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ABSTRACT Protein nanoclusters (PNCs) are dynamic collections of a few proteins that spatially organize in nanometer-length
clusters. PNCs are one of the principal forms of spatial organization of membrane proteins, and they have been shown or hy-
pothesized to be important in various cellular processes, including cell signaling. PNCs show remarkable diversity in size, shape,
and lifetime. In particular, the lifetime of PNCs can vary over a wide range of timescales. The diversity in size and shape can be
explained by the interaction of the clustering proteins with the actin cytoskeleton or the lipid membrane, but very little is known
about the processes that determine the lifetime of the nanoclusters. In this paper, using mathematical modeling of the cluster
dynamics, we model the biophysical processes that determine the lifetime of actin-dependent PNCs. In particular, we investi-
gated the role of actin aster fragmentation, which had been suggested to be a key determinant of the PNC lifetime, and we found
that it is important only for a small class of PNCs. A simple extension of our model allowed us to investigate the kinetics of pro-
tein-ligand interaction near PNCs. We found an anomalous increase in the lifetime of ligands near PNCs, which agrees remark-
ably well with experimental data on RAS-RAF kinetics. In particular, analysis of the RAS-RAF data through our model provides
falsifiable predictions and novel hypotheses that will not only shed light on the role of RAS-RAF kinetics in various cancers, but
also will be useful in studying membrane protein clustering in general.
SIGNIFICANCE Spatial organization of biomolecules shapes the behavior of a cell. It is particularly important during cell
signaling, where transient, dynamic organization of the biomolecules helps cells process signals and respond to them.
Nanoclusters, a specific form of dynamic organization of biomolecules, of peripheral membrane proteins, such as KRAS,
play a critical part in the modulation of cell signals that control various cellular behaviors including cell growth,
proliferation,and differentiation. Although we have made significant progress in understanding the structure, size, and
origin of the nanoclusters, very little is known about the biophysical processes that control their lifetime. In this paper, we
present a mathematical framework that provides quantitative insights into these processes and explains how oncogenic
mutations in KRAS may lead to cancers.
INTRODUCTION

Protein nanoclusters (PNCs) are dynamic collections of a
small number of proteins that spatially organize in nano-
meter-length clusters (1–10). PNCs are one of the principal
forms of spatial organization of membrane proteins, and
they have been shown or hypothesized to be important in
various cellular processes. In particular, it has been postu-
lated that PNCs can digitize noisy analog signals that
improve the signal/noise ratio of the signals received by a
cell (11–15). Furthermore, it has been shown theoretically
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that PNCs can drastically improve the reaction rates of dou-
ble-modification networks by allowing rapid multiple re-
binding of an enzyme and its substrate (16). Importantly,
the presence or absence of PNCs has measurable impact
on the cell physiology and cellular behavior. For example,
in mast cells, which control the response to allergic reac-
tions, proliferation of the Fc ε R receptor clusters has
been linked with the degranulation of the cells and strong
allergic response (17). In another example, the formation
of glycosylphosphatidylinositol-anchored protein clusters
has been shown to be important in mechano-sensing and
cell spreading (18). Therefore, understanding the dynamics
of formation, growth, function, lifetime, and disintegration
of PNCs is of paramount importance in our pursuit to under-
stand and control cell signaling and the various diseases that
it engenders.
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FIGURE 1 The aster-driven nucleation of protein nanoclusters. (A) (i)

Dynamic cortical actin fibers form asters on the cell membrane. (ii) Periph-

eral proteins bind (adsorb) to the dynamic actin fiber with rate kon and are

advected to the ‘‘þ’’ end of the fiber. Once bound, it dissociates (desorbs)

from the membrane with rate koff . (iii) Proteins adsorbed on the membrane

and advected to the plus end of the aster form a protein nanocluster. The

protein nanocluster disintegrates either through (iv) the fragmentation of

the aster with timescale tA or (v) through the desorption of all the proteins

with timescale tD. The lifetime of the cluster is the minimum of these two

times. (B) The cluster formation model. (i) The cluster size n grows with

rate konCwhere C is the local concentration of actin in the aster, and decays

with rate koff � n. (ii) The cluster grows from n ¼ 0 to a maximum size

n ¼ Nmax and then decays back to n ¼ 0, after time tD. We define Nmax

as the cluster size. To see this figure in color, go online.

Lifetime of protein nanoclusters
Depending on the specific function and the cell type, the
composition, size, shape, and the lifetime of the PNCs vary
a lot. They can be homogeneous in composition, e.g., Kirsten
rat sarcoma virus (KRAS) protein nanoclusters (3), or hetero-
geneous, such as in focal adhesion clusters (18,19). The
shape can be isotropic, as of KRAS (4), or anisotropic, as
of Harvey RAS PNCs (20). The number of proteins in a
PNC (cluster size) also varies over quite a range. For
example, KRAS nanoclusters typically contain 3–8 proteins
(3,4), whereas Fc receptors can form clusters of 20–30 pro-
teins (17). Similarly, the cluster radius can also vary from
20–200 nm (9). Finally, the lifetime and the stability of the
clusters can also vary over a broad range: KRAS clusters,
which are peripheral membrane protein clusters, are transient
and survive for around 0.1–1 s (3,4), whereas Fc receptor
clusters, which are integral membrane protein clusters, are
stable and can survive the entire duration of the experiments
(minutes) (17). Protein-protein interactions and protein-lipid
interactions play a key role in determining the size, shape,
composition, and stability of the PNCs specific to a biolog-
ical process. Therefore, to understand the dynamics of
PNCs in specific processes and cell types, several studies
have investigated the underlying protein-protein and pro-
tein-lipid interactions (4,9). Despite the diversity of the
PNCs and the underlying systems, these studies have shown
that the formation of the PNCs can be categorized into actin-
dependent and actin-independent groups (9), which provides
a general framework for studying the dynamics of the PNCs.
In this paper, we focus on the dynamics of actin-dependent
peripheral membrane protein clusters.

The formation of the actin-dependent peripheral mem-
brane protein clusters (PNCs henceforth) happens through a
set of biomolecular processes that can be abstracted into a
simple physical model, first developed to understand actin-
dependent clustering of glycosylphosphatidylinositol-
anchored protein (21). In this model, described in Fig. 1,
the formation of actin asters aids the PNC formation. In
particular, it is assumed that the protein adsorbs on the actin
fiber with a rate kon, advected to the aster center, and desorbs
with a rate koff , which leads to the formation of a dynamic
PNC. Importantly, the protein absorption kinetics does not
impact the actin self-organization dynamics in any way, but
the actin asters do impact the PNC lifetime through the frag-
mentation of the asters. One corollary of these assumptions is
that the aster lifetime solely determines the PNC lifetime.
However, experimental observations do not corroborate this
statement. In particular, recent experiments have revealed
that asters survive for 10–500 s in in vivo conditions, and their
typical fragmentation times are around 20 s (22,23). In
contrast, many actin-dependent clusters, such as KRAS clus-
ters, survive for only 0.1–1 s (4), which suggests that the life-
time of a PNC is determined by multiple physicochemical
processes besides the aster fragmentation. Indeed, a prior
work has suggested that stochastic protein absorption kinetics
can be one suchmechanism (24). However, it remains unclear
whether the PNC lifetime is always determined by the sto-
chastic growth kinetics or whether it is determined by both
actin fragmentation and adsorption kinetics, depending on
the specific situation. In this paper, we propose a model of
PNCgrowth kinetics that, to the best of our knowledge, allows
us to answer this question for the first time. Our model shows
that although the formation of actin asters is necessary for the
formation of actin-dependent clusters, under most biological
conditions, they do not determine the lifetime of PNCs.

As an application of the general model presented in this pa-
per, we also investigate the formation of heterogeneous pro-
tein clusters, such as the KRAS-RAF1 clusters, and their
lifetime through a simple extension of this model. KRAS4B
(RAS henceforth) is a peripheral membrane protein in human
cells that interacts with the kinase RAF1 (RAF henceforth)
to control cellular growth, differentiation, and proliferation
(25–27). Mutated RAS and RAF is the underlying cause of
30% of all known cancers (28,29). In this paper, through the
application of our general model, we have shown how
Biophysical Journal 122, 290–300, January 17, 2023 291



Sarkar and Goswami
oncogenic mutations in RAS lead to cancers. The insights
gained from our quantitative predictions may be useful in
developing therapeutics against these cancers.
MATERIALS AND METHODS

Experimental materials and methods

Cell culture, transfection and labeling of HaloTag-RAS/SNAP
Tag-RAF

Mouse embryonic fibroblast (MEF) cells were genetically modified to ex-

press SNAP Tag fusion RAF1 and HaloTag fusion RAS protein (Fig. S1

A and B). Fusion constructs were incorporated in cells using viral delivery

methods and selected with antibiotics for stable expression. MEF cells were

plated and grown in six-well plates without antibiotics for 48 h before im-

aging. On the day of imaging, coverslips were washed with phosphate

buffer saline, and cells were labeled with 100uM of fluorescent dye

(SiR647), a cell permeable SNAP-tag ligand, which covalently binds to

the SNAP Tag-RAF1 molecules. Cells were never fixed nor permeabilized

for labeling. Fluorescently labeled SNAP-Cell 647-SiR (Cat #S9102S) li-

gands were obtained from New England Biolab. This fluorescence dye is

highly photostable and resistant to photobleaching (Fig. S1 C) (30).

Single-molecule microscopy

Single-molecule imaging was carried out on the Nikon N- STORM micro-

scope equipped with an APO �100 TIRF objective of 1.49 NA (Nikon,

Japan). A Tokai hit stage incubator (Tokai Hit, Japan) was used to provide

5% CO2 while maintaining the temperature at 37� for live cells. Labeled

molecules (with SiR 647) associated with membrane were illuminated un-

der TIRF mode. Then the JF646 dyes were excited with the 647-nm laser

line, which is one of the four laser lines from the Agilent laser module of

the Nikon N-STORM system (31)). The output laser beam was coupled

into the Nikon TIRF box through a single mode fiber and focused into

the back focal plane of the objective to form a parallel beam for wide-field

operation. The TIRF illumination was achieved by changing the illumina-

tion angle through the Nikon TIRF box controlled by the Nikon software

(NIS, Elements AR 4.4). Fluorescent signals from each molecule were re-

corded with a thermoelectric-cooled EM-CCD camera with 16-mm pixel

size (iXon Ultra DU-897, Andor Technologies, USA) (Fig. S1 B). Single

molecule tracking was implemented by time-lapse imaging of the mole-

cules under continuous illumination at 10 ms exposure for a total of up

to 2000 frames with zero delay time between frames. At this frame rate,

membrane-bound molecules appear as transient, diffraction-limited fluores-

cence spots. An area of 16 � 16 mm2 of the plasma membrane in the cyto-

plasmic region of each cell was imaged (Fig. S1 D).

Single-molecule tracking data processing

The ImageJ-based single-molecule tracking plugin TrackMate (32) was

used to create tracks from the time-lapse movies (Fig. S1 D). The single-

molecule spot detection and tracking parameters were kept consistent

across all experiments. These tracks were exported for residence time anal-

ysis using Matlab script (Mathwork, Natick, MA). Tracking data was ob-

tained in multiple replicates for each and every condition (�20,000

tracks and 20 cells). Residence time was calculated from each track using

TrackArt (https://pubmed.ncbi.nlm.nih.gov/24885944/) software.
Theoretical methods

Mathematical model of protein nanoclusters

The Langmuir kinetics (33) of protein adsorption-desorption can be sum-

marized through the following reactions:
292 Biophysical Journal 122, 290–300, January 17, 2023
1. Adsorption of a protein and assimilation to the cluster of size n, denoted
Pn with rate kon. We assume that the concentration of the unbound pro-

tein is much larger than the bound protein. Furthermore, we assume that

the protein bound to actin does not affect its underlying dynamics (21).

Hence, the propensity of adsorption is konC, where C is the local concen-

tration of actin.

Pn/
kon

Pnþ1 (1)

2. Desorption of a protein from a cluster of size nwith rate koff and propen-
sity koff n.

Pn/
koff

Pn� 1 (2)

Mathematical model of ligand-protein interaction

1. Adsorption of a ligand to a protein with rate k1, which for a cluster of

size n, happens with intensity k1n. We again assume that the concentra-

tion of the unbound ligand is much higher than the bound ligand. The

adsorption of a ligand changes the size of the ligand cluster of size m,

Lm, by 1.

LmPn/
k1
Lmþ1Pn (3)

2. A ligand desorbs from a ligand cluster of size mwith rate k and propen-
2

sity k2m.

LmPn/
k2
Lm� 1Pn (4)

3. A ligand-protein complex desorbs with rate k and propensity k n to
off off

reduce both the ligand and the protein cluster size by 1.

LmPn/
koff

Lm� 1Pn� 1 (5)

Stochastic simulation of the mathematical models

The number of proteins in a cluster is very small (usually < 30), so the ki-

netics becomes nondeterministic due to intrinsic noise originating from

small copy number of the proteins. As a result, we cannot use ordinary dif-

ferential equation-based chemical kinetic models and have to investigate

these models using chemical master equations. The chemical master equa-

tions for the reactions described here were simulated using the Gillespie al-

gorithm (34). To generate the distributions in Figs. 2 and 3, for each set of

parameters, 104 independent time series were generated by simulating the

model using the Gillespie SSA. Each of these time series were run for a

maximum of 1000 s or until the proteins completely desorbed from cluster,

such that the cluster size became 0, whichever was shorter.

Distribution of tC

The cluster lifetime tC is given by the minimum of the aster fragmentation

time tA and the protein cluster desorption time tD. That is tC ¼ minðtA;
tDÞ. We assume that the probability density distributions PAðtAÞ and

PDðtDÞ are nonidentical, but independent of each other because the aster

fragmentation and the protein desorption are independent processes for

the clustering proteins that we consider here. They will not be independent

if the clustering of the proteins, e.g., Myosin or Arp2/3 complex, directly

influences the formation of the asters.

To find the distribution of tC, PCðtCÞ, we use the cumulative distribution

function trick. To perform this trick, observe the following:

Obs 1: tC > t if and only if tD > t and tA > t.

https://pubmed.ncbi.nlm.nih.gov/24885944/
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FIGURE 2 Protein nanocluster lifetime distribution. (A) Cluster lifetime (solid red line) and desorption time (gray dashed line) for different values of 4d

and koff . For all simulations, we assume that the aster lifetime is exponentially distributed with mean lifetime of 20 s (gray dotted line). The cluster lifetime is

more similar to the aster lifetime when 4d is high and koff is low (i, ii), because for such parameters, the cluster is extremely stable and cluster decay happens

because of aster fragmentation. Similarly, when 4d is low or koff is high (iii, iv), the cluster lifetime is more similar to the desorption timescale, because the

clusters are much less stable. The similarity of PðtCÞwith PðtAÞ or PðtDÞ can be measured by finding the overlap between these distributions. For example, in

(B) we show the overlap between PðtCÞ and PðtAÞ, which consolidates our observation that cluster lifetime is similar to aster lifetime when 4d is high and koff
is low. The orange line marks the boundary where the overlap of PðtCÞ with PðtAÞ is higher than that with PðtDÞ. (C) The distribution of cluster size, Nmax ,

depends on 4d , but not on koff (not shown). The distribution for (i) 4d ¼ 0:85 and (ii) 4d ¼ 0:60 shows that as Kd increases, the distribution develops a peak

at Nmax > 1, which leads to the nonlinear increase of the average CNmaxDwith 4d . (D) This change in the cluster size distribution drastically impacts the average

desorption time CtDD. When (i) 4d ¼ 0:6, the average lifetime grows beyond the average aster lifetime, CtAD; only when koff is small, but (ii) for 4d ¼ 0:85,

the average lifetime grows rapidly beyond CtAD. These two results reaffirm the location of the boundary in (B). The blue circle in (C) (iii) indicates the value of

4d that is most similar to experimentally observed RAS cluster size distribution. 104 independent realizations of the model were used for these results. To see

this figure in color, go online.

Lifetime of protein nanoclusters
Therefore,

PcðtC > tÞ ¼ PðtD > t and tA > tÞ (6)

Using the independence of the probability distributions of tA and tD, and

using the fact that the cumulative distribution function FcðtÞ ¼ 1 �
PCðtC > tÞ, we can rewrite the above expression as follows:

FcðtÞ ¼ 1 � PDðtD > tÞPAðtA > tÞ
¼ 1 � ½1 � FDðtÞ�½1 � FAðtÞ�

(7)

The distribution PcðtÞ ¼ vFcðtÞ
vt . Therefore, the distribution is given by
PcðtÞ ¼ SAðtÞPDðtÞ þ SDðtÞPAðtÞ; (8)
where SXðtÞ ¼ 1 � FXðtÞ is the survival function.

Measurement of overlap

We measured the overlap between two probability distributions using

the Bhattacharya coefficient (BC) (35). The Bhattacharya distance DB

(defined below) and the Kullback-Leibler divergence (DKL) (36), which

is usually used to measure the distance between two probability distribu-

tions, give quantitatively similar results. The advantage of the Bhatta-

charya distance is that it is symmetrical for both distributions. For two

continuous probability density functions P and Q, these measures are

defined as follows:

BCðP;QÞ ¼
Z N

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðxÞQðxÞ

p
dx (9)
Biophysical Journal 122, 290–300, January 17, 2023 293
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FIGURE 3 Ligand-protein interaction on protein nanocluster. (A) The

model from Fig. 1 A is amended to include interaction of the clustered protein

target (red) with an extra-membrane ligand (blue). The ligand binds to the

target with rate k1 and dissociates with a rate k2. Therefore, in the presence

of n targets, the number of the ligand, m, grows with propensity k1n and de-

cays with propensity k2m. In addition, the ligand-target complex also disso-

ciates with propensity koff m. Collectively, these reactions lead to the

formation of a heterogeneous cluster, with sizes Nmax for the protein target

(red) and Mmax for the ligand (blue). (B) Because 4d ¼ 0:75 and koff ¼
10 s� 1 fall in the desorption dominated region in Fig. 2 B, the cluster lifetime

is almost entirely determined by the desorption timescale tD. In (i) we have

plotted PðtDÞ for both the target and the ligand, and in (ii) we have plotted the
cluster size distribution for various 4d;L values (legend). As evident from (ii),

the clusters with size 1 contribute heavily to PðtDÞ. To isolate the effect of

cluster size, in (iii) we plot PðtDÞ for Nmax ¼ Mmax ¼ 1, which decays

exponentially with rate koff , whereas in (iv), PðtDÞ for Nmax;Mmax > 1 have

nonmonotonic distributions. 104 independent realizations of the model

were used for these results. To see this figure in color, go online.
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DB ¼ � ln BCðP;QÞ (10)
Z N �
PðxÞ�
DKLðPkQÞ ¼
�N

PðxÞlog
QðxÞ dx (11)

Best fit distribution

To find the best fit distributions shown in Fig. 4 C and D, we minimized the

distance between the experimentally observed distribution and the theoret-

ical distribution obtained from the weighted sum of PEðtEÞ and PCðtCÞ:

PTðtÞ ¼ fPCðtÞ þ ð1 � f ÞPEðtÞ (12)

The distances were measured using the Bhattacharya distanceDB and the

KL divergence DKL, both of which predicted identical values of Mth and f .
294 Biophysical Journal 122, 290–300, January 17, 2023
RESULTS

Determinants of protein nanocluster lifetime

To understand the processes that determine PNC lifetime,
we used a simplified version of the model proposed by Gow-
rishankar et al. (21) In particular, we assume that the aster
formation happens at a timescale much faster than the
PNC lifetime, such that the aster has already reached its
steady-state structure when the first protein adsorbs on the
aster. This assumption decouples the transient PNC kinetics
from the transient aster dynamics, and we can incorporate
the contribution of the aster on the PNC kinetics simply
through the local actin concentration C. Under this assump-
tion, the PNC lifetime is determined by two processes: 1)
the stochastic growth and decay of the PNC through protein
adsorption and desorption, which gives a desorption time
tD, and 2) aster fragmentation with mean fragmentation
time tA (Fig 1 A). The cluster lifetime tC is given by the
shorter of these two times. That is,

tC ¼ minðtD; tAÞ (13)

To better understand the origin of tD, consider the model
shown in Fig 1 B (i). The proteins adsorb onto the aster at a
propensity konC, which increases the size of the cluster by
one protein. The size of the cluster decreases through the
desorption process, which, for a cluster of size n, happens
at a propensity koff n. We also assume that all asters are iden-
tical, such that they have identical actin concentration C,
which allows us to absorb C in kon, so the propensity of
growth is kon. We relax this assumption later to include var-
iable C also. Due to the small number of proteins, the growth
and decay of the cluster is a stochastic process in which the
size of the cluster grows from n ¼ 0 to a maximum size
Nmax and then ultimately decays back to n ¼ 0. We define
the total time between these two n ¼ 0 states as tD; and the
cluster size is given by Nmax (Fig 1 B (ii)).

To understand the relative contribution of the stochastic
growth and the aster fragmentation on the lifetime of a
PNC, we measured the distribution of tD, PDðtDÞ; by vary-
ing koff and the duty ratio 4d ¼ kon

konþkoff
, which measures the

fraction of time a single protein remains bound to the actin;
for constant koff , varying 4d is equivalent to varying kon.
Although we could have varied kon instead of 4d, we find
that the latter is a more natural candidate to describe binding
kinetics. Indeed, 4d is exactly the probability of binding in
the limit of high protein concentration (see supporting ma-
terial). Following experimental observations (22,23,37),
we assumed that the aster fragmentation time, tA, is expo-
nentially distributed with CtAD ¼ 20 s. Given PDðtDÞ and
PAðtAÞ, the cluster lifetime distribution is given by the
following:

PðtCÞ ¼ SAðtcÞPDðtCÞ þ SDðtCÞPAðtCÞ; (14)

where SA and SD are the survival probability functions of PA

and PD (see supporting material). This expression simply
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FIGURE 4 RAS-RAF interaction. (A) RAS residence time: experimentally observed residence time distributions of wild-type KRAS4B (blue circles) and

KRAS4B with G12D mutation (orange square). The black line is the model prediction. The dashed red line shows the power law predicted by disordered

systems theory (supporting material). (B) RAF residence time on the membrane in the presence of different RAS mutations (same color scheme as in A). Both

distributions show power law decay at short times (t < 0:25 s) and nonmonotonic decay at longer times. The power law is also observed in the presence of

R89L mutation in RAS and Y40C mutation in RAF (black diamonds). These two mutations remove any interaction between RAS and RAF. Therefore, this

observation suggests that the power law for short times arises due to RAF-membrane interactions, and the nonmonotonic decay at longer times arises due to

RAS-RAF interactions. (C) Because these two processes are independent, we subtract the R89L-Y40C curve from the other two to get the RAF residence

time distribution arising purely due to RAS-RAF interactions (blue and orange markers). We find good match with our theoretical predictions of PðtCÞ (black
curve) when two conditions are met: 1) kon (red in E) and k1 (sky blue in E) are randomly distributed, and 2) we consider the distribution of residence time

only when Mmax R 8. (D) Adding our model’s prediction with the power law from membrane-RAF interaction reproduces (solid lines) experimental obser-

vations (markers) to an excellent degree. (E) The distribution of random kon and k1 values used in the model with C4dD ¼ 0:6, C4d;LD ¼ 0:6, koff ¼ 20 s� 1,

and k2 ¼ 10 s� 1. kon is exponentially distributed, and k1 is distributed as a Weibull distribution with shape parameter 3. The scale of both distributions is

determined from the mean, C kon ð1ÞD, which is a function of C4d ðd;LÞD and koff ð2Þ. (F) The cluster size distribution of RAS (red) and RAF (sky blue) predicted

from our model. Inset: the same distribution in semilog scale. 105 independent realizations of the model were used to obtain each distribution. To see this

figure in color, go online.

Lifetime of protein nanoclusters
states that the cluster lifetime tC is determined by PD, if the
aster survives until time tC, or else it is determined by PA. In
Fig. 2 A, we show some example distributions. When both
koff is small and 4d (equivalently kon) is large, a protein ad-
sorbs at a rate much higher than it desorbs and once adsorbed
takes a long time to desorb. We find that, in these situations,
the cluster lifetime is determined by the aster fragmentation
time (Figs. 2 A (i), (iii), and S2). In contrast, for all other sit-
uations, PðtCÞ is determined by PðtDÞ (Fig. 2 A (ii), (iv)). We
can make this observation more quantitative by measuring
the overlap between PðtCÞ and PDðtCÞ or PAðtCÞ. In Fig. 2
B, we show the overlap between PðtCÞ and PAðtCÞ, which
shows that protein desorption determines the cluster lifetime
for a large set of parameters. Only when the adsorption-
desorption process is extremely slow and the protein strongly
adsorbs to the actin fiber, then the lifetime is determined by
the aster fragmentation time. This observation shows that
although actin aster is necessary for the formation of actin-
dependent PNCs, in cellular conditions, its fragmentation
may rarely determine the PNC lifetime. A simple testable
prediction from this model is that, as the aster fragmentation
time shortens, e.g., through the application of Latrunculin (2),
there will be a sharp transition in the cluster lifetime
distribution.
Dependence of desorption time on the cluster
size

The cluster size, i.e.,Nmax, does not depend on the desorption
rate koff and depends only on the duty ratio 4d. As 4d
Biophysical Journal 122, 290–300, January 17, 2023 295



Sarkar and Goswami
increases, the cluster size distribution transitions from a un-
imodal distribution to a bimodal distribution, implying that
larger clusters become more prevalent at higher 4d values.
Indeed, the mean size of the clusters increases nonlinearly
with 4d, being close to 1 for 4dz0:5. The average desorp-
tion time, CtDD, has a nontrivial dependence on the cluster
size and koff . In particular, CtDD versus Nmax shows three
different regimes. When Nmax is small, CtDD increases subex-
ponentially with Nmax, followed by exponential increase, and
saturation to a maximum value that depends on 4d and koff .
For example, for 4d ¼ 0:6, CtDD saturates to a value that is
much smaller than the simulation ceiling (1,000 s), whereas
for 4d ¼ 0:85 and koff ¼ 0:1 s� 1, the saturation happens at
the simulation ceiling, implying that the CtDD values are
much longer than the simulation ceiling. This observation
also clarifies why we observe fragmentation-dominated clus-
ter lifetime only when koff is small and/or 4d is large. As our
results show, only in this limit are the cluster sizes large
enough so tD is much longer than tA.
Ligand-protein interaction on protein
nanoclusters

One recurrent feature of cell signaling systems is that cyto-
solic or extracellular ligands are recruited to a membrane
PNC in response to a signal (38). For example, the effector
protein RAF is recruited to clustered RAS, which starts a
MAPK signaling pathway for cell growth and proliferation
(25,26). Therefore, it is important to understand how the
clustering of the membrane proteins influences and modu-
lates the ligand dynamics. Investigation of this problem is
particularly exciting when the membrane protein forms
desorption-dominated PNCs, because in such a situation
the ligands form a transient cluster whose growth kinetics
are intimately coupled to the growth kinetics of the underly-
ing PNC. For fragmentation dominated PNCs, because of
their long lifetime, the ligand growth kinetics are very
similar to the PNC kinetics. Because of this reason, in this
paper, we are only going to focus on the ligand-protein inter-
action on desorption-dominated PNCs.

To model the ligand-protein interaction, we extend our
model of PNC formation by including an additional molec-
ular species (blue particles in Fig 3 A) that interacts only
with the proteins (red particles in Fig 3 A) in the PNC.
This new species, which is the ligand, adsorbs to a protein
with a rate k1 and desorbs with rate k2, which together deter-
mine the ligand duty ratio 4d;L ¼ k1

k1þk2
. The ligand can also

unbind from the membrane when the protein it is bound to
desorbs from the actin aster. We have assumed that binding
of the ligand to the protein does not change the protein’s
desorption rate, so that the ligand-protein complex desorbs
with rate koff . Essentially, this model adds another layer of
1:1 Langmuir adsorption kinetics (33) on top of the
protein-actin kinetics to understand the ligand-protein inter-
actions on PNCs. Therefore, similar to the protein, the
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ligand can also form a cluster by adsorbing to the protein,
which grows from m ¼ 0 to m ¼ Mmax at a propensity
k1n, where n is the instantaneous number of proteins in
the PNC. The ligand cluster decays at a propensity k2m
and eventually returns to the m ¼ 0 state, which again de-
termines the desorption time of the ligand cluster. The
ligand cluster lifetime is determined by three timescales:
its own desorption time, the desorption time of the PNC,
and the aster fragmentation time. The aster fragmentation
time is unimportant for the desorption dominated PNCs,
which allows us to infer the ligand lifetime solely from
the ligand cluster and the PNC cluster desorption times.

The ligand-protein interaction varies widely depending on
4d; koff ; 4d;L, and k2, some of which we have shown in
Fig. S3. In the rest of the paper, we apply our general frame-
work on the specific case of RAS-RAF interaction, which is
a well-known model system. In particular, from biochemical
measurements of the interaction between the Ras binding
domain of RAF and RAS, it has been shown that RAF disso-
ciates from RAS approximately at a rate of k2 � 10 s� 1 (39).
We also know that the average KRAS cluster contains about
6–8 proteins (3,4), which implies that in our model,
4dz0:75 (Fig. 2 C (iii)). Finally, we also know that typical
KRAS clusters survive for 0.1–1 s (4), which we get when
koff � 10 s� 1 (Fig. 2 D). Therefore, 4d;L is the only free
parameter in our model. In Fig. 2 B, cases with different
4d;L are shown. Because binding of the ligand does not
change the protein kinetics, changing 4d;L does not change
the lifetime of PNC. In contrast, increasing 4d;L at constant
k2 increases the propensity of ligand binding, which in-
creases the lifetime of the ligand cluster. These observations
are reflected in PðtDÞ: although the distribution remains un-
changed for PNCs, for the ligands, the tails become broader
with increasing 4d;L: Due to the same reason, the size distri-
bution of protein cluster remains unaffected, but the ligand
cluster becomes larger as 4d;L increases. Therefore, purport-
edly, the change in the ligand cluster lifetime distribution
happens due to the increase in the number of ligand clusters
with size greater than 1. Indeed, resolving the lifetime distri-
bution by the size of the ligand (Mmax) and the protein clus-
ters (Nmax) shows that the lifetime distribution of clusters of
only one protein (Nmax ¼ 1) or ligand (Mmax ¼ 1) depends
only on the desorption rates and remains unaffected by the
variation of 4d;L. In contrast, the lifetime of ligand clusters
with Mmax > 1, changes with 4d;L. Therefore, the formation
of ligand clusters on PNCs provides a mechanism to control
the residence time of extra-membrane ligands.
RAS residence time on the membrane

Due to their roles in various cancers, understanding RAS-
RAF interaction has been subject of extensive investigations,
where it has been reported that RAS forms actin-dependent
PNCs on the inner leaflet of the plasma membrane only
when it is in the GTP-bound active form (2,4,40). Also, it
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is well-known that RAF binds principally to GTP-bound
RAS (27). Hence, it is likely that RAS-RAF interaction in
human cells is mediated by RAS nanoclusters. Therefore,
RAS-RAF interaction provides an excellent experimental
platform for understanding the kinetics of ligand-cluster
interaction on real PNCs.

To do so, we measured the residence times of RAS and
RAF on MEF cell membranes using TIRF microscopy and
single-particle tracking (Fig. S1). To understand the effect
of interaction between RAS and RAF on the residence
time of RAF on the membrane, we used wild-type (wt)
and mutated variants of RAS and RAF. The residence
time of RAS decays as a power law with an exponential
tail (Fig. 4 A). This distribution is qualitatively similar to
the distribution predicted by our model (Figs. 2 A and 3
B), except that our model predicts an exponential decay of
the residence times, whereas we get a power law tail here.
This quantitative difference can be explained by noting a
key difference between our model and the cellular systems.
In the model, we assumed that the actin concentrations are
identical in all asters, which does not apply to a cellular sys-
tem, where the cortical actin concentration can vary substan-
tially over space and time (37).

A simple way to incorporate the variation of actin concen-
tration in our model is to assume that kon varies randomly
from aster to aster due to spatial variation in C, but it re-
mains constant for an aster. An argument from the physics
of disordered systems proposes that if a timescale t is deter-
mined by some underlying variable E, then the distribution
of the timescale is determined by the distribution of the dis-

order (41). In particular, if t ¼ eE=E1 and PðEÞ ¼ 1
E0
e�E=E0 ,

then PðtÞft
� 1� E1

E0 . Indeed, we find that CtCD varies expo-
nentially with kon. Also, experimental observations suggest
that aster size (hence, actin concentration C) also has expo-
nential tails (Fig. S4). Hence, following the physical argu-
ment, we can immediately see that PðtCÞ for RAS should
have power law tails. In particular, we get an excellent fit
to the experimental distribution when kon varies exponen-

tially (Fig. 4 E) with CkonD, the only parameter of the distri-

bution, determined by koff ¼ 20 s� 1 and C4dD ¼ 0:6 (Fig 4

A and S5). Interestingly, the obtained value of koff is remark-

ably close to the observed GTP hydrolysis rate of RAS
GTPase activating proteins (42).
RAF residence time on the membrane

The residence time of RAF on the membrane also follows a
nonexponential distribution (Fig. 4 B–D), which suggests
that the residence time of RAF is ‘‘not’’ determined by un-
correlated collisions with the membrane, and the interac-
tions of RAF with RAS and the membrane are its
important determinants. Indeed, upon closer inspection of
the residence time distribution for wt.RAS and RAF
(Fig. 4 B) we found that the residence time, t, has two
unique regimes: for t < 0:25 s, the distribution decays as a
power law, and above this timescale, it decays nonmono-
tonically (has a peak) with a different power law tail. To un-
derstand the origin of these two regimes, we repeated the
experiments on RAS with R89L and RAF with Y40C muta-
tions. The mutations eliminate any interaction between RAS
and RAF. For this system, the nonmonotonic part disap-
peared from the residence time distribution, and only the po-
wer law decay remained (Fig. 4 B), which implies that the
nonmonotonic part originates from the RAS-RAF interac-
tions, whereas the initial power law decay originates from
the RAF-membrane interaction. This is further evinced by
the residence time distribution of RAF in the presence of
RAS with G12D mutations, which increases the fraction
of GTP-bound RAS. In this system, the peak of the nonmo-
notonic part becomes more pronounced (Fig. 4 B).

The above observations show that the initial power law
and the nonmonotonic decay at later times originate from
two independent processes. Hence, we can isolate the
contribution of RAS-RAF interaction on the RAF resi-
dence time by subtracting the power law obtained from
R89L-Y40C system from the other two residence time dis-
tributions. Doing so produces the distributions shown in
Fig. 4 C. The distributions are identical to each other within
experimental variations and have power law tails that decay
as t� 3:5. Remarkably, the shape of the distributions is qual-
itatively similar to the distribution of ligand cluster desorp-
tion times (Fig 3 B). Hence, it is possible that the
nonmonotonic distribution arises due to the formation of
RAF clusters on the RAS clusters. However, it is also
possible that the nonmonotonicity arises due to the multi-
ple rebinding of a single RAF on the cluster, which in-
creases its lifetime and leads to a nonexponential and
nonmonotonic distribution. However, our computational
results showed that although multiple rebinding of a single
ligand increased the residence time, it did not make the
residence time distribution nonmonotonic (Fig. S6), which
ruled out multiple rebinding as a possible origin of the
observed nonmonotonic distribution. Importantly, this
result established that ligand clustering is the underlying
mechanism of the nonmonotonic decay of residence times.
More important, the identity of the distributions implies
that the binding affinities of RAF (4d;L) are identical for
both wt and mutant RAS.

Similar to the RAS residence time distribution, the power
law decay in RAF residence time distribution can be ex-
plained by the spatial variation of k1 from one PNC to
another because of the differences in local lipid environ-
ments or variation in effective reaction rates due to compe-
tition from other interaction partners of RAS. We
incorporate the spatial variation by assuming that (besides
kon) k1 is also randomly distributed and it follows a Weibull
distribution with shape parameter 3 (Fig. 4 E). Unlike the
RAS distribution, there is no observational evidence for
this distribution, but there is a physical argument, which
Biophysical Journal 122, 290–300, January 17, 2023 297
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we discuss in the supporting material. Remarkably, we find
that introduction of the random kon and k1 suffices to repro-
duce the power law tail. In fact, we can quantitatively repro-
duce the distribution when we consider the lifetime of
ligand clusters with size greater than a cutoff Mth ¼ 8,
i.e., Mmax RMth ¼ 8 and C4d;LD ¼ 0:6 (Figs. 4 C, D, and
S7), the latter of which uniquely determines the scale of
the Weibull distribution from which k1 is sampled. This
result confirms that the nonmonotonicity arises solely
because of the formation of RAF clusters on RAS clusters.
Indeed, the cluster size distribution predicted by our model
(Fig. 4 F) is consistent with prior experimental (4,20) and
computational observations (20,43–45).
Impact of the G12D mutation of RAS

Next, using our model, we investigate the origin of the dif-
ference between the residence time distributions in the pres-
ence of wt and G12D RAS. We ask, why do we see an
increase in the nonmonotonic part of the distribution in
the presence of G12D, even though the RAS-RAF binding
affinity remains unchanged? In our model, in the absence
of any changes in the binding affinity, the nonmonotonic
part can become more prominent if and only if the clustered
fraction of RAF increases by binding to RAS PNCs. To test
this hypothesis, we added the experimentally obtained po-
wer law PEðtEÞ (Fig 4 B) to the cluster time distribution
PCðtCÞ from our model and generated a combined distribu-
tion by taking a weighted mean of the two distributions. The
resultant distribution is

PTðtÞ ¼ ð1 � f ÞPEðtÞ þ fPcðtÞ; (15)

where f is the fraction of RAF that binds to RAS PNCs. We
found a best fit distribution for both cases by varying the

threshold Mth (Fig. S7) and f . Remarkably, we found that
both best fit distributions had identical Mth ¼ 8, but the f
values were different by a factor of two (Fig 4D). This result
implies that, in the timescales probed by our experiments
(�5 s), the G12D mutation does not change the binding af-
finity between RAS and RAF, but it increases the number of
RAS clusters. This result is consistent with the experimental
observation that only RAS.GTP forms clusters (4). Indeed,
as noted earlier, the best fit koff value is remarkably close
to the GTP hydrolysis rate of GTPase activating proteins,
which implies that RAS.GTPs are the drivers of the clus-
tering. Because the G12D mutation effectively increases
the number of RAS.GTP on the membrane, it is likely that
we will observe more RAS clusters in the presence of this
mutation.
DISCUSSION

In this paper, we have presented a simple mathematical
model to understand the lifetime of actin-dependent periph-
eral membrane PNCs and protein-ligand interactions on the
298 Biophysical Journal 122, 290–300, January 17, 2023
PNCs. Our results show that in many biologically relevant
cases, the lifetime of PNCs is determined solely by the
adsorption-desorption kinetics of the proteins on actin asters
and not by the fragmentation of the aster. Our model shows
that many PNCs arise from subcritical nucleation (46) of pe-
ripheral membrane proteins that survive for a short time
before disintegrating. Under special circumstances, the nu-
cleus becomes large enough to be stable and survives for a
long duration. Only in these cases, the fragmentation of
the aster determines the lifetime of the PNC. Therefore,
from a physical standpoint, the dynamics of PNCs is better
understood by studying the dynamics of subcritical nuclei,
as we have done in this paper.

To understand the effect of protein clustering on the
ligand-protein interactions, we studied some ideal cases
using our model, which showed that the clustering of the
proteins on the membrane enhances the residence time of
the ligands on the membrane (Fig. 3 B (iii), (iv)). After
incorporating the effect of a spatially heterogeneous mem-
brane in our model, we compared our results with experi-
mental measurements of RAF residence times in the
presence and absence of its interaction with the PNC form-
ing RAS protein. We found remarkable agreement between
our predictions and the experimental observations, which
consolidated the results obtained from our model. Impor-
tantly, investigation of this system using our model allows
us to contribute to an ongoing debate on the role of RAS
G12D mutation in the proliferation of cancer cells. Our
model suggests that the G12D mutation does not change
the binding affinity between RAS and RAF. Instead, it in-
creases the propensity of RAS and RAF cluster formation,
which increases the residence time of RAF on the mem-
brane and enhances the activity of the MAPK pathway
involved in proliferation. An independent experiment on
HeLa cells shows very similar results (not shown), which
gives further credence to our proposition.

Although our model showed remarkable agreement be-
tween the experimental observations, there are several
drawbacks that need to be addressed to develop a better
model of the PNCs. We assumed well-mixed mass action
kinetics, which is likely to be invalid in most biological
contexts (47). The well-mixed kinetics also overestimate
the frequency of events happening at short times, because
of which our model disagrees with the experimental obser-
vation at short times (Fig 4 B–D). Also, in modeling the
protein-ligand interactions, we did not explicitly model
the multiple rebinding of a ligand on a PNC and assumed
that it will be captured by some effective kon or k1 values.
To our satisfaction, recalculation of the results by adding a
well-mixed model of multiple rebinding does not change
our results qualitatively (not shown). Furthermore, the
lipid environment of proteins plays an important part in
determining the stability of the PNCs (4,9,43,48,49),
which we do not consider here explicitly, but model as a
source of spatial heterogeneity in the rates. In the future,
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we will develop models to incorporate these features.
Despite these limitations, our current model provides
deep insights into the working of the PNC formation
and lifetime that will be useful in our understanding of
protein nanoclusters and protein-protein interactions dur-
ing cell signaling.

In conclusion, in this paper, we present a general, yet sim-
ple, framework to study protein nanocluster dynamics in
spatially heterogeneous cell membranes. As demonstrated
here, through this framework, we can not only study general
questions regarding the growth and stability of protein nano-
clusters, but also apply them to study specific protein-pro-
tein interaction systems. The framework presented is not
specific to the RAS-RAF system and can be used to model
other protein-protein interactions just by varying the param-
eters. Furthermore, with little modification, our framework
can be used to understand drug-protein interactions, which
may be useful in rapid design of novel drugs. We believe
the generality and the simplicity of our framework will be
useful in studying various biomolecular interactions and
provide novel insights into their dynamics.
SUPPORTING MATERIAL
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