shown in violet), and CG: conduction-gapped
(shown in orange). Here m* is expressed in units of #,.

parameters and H,, to the asymmetric Semenoff mass terms
on A and C sites. The expressions for the same are given by

H,, =t Z(C;,iCBaj + C;iCC,j + H.c.),
(i,)

Hnnn = lzeii¢ Z (Cj;’iCA,j + CE,,-CC,;‘ + H.C.),
(.

Hy =m) (chcai— clcci, )
i

where cj and c; represent creation and annihilation operator
at the ith lattice site, respectively, and H.c. indicates the Her-
mitian conjugate partner of the given expression. Moreover,
(.) and ((.)) denote nearest neighbors and next-nearest neigh-
bors, respectively. It is needless to mention that H,,, breaks
the time-reversal (TR) symmetry in the model without the
requirement of a net external magnetic flux, while H,, breaks
the inversion symmetry.

The low-energy electronic description of this model can
be expressed as a Dirac-Weyl Hamiltonian with pseudospin

equal to one. Both the time-reversal symmetry and inversion-
symmetry-broken phases open a gap in the energy spectra.
However, these two gapped states are topologically distinct
[94,95], classified by different Chern numbers. In other words,
the Hermitian dice-Haldane model [26] harbours a richer
phase diagram than the conventional Haldane model because
the former gives rise to more phases both within and outside
the topological region of the usual phase diagram accommo-
dating Chern numbers %2, as shown in Fig. 1(d). Particularly,
the topologically nontrivial region is bounded by the rela-
tion m = &m*sin¢ and has a Chern number +2. Due to
the bulk-boundary correspondence, two edge modes will ap-
pear when open-boundary conditions are invoked. There are
additional phases that arise due to the dice lattice structure
and its flat band—the all-gapped phase (AG), where all three
bands are gapped with no overlap, the valence-gapped phase
(VG), where the conduction band and flat band touch each
other while the valence band remains gapped, and lastly the
conduction-gapped phase (CG) where the conduction band
is gapped while the valence and flat bands have some over-
lap. The electronic band structures of the Hermitian model
in the different phases AG, VG, and CG can be found in
Appendix A.

III. EFFECT OF NON-HERMITIAN GAIN AND LOSS

Having acquainted ourselves with the Hermitian model,
we now systematically invoke non-Hermitian gain and loss
and study its interplay with H,,, H,,,, and H,,. Physically,
non-Hermitian balanced gain and loss can be thought of as
a source attached to one unit-cell atom and an equally strong
sink attached to another atom. Here, we allow sublattice A
sites to possess a gain +i§ while sublattice C sites possess
a loss —i8. Hence, the non-Hermiticity added to the Hamil-
tonian can be described by considering an additional term to
Eq. (1), which is of the form

Hy = i8 ) (ck e — ¢l jcc- 3)

Here, é denotes the strength of non-Hermiticity. A point to
note is that when we turn off #, and m, the Hamiltonian H
has parity-time (P7") symmetry. Any nonzero value of #; or m
breaks the P77 symmetry.

In this section, we will first consider H,,, + H,,,, and intro-
duce § and, thereafter, we study the effect of non-Hermitian
gain and loss considering the full Hamiltonian H = H,,, +
H,,, + H,, + Hs. For each of these cases, we highlight the
exotic physics arising at the high-symmetry points M, K, and
I, extensively discussing the occurrence of higher-order EPs
at integer & values.

EPs occur when not only two or more eigenvalues become
degenerate but also their corresponding eigenvectors [96,97].
This leads to a collapse of the Hilbert space into a lower-
dimensional Hilbert space. The collapse of two eigenvectors
leads to a second-order EP (EP2). A third-order EP (EP3)
occurs upon the collapse of three eigenvectors, and so on.
The coalescence of eigenvectors can be characterized by the
phase rigidity, which is a measure of the biorthogonality of
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FIG. 2. Spectra with next-nearest-neighbor hopping and non-Hermiticity. The Re(E) (upper panel) and Im(E') spectra (lower panel) have
been shown for different values of non-Hermiticity strength §. In panels (a) and (b) 6 = 1.0 showing an EP at the M point. In panels (c) and
(d) 8 = 2.0, this induces an EP at k, = 1/3. In panels (e) and (f) we find an EP at the I" point for § = 3.0. For all plots, t = 1/+/2, t, = 0.06t,

and ¢ = /2.

the eigenfunctions. It is given by [30,31,53]

- Belv) @

(ValVa)

where ¥, is the ath right eigenvector of H while ¢, is the
corresponding left eigenvector of H, i.e., H|Yy) = Ay|¥y)
and (¢py|H = Ay (@y|. For a Hermitian system r, is always
equal to unity because the right and left eigenvectors are the
same. For non-Hermitian systems, near an EP, r, — 0 for the
states that coalesce.

Furthermore, to determine the order of the EP, we can per-
form a scaling analysis of the phase rigidity [98,99]. Here, the
Hamiltonian depends on two parameters (k, §). The scaling
of phase rigidity follows |r| ~ |§ — §gp|” for an Nth order
EP, where gp is the value of § for which an EP occurs.
It is noteworthy that when an anisotropic EP is approached
from two orthogonal directions in parameter space the scaling
exponent v can take values (N — 1) or (N — 1)/2 [100,101].
In our case, we fix k, and investigate the scaling of the phase
rigidity with respect to varying non-Hermiticity § close to the
EP. Hence, v here, is given by (N — 1)/2, where N is the order
of the EP. In particular, we can plot log |r| vs log |6 — dgp| to
obtain N from the slope. For example, an EP2 will have a
slope of 1/2, while an EP3 will have a slope of 1.

In addition to the nearest-neighbor hopping ¢, first, we in-
clude the next-nearest neighbor Haldane type hopping, which
breaks time-reversal symmetry of the system. In the presence
of a balanced gain and loss term, the Hamiltonian can be writ-
ten as Hy, + Hyy, + Hs. The time-reversal symmetry breaking
induces a nontrivial band gap in the Hermitian system (dis-
cussed in Appendix A). In other words, the degeneracy at K
and K’ points is lifted by nonvanishing #, (let ¢ = 7 /2). In
the non-Hermitian case, even a small value of § produces a
complex energy spectrum, as expected. Similar to the nearest-
neighbor case, finite imaginary parts of the spectra first appear
around K and K’ points. On the other hand, the conduction and
valence bands of the real part of the eigenspectra come closer
with increasing ¢ and finally meet again at M point for § =
1.0. These observations are illustrated in Figs. 2(a) and 2(b).
Furthermore, the degeneracy of Re(E) at M point is found to

be robust to the values of §, for § > 1. However, the degen-
eracy for Im(F) is lifted beyond § = 1. With further increase
in 8, we have found another set of degeneracies of Re(F) at
the halfway point between ' — K/K’ for § = 2. Beyond this
value of §, the degeneracy of Im(E) at the same (£1/3, 0)
point is removed [Figs. 2(c) and 2(d)]. It is important to note
that the above-mentioned degeneracy of Re(E) is robust for
8 > 2, similar to what happens at the M point. Finally, at § >
3, the degeneracy at the I' point appears and disappears for
Re(E) and Im(E'), respectively, as presented in Figs. 2(e) and
2(f). Similar to the previous cases, the degeneracy of Re(E)
at I' is robust after this critical point. There occur critical
values of § at which the degeneracy in Re(E) and Im(E) exist
simultaneously at particular k, values. Now, we explore the
possibility of these points being EPs and their corresponding
order at these critical § values, which are interestingly exact
integers. The phase rigidity and its corresponding scaling at
M and I" points are shown in Fig. 3. From the zero value of
re and the corresponding scaling giving a slope of one, it is
clear that all these points are indeed higher-order EPs of order
three.

At this point, it is worth exploring the underlying reason
behind the emergence of EPs at high-symmetry points due to
odd integer values of §. However, it is possible to get EPs
away from high-symmetry points at even values of §. For this
purpose, we have analytically calculated the energy-band dis-
persion of the nearest-neighbor lattice described by H,,,, + Hj.
It is evident that the Hamiltonian will give rise to three energy
bands including the nondispersive flat band at zero energy.
The dispersive bands, on the other hand, have the following
expression:

Ei(ke,8) = :I:\/S — 82 4+4cos (wky) +2cos k). (5)

When these bands collapse with the flat band, it gives rise
to EPs at specific strengths of non-Hermiticity § given as
below,

Sep = /3 + 4cos (wky) + 2 cos (2ky). (6)
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FIG. 3. Phase rigidity for next-nearest-neighbor hopping with
non-Hermiticity. The upper panels show the phase rigidity, r,, as
a function of non-Hermiticity, 8, while the lower panels show the
scaling of the corresponding r,. Panels (a) and (b) correspond to
the M point, where an EP is induced at § = 1. Panels (c) and (d)
correspond to the I' point, where another EP is induced at § = 3.0.
The scaling of r, gives a slope of one in both cases implying the both
the EPs are of order three. The different colors in the plots correspond
to different eigenstates. The r, for the two dispersive bands overlap.
Here, t = 1/+/2, 1, = 0.06¢, and ¢ = 7 /2.

Hence, from the solutions of the above equation we see that
EP3 arises at §gp = £3 and §gp = *1 for the " (k, = 0) and
M (k, = 1) points, respectively.

Motivated by our above findings, we next add the
inversion-breaking Semenoff mass term for setting up the
complete dice-Haldane lattice model with the Hamiltonian
H =H,, + H,,, + H,,. We note that the mass term (4+m on A
lattice sites and —m on C lattice sites) leads to a critical value
of m in the units of ©, (m = m*™ = 0.16), where a gap-closing
occurs at the K point while the K’ point remains gapped.
Away from this critical m value, the bands become gapped
again. In particular, for m < m*, one lies in the nontrivial
topological region of the phase diagram whereas, for m > m*
topologically trivial spectra are obtained. The m = m* = 0.16
point corresponds to the semimetallic phase associated with
band gap closing only at K but not at K’. Corresponding band
diagrams have been detailed in Appendix A.

We next explore the effect of the non-Hermitian gain and
loss in both the topologically nontrivial and trivial phases.
For this purpose, we first chose a value of m (m = 0.06) that
satisfies the m < m* criterion for being topologically nontriv-
ial. Furthermore, we introduce and systematically vary § to
investigate its effect on the complex energy-band structure.
We find that the sole variation of non-Hermiticity strength §
can bring about a gap-closed real energy spectrum. This gap
closing takes place close to M point for § &~ 1.0 as presented
in Fig. 4(a). Here, the imaginary spectrum is also triply de-
generate [Fig. 4(b)], which subsequently gaps out. Hence, we
find a third-order EP at k, = 1.07 for §gp = 0.94. The scaling
of the phase rigidity around this EP is shown in Fig. 4(c),
confirming its nature. Furthermore, we choose m (m > m*)
such that we start from the topologically trivial phase and then
invoke non-Hermiticity. In this condition the Re(E) spectra
never undergo band closing, and thus EPs cannot emerge, even
for arbitrarily large values of §. Therefore, we have discov-
ered that inversion symmetry breaking in the dice Haldane
model offers an EP near the M point only in the topologically
nontrivial case. On the other hand, an EP at I point can be
obtained primarily in the inversion-symmetric conditions, i.e.,
m = 0. For better understanding, the complete phase diagram
for the emergence of EPs at the I and M points in the pa-
rameter space of the model is presented in Fig. 5(a) and 5(b),
respectively. The regions in the parameter space where the
phase rigidity approaches zero are the regions where EPs can
be found. We observe extended regions with phase rigidity
values very close to zero. This indicates that fine tuning of pa-
rameters § and m/t, is not required to obtain these exceptional
regions expanding the possibilities for reaching low values
of phase rigidity [102]. The occurrence of EPs also signify
a topological phase transition as these are regions of band-gap
closing. It is important to note that these phase transitions are
possible only at low values of m (m < m*). This follows from
our prior observation that gap closings cannot occur solely
due to non-Hermiticity unless we are in the topologically
nontrivial region of the Hermitian model. In contrast to the
conventional Haldane model, the topological phase transition
is now driven by a complex mass term. In particular, the edge
states that usually occur in the Hermitian topological phase of
Haldane model are also observed in the presence of gain and
loss (§). However, the topological protection of the edge states
in the P77 -symmetry-broken phase holds only up to a critical
value of §. This phase transition is associated with passing

@ ®) © ,,
S ﬂ S Qéf | /\ £
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g ° G
= —2J‘—\/\/ ™~ —0.6/\j \/\ ~ o8
) 085 ~075 ~0.65
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FIG. 4. Non-Hermiticity in the complete dice-Haldane lattice model. In the topologically nontrivial region m < m*, non-Hermiticity
strength 6 induces an EP of order three close to the M point in the spectrum. Panel (a) shows the real part of the energy spectrum, panel
(b) shows the imaginary part of the energy spectrum, and panel (c) shows the scaling of the phase rigidity around §gp = 0.94 at k, = 1.07. The
different colors here correspond to different eigenstates. The r, for the two dispersive bands overlap. Here, 1 = 1/+/2, t, = 0.061, ¢ = /2,

and m = 0.06.
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FIG. 5. Phase diagram showing the occurrence of EPs as a func-
tion of the model parameters. Panel (a) shows the phase rigidity
at the I" point while panel (b) corresponds to the M point. Zero
values of phase rigidity imply the existence of third-order EPs, at
the corresponding parameter values. Note the extended region in the
parameter space with phase rigidity values very close to zero. Here,

t=1/v2and ¢ = 7 /2.

through a third-order EP. On the other hand, if we choose the
value of mass m outside the topologically nontrivial region of
the Hermitian case, there is no possible value of § that will
manifest in protected edge states and will trace the system
back into the topological region. In other words, to obtain EPs
at any finite, nonzero value of 8, we require the Hermitian sys-
tem to be placed initially within the topological region. Tuning
6 can bring about a topological phase transition enabling the
occurrence of EPs in the non-Hermitian model.

Now, we will invoke a different class of non-Hermiticity—
nonreciprocal hopping along one direction. In particular, we
have assigned t 4 y (t — y) to the hopping parameters C — B
(B— C) and B— A (A — B) in the vertical direction in
Fig. 1(a). Even in the absence of the non-Hermitian gain and
loss we observe that nonreciprocal hopping solely can induce
EPs in the system at specific strengths of non-Hermiticity y .
The deformation of the electronic bands under this nonre-
ciprocity is qualitatively similar to our previous results with
non-Hermitian gain and loss. However, the critical values of
y at which the EPs occur differ from the critical § we found
in the above discussion. For example, in the case with only
nearest-neighbor hopping EPs are induced at critical y values
of

YEP = :t\/% + 2 cos (wky) + cos 2mky). @)

Therefore, from Eq. (6) it is clear that ygp values are
related to the corresponding 8gp values by the relation ygp =
Sep/ V2. Numerically, we have verified the occurrence of

EP3 at ygp = :I:% and ygp = :I:\/li for the I' and M points,

FIG. 6. Schematic of the dice-Haldane nanoribbon with nonre-
ciprocal hopping. The hopping and on-site parameters remain the
same as in the dice-Haldane sheet case. An additional kind of non-
Hermiticity y has been introduced in the nanoribbon, namely a
nonreciprocal hopping. This favors nearest-neighbor hopping from
right to left along the x direction rather than from left to right.

respectively. It is interesting to study this nonreciprocal hop-
ping in the context of the dice-Haldane nanoribbon to see the
effects of OBC (see Sec. IV B).

IV. FINITE-SIZE EFFECTS: DICE-HALDANE
NANORIBBON

Having understood the effect of non-Hermiticity in the
k-space model of the dice lattice sheet, we next move on to
the study of another physically important case of the dice-
Haldane nanoribbon extended along one direction (say x).
A schematic of the finite-size nanoribbon considered here
is shown in Fig. 6. Here L, and L, are the dimensions of
the nanoribbon in the x and y directions, respectively. We
particularly focus on a real-space model of the nanoribbon,
where both L, and L, are finite. The real-space model with
open-boundary conditions in both directions leads to interest-
ing consequences when we invoke non-Hermiticity, as we will
discuss shortly.

Considering the Hermitian model, we can expect that in
the topologically nontrivial phase, each edge of the lattice
will exhibit two chiral edge states since the Chern number
is +2. These edge modes lie in the band gap and connect
two bulk bands. In contrast with the honeycomb lattice, the
spectrum exhibits two unidirectional chiral states per edge for
m < m* that cross over from the bulk states near the Fermi
level. However, for m > m*, the edge states near the flat band
are counterpropagating at a given edge. Hence, no net current
will flow through it. Consequently, the bulk states remain
gapped out, and the bulk boundary correspondence continues
to hold. Corresponding figures and a discussion can be found
in Appendix C.

It is important to note that these edge states are quite
robust to both real and complex on-site disorder, i.e., despite
some disorder-induced distortion in the shape of the bands,
the edge states persist up to large values of disorder. We have
checked this for a disorder of the form A ; on each lattice site,
where A; is allowed to be real or imaginary, corresponding
to real and imaginary on-site disorder, respectively. Here, j
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denotes the lattice site and A; = Aw; where w; € [—1, 1].
The disordered Hamiltonian has the form H = H,,, + H,,,, +
H,, + H;;, where

Hdis = Z AjCj-Cj. (8)
J

We study the effect of this complex random on-site dis-
order in more detail when we introduce non-Hermiticity in
the finite-nanoribbon geometry. We address the interplay of
non-Hermiticity and disorder in Sec. IV B.

A. Nanoribbon with non-Hermitian gain and loss

We first consider the effect of non-Hermitian balanced gain
and loss in the dice-Haldane nanoribbon. The Hamiltonian un-
der such considerations is given by H = H,,, + H,,, + H,, +
H;. 1t is worth noting that the topological edge states found in
the Hermitian regime, forming conducting channels between
the conduction and valence bands are robust even in the pres-
ence of non-Hermiticity. For a range of increasing values of §,
up to a system dependent critical value §,, the topological edge
states can be clearly discerned from the energy-band diagram.
A detailed discussion can be found in Appendix C.

One of the striking features of non-Hermitian systems
has been the discovery of NHSE and it is interesting to un-
derstand whether our proposed system exhibits this feature.
It may be noted that these fascinating phenomena unique
to non-Hermitian systems, such as non-Bloch EPs and skin
effects, can be well explained in terms of the generalized
Brillouin-zone (GBZ) formalism [66,103]. We note that it has
been established that a two-dimensional system under OBC
can exhibit NHSE if and only if under PBC the complex
eigenspectrum encloses a finite nonzero spectral area [104].
We consider a periodic version of the system, i.e., a dice-
Haldane torus and invoke balanced gain and loss. When we
consider only nearest-neighbor interactions under PBC, the
complex eigenspectrum of the system has an arc-like structure
and does not enclose any finite spectral area in the complex
plane, as shown in Fig. 7(a). This indicates the absence of
a NHSE when we invoke OBC. To probe this, we calcu-
late the local density of states (LDOS) for the system under
OBC, i.e., the finite nanoribbon. To calculate the LDOS, we
evaluate ), [¥q(x;)]? at each lattice site (x;), which gives
us LDOS(x;). The plot of the corresponding LDOS for the
nearest-neighbor lattice in Fig. 7(c) verifies that NHSE is
indeed absent and the states are distributed over the lattice.
However, when we consider the full dice-Haldane periodic
system (f, # 0) with balanced gain and loss, the complex
spectrum does enclose a finite area [shown in Fig. 7(b)]. This
translates to the occurrence of NHSE when OBC is invoked.
Remarkably, the localization of the eigenstates occurs at both
the top and bottom edges of the nanoribbon which can be seen
from the plot of the LDOS in Fig. 7(d). So, non-Hermitian
gain and loss is able to cause a NHSE in the dice-Haldane
model and not in the dice model which accounts for only
nearest-neighbor hopping. The nature of the skin effect oc-
curring only at the top and bottom edges of the former system
[as shown in Fig. 7(d)], can be explained further through the
winding number and the complex energy spectra by imposing
OBC in one direction while retaining PBC in the other. A
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FIG. 7. Spectra and LDOS with non-Hermitian balanced gain
and loss. Panels (a) and (b) show the complex energy spectrum for
the torus (PBC) geometry of the nanoribbon and panels (c) and
(d) show the respective LDOS for the same system under OBC.
Panels (a) and (c) correspond to the nearest-neighbor lattice (z, = 0)
with non-Hermitian balanced gain and loss. The energy spectrum in
panel (a) does not enclose a finite, nonzero area. This implies that,
under OBC, there will be no occurrence of NHSE. The correspond-
ing LDOS of the system under OBC shown in panel (c) demonstrates
the absence of skin effect. Panels (b) and (d) correspond to the
full dice-Haldane lattice with gain and loss. Here, #, = 0.06¢. The
spectrum shown in panel (b) encloses a finite nonzero spectral area
indicating the possibility of a NHSE under OBC, which is established
by the LDOS shown in panel (d). In this case, the localization of
states occur at both the top and bottom edges of the nanoribbon. Here,
t =1/3/2,¢ =m/2, m =0 and gain and loss strength § = 2.0.

detailed discussion and corresponding figures can be found in
Appendix D. For all cases of our computations, the nanorib-
bon has 72 x 36 sites (n = 2592), unless stated otherwise.

B. Nanoribbon with nonreciprocal hopping

As we analyzed previously for the periodic dice-Haldane
sheet, in this section, we consider its nanoribbon version and
study the effect of nonreciprocal hopping. In particular, non-
reciprocal nearest-neighbor hopping is introduced only along
the x direction. We have the hopping values r — y along +x
and ¢ + y along —x directions, i.e., we have a biased hopping
strength that favors hopping from right to left rather than from
left to right. We invoke this nonreciprocal hopping throughout
the bulk of the nanoribbon (see Fig. 6). We study the spectrum
and LDOS of the system with this type of non-Hermiticity and
find strikingly different behavior than in the case of balanced
gain and loss. Unlike in the prior case, when we introduce a
nonreciprocal hopping, i.e., y # 0, the PBC spectrum covers a
finite area in the complex plane even in case of the model with
tp = 0, which implies a NHSE under OBC. In fact, the effect
of nonreciprocal hopping on the nearest-neighbor model is
qualitatively the same as its effect on the dice-Haldane lattice.
We study the latter in detail and also discuss the effect of dis-
order for this case. The spectrum of the dice-Haldane model
under PBC with nonreciprocal hopping accommodates a finite
spectral area in the complex plane shown in Fig. 8(a). This
indicates the possibility of a NHSE when we impose OBC
in the system. Next, we investigate the effect of disorder on
this spectral area where the nature of disorder has been taken
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FIG. 8. Effect of disorder on the spectra and LDOS for the dice-
Haldane lattice with nonreciprocal hopping. Panels (a)—(c) show
the complex spectra of the model under PBC with nonreciprocal
hopping. Panels (d)—(f) show the corresponding LDOS for the same
system under OBC. Panels (a) and (d) show the disorder-free system.
Here, the complex eigenspectrum [shown in panel (a)] encloses a
nonzero spectral area which translates to a skin effect under OBC.
The corresponding LDOS [shown in panel (d)] depicts a NHSE, with
states accumulating close to x = 1, which gradually decreases as we
move rightward. Panels (b) and (e) correspond to disorder strength
A = 1. Here, the spectral area [shown in panel (b)] is still nonzero
and finite, implying an existence of NHSE, which is established by
the LDOS in panel (e). For panels (c) and (f) where A = 10, the
spectral area has disappeared indicating the destruction of NHSE.
The corresponding LDOS shown in panel (f) attributes to the same
where the skin effect has completely disappeared due to localization
in the bulk. Here, t = l/ﬁ, t, =0.06t, ¢ = /2, m = 0 and non-
reciprocity strength y = 2.0.

according to Eq. (8). When the disorder strength is taken to
be A = 1, the complex spectrum undergoes some distortion
but still accommodates a finite area [Fig. 8(b)]. However, at
the large disorder strength (A = 10) shown in Fig. 8(c) the
spectral area disappears. This indicates that, under OBC, the
NHSE will gradually get destroyed due to the introduction of
disorder. Next, we investigate the behavior of the LDOS to
verify the above findings and to visualize the occurrence and
subsequent disappearance of the NHSE under disorder.

In Fig. 8(d) the LDOS can be seen to be higher around
small values of x and decreases as we go to higher x. This
implies a maximal concentration of eigenstates near the left
edge of the system. Thus, nonreciprocal hopping, when in-
voked throughout the bulk of the nanoribbon, causes a NHSE.
It is important to note that the NHSE in this case is different
from that caused by gain and loss. Here, the localization of
the eigenstates is at one edge (left) of the lattice and is also
directionally different than in the previous case where NHSE
occurred at the top and bottom edges. In the former case of
gain and loss, the inclusion of the Haldane next-nearest neigh-
bor hopping is essential for realizing the skin effect. Here,
the staggered magnetic flux in the presence of non-Hermitian

gain and loss introduces chiral edge currents in two different
directions for the two distinct sublattices A and C [105]. Con-
sequently, the eigenmodes are localized at the top and bottom
edges of the ribbon under OBC. In contrast, the nonreciprocal
hopping along one direction offers a directionally biased prop-
agation of eigenstates, causing localization at the left edge. We
find that the LDOS does not vary continuously from high to
low as we move along +x but shows regions of high value
followed by those of lower value. This feature is due to the
missing hopping terms between sublattices A and C, which
inhibits the complete flow of the eigenstates leftwards. This
can be pictured from the schematic in Fig. 6, which suggests
that the accumulation of states will be greater on sublattice
C and gradually decrease towards the following A lattice
site. Now, we look at the effect of disorder on the NHSE.
Upon increasing the value of disorder strength, there occurs
a localization of the eigenstates, as shown in Figs. 8(e) and
8(f). In Fig. 8(e) corresponding to A = 1 the concentration of
eigenstates at the left edge has decreased, signifying a partial
destruction of the NHSE. Finally, at large values of disorder
(A = 10), a complete localization of the eigenfunctions is
found, causing a low value of the LDOS over all x, implying
the complete destruction of the NHSE [Fig. 8(f)].

To consolidate the above arguments, we next study the
behavior of the IPR [86] and the probability density of the
eigenstates at the edge after averaging both the quantities
over multiple disorder configurations. We averaged over 1000
disorder configurations. The IPR for the «th eigenstate, I, is
defined as

4
PR WG o)

O e
For localized states, IPR is close to 1 while for extended
states IPR is very low. We further define the edge probability,
P,, of state v, as

O W)
Fe=5 e (10)

where xg represents the width of the edge, which we take
as the first five lattice sites from the left end of the ribbon
(xg = 5). In the case of the Hermitian nanoribbon the dis-
persive bands are delocalized with very low IPR and there
is no skin effect as expected. In presence of nonreciprocity
in the bulk (y = 2) we observe IPR — 1 for the eigenstates
localized at the edge. This can be seen from Fig. 9(a) where
the edge probability is denoted by the color bar showing that
the states with high P, correspond to high IPR. Hence, for the
disorder-free case with nonreciprocal bulk we can confirm the
occurrence of NHSE. Next, we look at the effect of disorder on
the skin effect—the presence of disorder essentially reduces
the edge localization in the system. This can be discerned
from the diminished values of the IPR in Fig. 9(b), presented
for disorder strength A = 1. Yet, the higher values of IPR are
predominantly contributed by the eigenstates near the edge.
Furthermore, for large disorder strength (A = 10), shown in
Fig. 9(c), the IPR is uniformly high, although P, is very
low for all the eigenstates. This corresponds to the disorder
induced bulk localization and hence the complete destruction
of NHSE.
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FIG. 9. IPR and edge probability with nonreciprocal bulk. The IPR has been plotted for all eigenstates as a function of Re(E) and the
corresponding color denotes its probability density at the left edge of the nanoribbon. Panel (a) corresponds to A = 0, where the IPR is very
high for the states localized at the edge and hence establishes the occurrence of NHSE. In panel (b) the IPR values have diminished, implying
the reduction of skin effect due to disorder. Here, disorder strength A = 1. Panel (c), corresponding to A = 10, shows very high values of IPR
but very low edge population implying the occurrence of disorder-induced bulk localization and complete destruction of NHSE. A zoomed-in
plot is shown in the inset. Here, the IPR and edge probability have been disorder averaged over 1000 configurations. The number of hexagonal
layers in the y direction has been taken to be 35. We have sett = 1/4/2,1, = 0.061, ¢ = 7/2,m =0,8 =0, y = 2.

Finally, we also note that when we invoke nonreciprocal
hopping only along the upper and lower edges of the system
and not in the bulk, surprisingly, here too there is the occur-
rence of the NHSE which is similarly destroyed at large values
of disorder.

V. SUMMARY AND DISCUSSION

In this work, we have systematically studied the effect of
non-Hermiticity in the Chern insulating dice-Haldane lattice.

We introduced non-Hermiticity in this model in two ways:
(1) using balanced gain and loss terms and (ii) setting non-
reciprocal hopping parameters. Introducing non-Hermiticity
through any of the above means invariably causes higher-
order exceptional points. Our analytical description revealed
that the exceptional points at high-symmetry points emerge
at odd integer values of the gain and loss non-Hermiticity
strength and at 1/+/2 times the previous values in the case of
nonreciprocal hopping. Furthermore, we showed that the dice-
Haldane lattice consisting of complex next-nearest-neighbor
hopping and the Semenoff mass offers a rich topological
phase diagram. The robustness of the topological edge states
was critically examined with non-Hermiticity and complex
disorder. Moreover, we discover that, unlike the gain and
loss case, the nonreciprocal hopping triggers a fascinating
non-Hermitian skin effect under OBC for the dice lattice
with only nearest-neighbor couplings. However, both kinds
of non-Hermiticity can cause NHSE in the more general
dice-Haldane nanoribbon. Remarkably, the NHSE caused by
gain and loss generates localization at the top and bottom
edges while nonreciprocity results in a NHSE at the left
edge of the nanoribbon. The directionality of localization of
maximal eigenstates can hence be tuned using the nature of
non-Hermiticity and its strength. The skin effect is protected
by a finite spectral area in the complex plane under PBC in
real space. Furthermore, the LDOS, IPR, and edge probability
calculations also demonstrate the occurrence of the skin effect
and its robustness to the disorder.

Our study is fundamental to understanding the tunability
of the dice-Haldane model under the influence of non-
Hermiticity, especially in the context of EPs which have been
experimentally realized in microwave cavity resonators [59]

and coupled electronic circuits [106]. Specifically, EPs of
order three have been realized in coupled acoustic cavity
resonators [107] and optical cavity systems [61]. It would be
interesting to engineer already fabricated dice lattices to intro-
duce non-Hermitian gain and loss or nonreciprocal hopping to
obtain these higher-order EPs.

The key ingredients for attaining a dice lattice in cold
atomic systems are three pairs of counterpropagating lasers
placed at an angle of 120° with respect to each other [14,16].
This laser setup essentially divides the two-dimensional (2D)
plane into six equivalent parts. Furthermore, the interference
causes standing waves that give rise to the required potential
traps of the optical lattice. In particular, a dice lattice with
lattice constant ay can be constructed by using six linearly
polarized laser beams of wavelength A = 3ap/2. Another
plausible pathway for fabricating these lattices is the use of
coupled resonators [17]. The prescription is the incorporation
of additional resonators at the center of hexagonal rings of
the honeycomb lattice. The ring-shaped primary resonators
of the lattice are effectively connected with each other via
auxiliary resonators placed in between. The Haldane model
has been experimentally realized in optical lattices using ul-
tracold atoms [10]. Notably, the time-reversal symmetry can
be broken through complex next-nearest-neighbor tunneling
induced by circular modulation of the lattice position in time.
Additionally, the deformation of lattice geometry by applying
unidirectional in-plane force with the help of a magnetic-field
gradient provides an energy offset and breaks the inversion
symmetry.

Non-Hermiticity has been successfully engineered into
several optical lattices, acoustic systems and topoelectri-
cal circuits [101,107-109]. In particular, the inclusion of
non-Hermiticity in the three-site Lieb lattice using coupled
optical waveguides [110] can be feasibly extended to our
lattice system. It has been established that optical lattices
fabricated using femtosecond-direct-laser-writing can adduce
non-Hermitian gain and loss through periodic “breaks” in
the waveguides, which lead to loss of radiation modes. This
loss can be tuned using the length of the breaks [111]. This
method of engineering gain and loss has also been success-
fully realized in a graphene-like honeycomb lattice [112].
Furthermore, it has been proposed that atomic loss in ultracold
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FIG. 10. Energy spectra of the Hermitian model. The band structure of the Hermitian dice-Haldane model along high-symmetry points
M-K'-T'-K-M. The upper panels show the three-dimensional spectrum as a function of k, and k,, while the lower panels show the corresponding
two-dimensional plots at k, = 0. Panels (a) and (b) show the effect of only nearest-neighbor hopping with #, = m = 0. Here, all three bands are
gapless at the K and K’ points. In panels (c) and (d) next-nearest-neighbor hopping has been included. Here, t, = 0.1, ¢ = 7 /2 while m = 0.
In panels (e) and (f) m = 0.3 while 7, = 0 shows the effect of the Semenoff mass term. Both #, and m open up a gap in the spectrum. For all

plots the value of nearest neighbor hopping is chosen to be r = 1/+/2.

atomic gas systems can be generated using a resonant optical
beam to kick the weakly trapped atoms or by using a radio
frequency to excite the atom to an irrelevant state, thereby
simulating loss [113]. Onsite gain and loss can be effectively
mapped onto a non-Hermiticity-controlled coupling between
neighboring atoms. A synthetic imaginary gauge field en-
gineered strategically can make these couplings asymmetric
[114]. Such complex gauge potentials causing nonreciprocal
hopping can be implemented using a non-Hermitian antireso-
nance ring [57]. Due to the directional coupling, the photons
become attenuated or amplified depending on their direc-
tion of travel. Furthermore, two-dimensional non-Hermitian
systems with gain and loss or nonreciprocity have been pro-
posed in classical topoelectrical circuits [108,109], where the
non-Hermiticity can be ingeniously engineered using combi-
nations of resistances and LC-tanks. Information about the
eigenenergies can be extracted from the electrical response,
admittance, and impedance resonances [115]. In light of the
above rapid experimental advances, we believe our theoretical
findings can be experimentally tested in the near future.
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APPENDIX A: HERMITIAN DICE-HALDANE BAND
DIAGRAMS

We perform a Fourier transform of the Hamiltonian given
in Egs. (1) and (2) in order to obtain the energy-band diagram

in the two-dimensional momentum space. To encompass all
the relevant physics of the model, we choose a symmetry path
M(1,0)-K'(-=2/3,0) — I'(0, 0)-K(2/3, 0)-M (1, 0) in the BZ,
which includes all the high-symmetry points. Note that the
coordinates of the symmetry points are given in units of
27 /a, where a is the lattice constant. Later, we systematically
invoke non-Hermiticity in our model and study the physics
around these high-symmetry points. The dice lattice with only
nearest-neighbor interactions (H,,, = H,, = 0), exhibit two
Dirac-like dispersive bands while a dispersion-less flat band
lies at the Fermi level, as shown in Figs. 10(a) and 10(b).
The Dirac points lie at the symmetry points K and K’ of the
BZ. Next, the complex next-nearest-neighbor hopping term
(H,, = 0) splits the Dirac cones as shown in Figs. 10(c) and
10(d), resulting in nontrivial topological band structures. On
the contrary, only Semenoff mass term (H,,, = 0) induces a
trivial or normal band gap in the system as given in Figs. 10(e)
and 10(f). It is worth noting that both H,,,, and H,, open up a
gap in the energy spectrum even for arbitrarily small values of
t, and m. The competing nature of H,,, and H,, leads to the
rich topological phase diagram of the dice-Haldane model.

In particular, Fig. 11 illustrates the effect of the Semenoff
mass on the electronic band structure of the nontrivial dice-
Haldane model. Even an arbitrarily small nonzero value of m
opens up a band gap at the K and K’ points of the BZ while
maintaining topologically nontrivial features [Fig. 11(a)].
With a further increase in m, for a critical value m = m*,
the K’ point becomes triply degenerate while the K point
develops no such band touching [Fig. 11(b)]. Beyond this
point, for m > m*, the system becomes topologically triv-
ial and the energy bands are completely nondegenerate for
all higher values of m [Fig. 11(c)]. It is interesting that the
different phases of the Hermitian model exhibit qualitatively
different energy-band structures. The AG phase features three
nondegenerate bands as shown in Figs. 12(a) and 12(b). The
upper panel in Fig. 12 shows the three-dimensional band

035403-10



NON-HERMITICITY INDUCED EXCEPTIONAL POINTS ...

PHYSICAL REVIEW B 107, 035403 (2023)

(@) (b)

(©)

TN\

N
NV

M X r K M M X’

r K M M K’ r K M

FIG. 11. Effect of the Semenoff mass in the Hermitian model with both ¢ and #,. In panel (a) m = 0.06, in panel (b) m = 0.16, and in
panel (c) m = 0.30. An arbitrarily small Semenoff mass opens up a gap in the spectrum which subsequently closes in panel (b) indicating a
semimetallic phase. On increasing the value of m further, all bands become gapped again. This critical value of m is m* = 0.16 which separates
the topologically nontrivial and trivial regions in panels (a) and (c), respectively. For all plots t = 1/+/2, 1, = 0.06t, and ¢ = 7 /2.

structure as a function of k. and ky, while the lower panel is
a two-dimensional plot of the dispersion relations along line
(M-K'-T'-K-M) joining the high-symmetry points of the BZ.
The VG phase is shown in Figs. 12(c) and 12(d) where the va-
lence band remains gapped while the flat band and conduction
band are degenerate at some points in the BZ. Figures 12(e)
and 12(f) show the CG phase where the conduction band
is nondegenerate while the valence and flat bands become
gapless.

APPENDIX B: EFFECT OF GAIN AND LOSS IN THE DICE
LATTICE MODEL

We consider the nearest-neighbor hopping in the Hamil-
tonian while keeping # and m switched off. We introduce
non-Hermiticity to the system and study its effects as we
vary the strength of gain and loss, §. In this condition, the
Hamiltonian has the form H = H,, + Hs, where § is tuned
methodically. The band diagram for the Hermitian case, i.e.,
at § = 0, has been previously shown in Fig. 10(a) and 10(b).
As we invoke gain and loss, a complex dispersion relation ap-

pears even for arbitrarily small values of §. Such a dispersion
relation results in a complex eigenvalue spectrum owing to the
non-Hermitian nature of the Hamiltonian. Particularly, the real
part of the spectra in this condition become a single-sheeted
hyperboloid around the K point, near which the imaginary part
of the spectra has a nonvanishing contribution as shown in
Figs. 13(a) and 13(b). Here, the appearance of complex energy
spectra is exciting because the P7 operator still commutes
with the Hamiltonian. Therefore, the only explanation is that
the Hamiltonian and P77 symmetry operators do not possess
the same set of eigenvectors underpinned by the antilinear
nature of the 7 operator. Similar features have also been
evinced for graphene in the presence of non-Hermitian gain
and loss [116]. This can be explicitly shown for the dice lattice
where the P operator maps A <> C lattice sites and is given by
the following matrix:

B

~
I

—_— O O
oS = O
S O =

M K’ r K M

M K

r K M M K’ r K M

FIG. 12. Energy spectra of the different phases in the Hermitian model. The band structure of the Hermitian dice-Haldane model along
high-symmetry points M-K'-I"-K-M. The upper panels show the three-dimensional spectrum as a function of k, and k,, while the lower panels
show the corresponding two-dimensional plots at ky, = 0. Panels (a) and (b) show the all-gapped (AG) phase with ¢ = 7 /2 and m = 0. Here,
all three bands are gapped for all values of k. and k,. Panels (c) and (d) show the valence-gapped (VG) phase where the conduction and flat
bands are gapless while the valence band remains gapped. Here, ¢ = 0 and m = 0.15. In panels (e) and (f) m = 0.15 and ¢ = &, which shows
the conduction-gapped (CG) phase, where the conduction band is gapped while the valence and the flat bands are gapless. For all plots the

values of f = 1/+/2 and t, = 0.061.
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FIG. 13. Energy spectra of the model with nearest-neighbor hopping and non-Hermiticity. The Re(E') (upper panels) and Im(E) spectra
(lower panels) have been shown for different values of non-Hermiticity strength §. In panels (a) and (b) § = 0.5 showing that the non-Hermitian
gain and loss instantly makes the K and K’ points of Re(E) degenerate while the degeneracy is lifted in Im(E). In panels (c) and (d) § = 1.0,
this induces an EP at the M point where both the Re(E) and Im(E) are simultaneously degenerate. Similarly in panels (e) and (f) we find an

EP at the I point for § = 3.0. For all plots we have set 1 = 1/+/2.

and T is the antiunitary complex conjugation operator for our
spinless system. It can be shown that the commutation relation
[PT, H(k)] is invariably zero for arbitrary values of §. On
the other hand, the eigenvectors of the PT and H operators,
particularly shown below for the I" point, are clearly distinct:

(B2)

(B3)

where 7y =a+ (2 +d*>)"? and a = ‘/Tiié. Hence, despite

PT symmetry of the system, the eigenstates correspond to
the broken-P7 phase.

A further increase in § extends the degeneracy of Re(E)
to M, while the degeneracy at this point in Im(E) is lifted
as presented in Figs. 13(c) and 13(d). Most interestingly, this
critical transition at the M point occurs exactly at § = 1.0. At
this value of §, we find that the three eigenvalues and eigen-
functions coalesce at the M point, giving rise to a third-order
EP. As we increase 6 further, the branches of Re(E) becomes
degenerate while the degeneracy is lifted in Im(E) at the
corresponding k, values. At § = 3.0, we find the coalescence
of the three eigenvalues and eigenfunctions at the I" point
[Fig. 13(e) and 13(f)]. This is again a third-order EP, however,
appearing at a different point in the BZ. The phase rigidity
and its scaling for this EP are shown in Fig. 14. Figure 14(a)
shows the variation of phase rigidity r, of the eigenvectors
as a function of §. r, — 0 as § — Sgp = 3.0. The scaling of
the phase rigidity has been plotted on a logarithmic scale in
Fig. 14(b) whose slope is one, denoting that the higher-order
EP is indeed of order three.

APPENDIX C: NON-HERMITICITY AND EDGE STATES IN
THE DICE-HALDANE NANORIBBON

Topological zero-energy modes which are found in the
nontrivial region of the Hermitian model have been shown in
Fig. 15(a), characterized by the linear zero-energy crossings
from the conduction to the valence band. The zero modes
disappear as one moves into the topologically trivial region
of the phase diagram, as shown in Fig. 15(b). Figures 15(a)
and 15(b) show the spectrum close to the Fermi level (E = 0)
along the line joining high-symmetry points: X-I"-X.

Sitting in the topologically nontrivial region, we have
studied the energy spectrum for a varying non-Hermiticity
strength 6. We found that the existing edge states are robust to
values of § up to §, = 0.8 for the energy scale of our system,
after which the edge states cannot be discerned from the bulk
states. This can be seen in Fig. 15(c), where we still decipher
clear edge states for § < §, and subsequently the edge states
disappear for § > §. [Fig. 15(d)]. Figures 15(e) and 15(f)
show the imaginary spectra corresponding to Figs. 15(c) and
15(d), respectively. We can see that the spectra develops finite
nonzero Im(E) as a result of introducing non-Hermiticity into
the nanoribbon, yet the real spectra can accommodate topo-
logical edge states up to §,.

It is well established that the bulk boundary correspon-
dence in a system generally breaks down due to the presence
of non-Hermiticity [42,77,117-119]. As a consequence, the
Chern number of the momentum space bulk Hamiltonian fails
to predict the existence of topological edge states correctly.
In principle, a topological invariant may be calculated by
taking into account the GBZ formalism [103]. However, for a
two-dimensional, nontrivial model, it is a challenging task to
deduce the GBZ. An alternative approach has been explored
in Ref. [120], where a finite two-dimensional topological Hal-
dane lattice has been constructed with arbitrary edge types. In
these finite two-dimensional systems, edge states appear even
if the eigenvalues are not entirely real due to the presence
of gain and loss. Moreover, in this P7 -symmetry-broken
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FIG. 14. Variation of phase rigidity for the model with nearest-
neighbor hopping with non-Hermiticity. Panel (a) shows the phase
rigidity of the eigenfunctions r, as a function of non-Hermiticity &,
while panel (b) shows the scaling of the corresponding r, around the
concerned EP. Here, the plots have been shown for the I" point where
an EP is induced at 6 = 3.0. At this point, 7, — 0 shown in panel (a).
Panel (b) shows the logarithmic scaling of r,, around §gp = 3.0 gives
a slope of unity implying it is an EP of order three. The different
colors in both the plots correspond to different eigenstates. The r,
for the two dispersive bands overlap. For both plots we have set r =

1/3/2.

phase, the topological protection has been determined by the
number of edge states that remain within the dissipation-
or amplification-free region. The absence of backscattering,
hence the topological phase, has been confirmed by calcu-
lating the time evolution of an edge state. As expected, the
number of real edge states essentially depends on the strength
of gain and loss (§), which drives the topological transition.
We have used a similar formalism for our model to calculate
the critical values of § (§.) corresponding to the topological
protection. The numerical value of §. has been obtained from
the maximum value of gain or loss for which at least 5% of
the edge states remain dissipation- or amplification-free. We
note that the value of §. for the dice-Haldane system varies
with system size similar to the conventional Haldane model.
For example, ., = 0.8 for a smaller lattice size, say n = 288.
However, for the system with sufficiently large number of
lattice sites (checked for n = 1152 and n = 5220), the crit-
ical value of 4. saturates to ~1 as depicted in the Fig. 16.
Figures 15(c) and 15(d) illustrate the effect of gain and loss
strength on the real part of the nanoribbon band structure
in momentum space. Here, under the time-reversal symme-
try broken condition, the Semenoff mass term is chosen as
m = 0.06, ensuring the nontrivial topological phase of the

r

FIG. 15. Effect of gain and loss on the edge states of the nanorib-
bon. Here, the nanoribbon has been considered to be finite in the
y direction while we have imposed PBC along x. Panels (a) and
(b) correspond to the Hermitian nanoribbon. Panel (a) shows the
real spectrum for m = 0.06 and panel (b) shows the spectrum for
m = 0.3. The spectra have been plotted along high-symmetry lines
X-T'-X. In the topologically nontrivial region we find conducting
edge states in the spectrum [shown in panel (a)], while in the
topologically trivial region [shown in panel (b)] no nontrivial edge
states are present. Panels (c) and (d) show the persistence of edge
states in the nanoribbon with non-Hermitian gain and loss while in
the topologically nontrivial region (m = 0.06). The edge states are
robust to § up to a critical value of §. ~ 1, after which they disappear.
(c) The presence of edge states in the real energy spectra can be seen
for § = 0.5 < §.. (d) The edge state is absent for § = 1.5 > §., as
expected. The corresponding imaginary spectra for panels (c) and
(d) have been shown in panels (e) and (f), respectively. The system
with non-Hermiticity has a finite nonzero Im(E) yet the real part of
the spectra can still accommodate edge states. Here, the number of
hexagonal layers in the y direction has been taken to be 70. We have
chosent = 1/+/2, 1, = 0.06¢, and ¢ = 7 /2.

(b)

0 2500 5000 0 2500 5000

Mode number Mode number

FIG. 16. Real and imaginary parts of energy for the dice-Haldane
nanoribbon with gain and loss. Re(E) is shown in red and Im(E)
is shown in blue. Panel (a) shows Re(E) and Im(E) for gain and
loss strength § = 0.5. Panel (b) corresponds to § = 1.5. The other
parameters for the plots are t = l/ﬁ, t, =0.06t,m = 0.0,and ¢ =
7 /2. The total number of lattice sites n = 5220. The number of edge
states that remain in the dissipation- or amplification-free region is
reduced with increasing gain and loss strength.
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Hermitian system to start with. We observed that the non-
Hermiticity in terms of gain and loss above the critical value
essentially destroys the topologically protected edge states in
the lattice.

APPENDIX D: GEOMETRY-DEPENDENT SKIN EFFECT
UNDER NON-HERMITIAN GAIN AND LOSS

The finite spectral area of the dice-Haldane torus (PBC in
both directions) in the complex plane cannot solely explain
the appearance of skin effect only on the top and bottom
edges. The nature of skin effect shown in Figs. 7(b) and 7(d)
under non-Hermitian gain and loss resembles the geometry-
dependent skin effect mentioned in Ref. [104]. To illustrate,
we calculate the Zak phase [121] and the corresponding wind-
ing number (W) of the filled bands [122] along different
directions, supporting our findings of the skin effect. Addi-
tionally, we elucidate how the complex energy spectrum can
also be used to predict NHSE in the top and bottom edges (y
direction) in Figs. 7(b) and 7(d) rather than along the length
(x direction), which can occur on imposing nonreciprocal
hopping [Fig. 8]. For that purpose, we consider the following
two cases

Case 1. We impose PBC along the y direction while we
have OBC along x. The energy spectrum in the complex plane
of this nanoribbon under gain and loss shows a loop-like struc-
ture enclosing a finite spectral area. This implies a skin effect
when OBC is imposed along the y direction, i.e., along the top
and bottom edges of the sheet. To confirm this observation, we
have calculated the Zak phase and the corresponding winding
number. We find that the filled bands contribute to W = 1 [see
Fig. 17(a)] as per expectation.

(a) ()

2 2
| w=1 | w=o T
2, !
g m— | =" 0 l
~ -1 -1

=) -2

~10 05 00 05 10 2 -1 0 1 2
Re(E) Re(FE)

FIG. 17. Complex energy spectra and winding number under
gain and loss in the dice-Haldane ribbon under two different orien-
tations. Panel (a) shows the complex energy spectrum of the ribbon
with PBC along y and OBC along x. The spectrum encloses a finite
spectral area which implies the existence of a skin effect in the y
direction when one imposes OBC. The skin effect has been con-
firmed by the winding number, W = 1. Panel (b) shows the complex
spectrum of the ribbon with PBC along x and OBC along y. The
spectrum shows an arc-like structure with no enclosed area. This
signifies that no skin effect will occur along the x direction when
OBC is imposed. The absence of skin effect in this case has been
confirmed by the winding number, W = 0. For the above plots the
values of t = 1/4/2,, = 0.061,m = 0,8 = 2.0, and ¢ = 7/2.

Case 2. We consider the ribbon to be periodic in the x
direction and open along y. The spectrum in this case has
an arc-like structure in the complex plane, which does not
enclose a finite spectral area. This implies that on imposing
OBC in the x direction, skin effect will not occur at the right
or left edges. In this geometry we find W = 0 for the filled
bands [see Fig. 17(b)].
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