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We give combinatorial proofs of two multivariate Cayley–
Hamilton type theorems. The first one is due to Phillips (1919) 
[10] involving 2k matrices, of which k commute pairwise. The 
second one uses the mixed discriminant, a matrix function 
which has generated a lot of interest in recent times. Recently, 
the Cayley–Hamilton theorem for mixed discriminants was 
proved by Bapat and Roy (2017) [3]. We prove a Phillips-type 
generalization of the Bapat–Roy theorem, which involves 2nk
matrices, where n is the size of the matrices, among which 
nk commute pairwise. Our proofs generalize the univariate 
proof of Straubing (1983) [11] for the original Cayley–
Hamilton theorem in a nontrivial way, and involve decorated 
permutations and decorated paths.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Suppose A is an n × n matrix with entries in a commutative ring. Then the Cayley–
Hamilton theorem says that p(A) = 0, where p(x) = det(xIn − A) is the characteristic 
polynomial of A and In is the n × n identity matrix. The Cayley–Hamilton theorem is 
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probably the first deep theorem one sees in linear algebra. It was first proved for linear 
functions of quaternions (corresponding to real 4 × 4 or complex 2 × 2 matrices) by 
Hamilton [8]. Cayley [5] stated it for sizes 2 and 3, but gave a demonstration only in the 
former case. Sylvester immediately realised its importance and popularized it, calling it 
the no-little-marvellous Hamilton–Cayley theorem [12].

The first proof was given by Buchheim [4] assuming invertibility of the matrix, but the 
first general proof was given by Frobenius [7]. For more on the history of this remarkable 
theorem, see [6]. Several proofs are now known at various levels of abstraction.1 Relevant 
to this work is an elegant combinatorial proof due to Straubing [11,13].

H. B. Phillips [10] proved the following generalization of the Cayley–Hamilton theo-
rem. Suppose A1, . . . , Ak and B1, . . . , Bk are two families of n × n matrices such that 
BiBj = BjBi for all 1 ≤ i < j ≤ k and

A1B1 + · · · + AkBk = 0. (1)

Theorem 1 ([10, Theorem I]). Define the polynomial p(x1, . . . , xk) = det(A1x1 + · · · +
Akxk). Then p(B1, . . . , Bk) = 0.

We will give a combinatorial proof of Theorem 1 in Section 2. For our proof, we will 
think of the entries in these matrices as formal commuting indeterminates. An instructive 
special case about a pair of commuting matrices A, B arises by setting k = 2, A1 =
A, B1 = B, A2 = −B, B2 = A as follows.

Corollary 2. Let A, B be commuting matrices. Define the bivariate polynomial q(x, y) =
det(xA − yB). Then q(B, A) = 0.

Setting A equal to the identity matrix in Corollary 2 reduces to the Cayley–Hamilton 
theorem.

We now move on to an important generalization of the determinant. For an integer 
n, [n] = {1, . . . , n} and Sn stands for the set of permutations [n].

Definition 3. The mixed discriminant of an n-tuple (A1, . . . , An) of n × n matrices is 
defined as

D(A1, . . . , An) = 1
n!

∑
α∈Sn

det
(
A(1)

α1

∣∣ · · ·
∣∣ A(n)

αn

)
,

where A(i) denotes the i’th column of the matrix A.

The basic properties of the mixed discriminant are given in [1]. From the combina-
torial point of view, it has been used to enumerate coloured spanning forests [2]. It 

1 The Wikipedia article on this topic itself gives four distinct proofs.

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
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simultaneously generalizes both the determinant and the permanent. For a fixed ma-
trix B, D(B, . . . , B) = det(B), and if we set Bi to be the diagonal matrix with entries 
Bi,1, . . . , Bi,n, then D(B1, . . . , Bn) =

∑
σ∈Sn

B1,σ1 · · ·Bn,σn
, which is the permanent of 

B.
We will use I for the identity matrix whenever the size is clear from the context. 

Bapat and Roy [3] generalized the Cayley–Hamilton theorem for mixed discriminants by 
adapting Straubing’s proof [11].

Theorem 4 ([3, Theorem 1.1]). For an n-tuple of n ×n matrices (A1, . . . , An), define the 
polynomial

f(x1, . . . , xn) = D(x1I −A1, . . . , xnI −An).

Then f(A1, . . . , An) = 0.

We note in passing that f(x, . . . , x) is also known as the mixed characteristic poly-
nomial and was an important ingredient in the recent proof of the Kadison-Singer 
theorem [9].

For some positive integers n, k, let (Ai,j)i∈[n],j∈[k] and (Bi,j)i∈[n],j∈[k] be two families 
of n × n matrices, where Bi,jBi′,j′ = Bi′,j′Bi,j for all 1 ≤ i < i′ ≤ n, 1 ≤ j, j′ ≤ k. In 
addition, suppose

Ai,1Bi,1 + · · · + Ai,kBi,k = 0, 1 ≤ i ≤ n. (2)

Theorem 5. For indeterminates (xi,j)i∈[n],j∈[k], define the polynomial

p̂
(
(xi,j)i∈[n],j∈[k]

)
= D(A1,1x1,1 + · · · + A1,kx1,k, . . . , An,1xn,1 + · · · + An,kxn,k). (3)

Then

p̂
(
(Bi,j)i∈[n],j∈[k]

)
= 0.

We will give a combinatorial proof of Theorem 5 in Section 3. Even for this proof, we 
will think of the entries in these matrices as formal commuting indeterminates. We now 
discuss a special case of Theorem 5 for k = 2. Let M1, . . . , Mn be a family of matrices. 
We then set Ai,1 = −Bi,2 = I and Ai,2 = Bi,1 = Mi for i ∈ [n]. Then, this family of 
matrices automatically satisfies (2). For convenience, we will set xi,1 = xi and xi,2 = yi. 
Then the polynomial in (3) becomes

p̂2 (x1, . . . , xn; y1, . . . , yn) = D(x1I −M1y1, . . . , xnI −Mny1).

Corollary 6. Suppose M1, . . . , Mn are a pairwise commuting family of matrices. Then

p̂2 (M1, . . . ,Mn;−I1, . . . ,−In) = 0.
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Corollary 6 bears the same relation to Theorem 5 as Corollary 2 does to Theorem 1. 
If we compare this result with Theorem 4, we see that the extra set of variables yi forces 
Mi’s to be pairwise commuting in order for the Cayley–Hamilton theorem to apply.

Remark 7. Suppose we choose matrices such that Ai,j = Aj and Bi,j = Bj as well as set 
variables xi,j = xj for all i. Then Theorem 5 reduces to Theorem 1.

The plan of the rest of the paper is as follows. We first give a combinatorial proof 
for Theorem 1 in Section 2. We will illustrate the key ideas of the proof using 2 × 2
matrices in Section 2.1. We show how the proof relates to Straubing’s proof of the 
Cayley–Hamilton theorem in Section 2.2. We also compare our proof to Phillips’ original 
proof in Section 2.3. We then give a proof of Theorem 5 in Section 3 using a naturally 
generalization of our proof strategy for Theorem 1. We illustrate the proof ideas again 
for 2 × 2 matrices in Section 3.1.

2. Proof of Phillips’ theorem

Throughout this section, we will fix k and n × n matrices A1, . . . , Ak and B1, . . . , Bk

where Bi’s commute pairwise and the matrices satisfy

A1B1 + · · · + AkBk = 0. (4)

We will first define the key combinatorial objects involved in the proof.

Definition 8. Let π = (π1, . . . , πn) ∈ Sn. A decorated permutation π̄ of π is an n-tuple 
of triples π̄i = (i, πi, �i) for i ∈ [n], where each �i ∈ [k] is called a label. We will denote 

π̄i as i A

�i
πi which has weight (A�i)i,πi

. The signed weight of the decorated 
permutation is given by

swgt(π̄) = sgn(π)
n∏

i=1
(A�i)i,πi

.

The set of all decorated permutations is denoted S̄n,k.

Since there are n! permutations and all labels are independently chosen, the cardinality 
of S̄n,k is n!kn. Let n = 3, k = 2, and π = (3, 1, 2). Then an example of a decorated 
permutation is

π̄ : 1 A

1
3 2 A

2
1 3 A

2
2 (5)

with swgt(π̄) = +(A1)1,3(A2)2,1(A2)3,2.
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π̄: 1 A

�1
π1 · · · s A

�s
πs · · · n A

�n
πn

q̄: q1 B

�1
q2 · · · qs B

�s
qs+1 · · · qn B

�n
qn+1

Fig. 1. An illustration of a generic pathmutation (π̄, q̄).

Definition 9. A decorated path of length n is a tuple q̄ = (q1, . . . , qn+1), where each 

qi ∈ [n]. For i ∈ [n], the i’th labeled edge is denoted q̄i = qi B

�i
qi+1 and has 

weight (B�i)qi,qi+1 , where the label �i ∈ [k]. The weight of the decorated path is

wgt(q̄) =
n∏

i=1
(B�i)qi,qi+1 .

The set of all decorated paths is denoted Qn,k.

For instance, with n = 3 and k = 2,

q̄ : 3 B

1
1 1 B

2
2 2 B

2
1 (6)

is a decorated path with wgt(q̄) = (B1)3,1(B2)1,2(B2)2,1.

Definition 10. A pathmutation is a pair (π̄, q̄) where π̄ ∈ S̄n,k, q̄ ∈ Qn,k such that the 
labels of the i’th element of the permutation and the i’th edge of the path are the same 
for all i ∈ [n]. The signed weight of a pathmutation is

wgt(π̄, q̄) = swgt(π̄) wgt(q̄).

The set of pathmutations beginning with q1 = b and ending with qn+1 = e is denoted 
A(b, e).

The cardinality of A(b, e) is n!knnn−1 for every b, e ∈ [n] because we can choose 
q2, . . . , qn−1 arbitrarily.

See Fig. 1 for a generic pathmutation. We then set

swgt(A(b, e)) =
∑

(π̄,q̄)∈A(b,e)

swgt(π̄) wgt(q̄).

We will need more general objects than decorated permutations in our proofs, which we 
now define.

Definition 11. A decorated map m is an n-tuple of triples mi = (σi, τi, �i), where σ =
(σ1, . . . , σn) ∈ Sn is either the identity or a single transposition, τi ∈ [n] and �i ∈ [k] for 
all i such that
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• #{τ1, . . . , τn} ≥ n − 1,
• if #{τ1, . . . , τn} = n, then σ is the identity permutation,
• if τi = τj for some (i, j), then either σi = i, σj = j or σi = j, σj = i.

The weight of mi is (A�i)σi,τi and is denoted σi A

�i
τi . The weight of m is then

wgt(m) =
n∏

i=1
(A�i)σi,τi .

The set of all decorated maps is denoted Mn,k.

When #{τ1, . . . , τn} = n, we get exactly decorated permutations. When #{τ1,
. . . , τn} = n − 1, there are n(n − 1) × n!/2 possibilities for τ and 2 possibilities for 
σ in each case so that the cardinality of Mn,k is

kn(n! + n(n− 1)n!) = n!kn(n2 − n + 1).

For example, we can view (5) as the decorated map

m : ((1, 3, 1), (2, 1, 2), (3, 2, 2)),

where the first component σ is the identity permutation and the second component τ is 
the permutation π = (3, 1, 2). Now suppose we fix τ2 = 1, τ1 = τ3, and the same labels 
as above. Then σ is forced to be either (1, 2, 3) (i.e. the identity) or (3, 2, 1), and the four 
possible decorated maps are

1 A

1
3 2 A

2
1 3 A

2
3 , (7)

3 A

1
3 2 A

2
1 1 A

2
3 , (8)

1 A

1
2 2 A

2
1 3 A

2
2 , (9)

3 A

1
2 2 A

2
1 1 A

2
2 . (10)

Definition 12. A pathmap is a pair (m, q̄) where m ∈ Mn,k, q̄ ∈ Qn,k such that

• If {τ1, . . . , τn} = [n], then (m, q̄) is a pathmutation.
• If #{τ1, . . . , τn} = n − 1 and τs = τt for some s < t, then q1 = τs = τt. In this case, 

the labels of mk and q̄k must match for all k �= s, t. In addition, if σs = s, σt = t
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(resp. σs = t, σt = s), then the labels of ms and mt are equal to those of q̄s, q̄t (resp. 
q̄t, q̄s) respectively.

The weight of the pathmap (m, q̄) is

wgt(m, q̄) = wgt(m) wgt(q̄).

The set of pathmaps with #{τ1, . . . , τn} = n − 1 such that {τ1, . . . , τn} = [n] \ {b}
and ending with qn+1 = e is denoted H(b, e). In addition, let G(b, e) = H(b, e) ∪ A(b, e).

For instance, we may combine the decorated permutation (5) and the decorated path 
(6) to get a pathmutation in A(3, 1):

π̄: 1 A

1
3 2 A

2
1 3 A

2
2

q̄: 3 B

1
1 1 B

2
2 2 B

2
1

where the labels match. We can also combine the decorated maps in (7) and the same 
decorated path q̄ to get the pathmap

π̄: 1 A

1
3 2 A

2
1 3 A

2
3

q̄: 3 B

1
1 1 B

2
2 2 B

2
1

However, the combination of the decorated map (8) with q̄ is not a pathmap because the 
condition on the labels is not satisfied. Further, the decorated map (9) with q̄ does not 
form a pathmap because 3 = q1 �= τ1 = τ3 = 2. Lastly, (10) with q̄ fails both conditions.

In other words G(b, e) consists of two kinds of elements (m, q̄). Those with q1 = b

are pathmutations and the remaining are elements of H(b, e), which we count now. For 
every fixed b and e, there are n − 1 possibilities for q1, n possibilities each for q1, . . . , qn, 
k possibilities each for �1, . . . , �n, n!/2 arrangements of τ and 2 arrangements for σ. 
Therefore, #H(b, e) = (n − 1)n!knnn−1 and the cardinality of H(b, e) is n − 1 times that 
of A(b, e).

Fig. 2 illustrates the two kinds of elements in H(b, e) in the second condition in 
Definition 12.

To assign a sign to the elements of G(b, e), we define a map φ : A(b, e) × [n] → G(b, e)
defined by φ((π̄, q̄), j) = (m′, q̄′) as follows. First, define q̄′ by

q̄′r =

⎧⎪⎨⎪⎩ j B

�1
q2 r = 1,

q̄ otherwise.
r
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m: · · · s A

�s
q1 · · · t A

�t
q1 · · ·

q̄: · · · qs B

�s
qs+1 · · · qt B

�t
qt+1 · · ·

(a) (m, ̄q)

m: · · · t A

�t
q1 · · · s A

�s
q1 · · ·

q̄: · · · qs B

�s
qs+1 · · · qt B

�t
qt+1 · · ·

(b) (m′, ̄q)

Fig. 2. Two elements (m, ̄q) and (m′, ̄q) of H(b, e) such that mk = m′
k for k �= s, t. Note that m′

s = mt and 
m′

t = ms. If we write mi = (σi, τi, �i) and m′
i = (σ′

i, τ ′
i , �i), then σ is the identity permutation, σ′ is the 

transposition (s, t), and τs = τt = τ ′
s = τ ′

t = q1.

Next, set s = π−1
b and t = π−1

j . Then let

m′
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
min(s, t) A

�min(s,t)

j if r = s,

max(s, t) A

�max(s,t)

j if r = t,

π̄r otherwise.

(11)

Proposition 13. φ is a bijection.

Proof. We prove this by constructing the inverse map. Let (m′, q̄′) ∈ G(b, e) and m′
i =

(σ′
i, τ

′
i , �

′
i), i ∈ [n].

q̄r =

⎧⎪⎨⎪⎩ b B

�1
q′2 if r = 1

q̄′r otherwise.

If q′1 = b, then set π̄r = m′
r; otherwise, there exists 1 ≤ s < s′ ≤ n such that τ ′s = τ ′s′ = q′1. 

In this case, set

π̄r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s A

�s
b if r = s, σ′

r = s,

s A

�s
q′1 if r = s, σ′

r = s′,

s′ A

�s′

b if r = s′, σ′
r = s,

s′ A

�s′

q′1 if r = s′, σ′
r = s′,

m′ otherwise.
r
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Clearly, (π̄, q̄) ∈ A(b, e). It is routine to check that φ((π̄, q̄), q′1) = (m′, q̄′). �
Note also that φ((π̄, q̄), b) = (π̄, q̄) for (π̄, q̄) ∈ A(b, e). We now use Proposition 13 to 

give a signed weight to a pathmap (m′, q̄′). Suppose φ−1(m′, q̄′) = ((π̄, q̄), k). Then set

swgt(m′, q̄′) = sgn(π) wgt(m′, q̄′). (12)

Lemma 14. Let A1, . . . , Ak, B1, . . . , Bk be n × n matrices satisfying (4) and where the 
Bi’s commute pairwise, and let b, e ∈ [n]. Then∑

(m,q̄)∈G(b,e)

swgt(m, q̄) = 0.

Proof. By definition of (12),

swgt(G(b, e)) =
∑

(π̄,q̄)∈A(b,e)

n∑
a=1

swgt (φ((π̄, q̄), a)) .

We will refine the sum according to the underlying permutation π and all the labels 
except �s, where πs = b. Thus,

swgt(G(b, e)) =
∑
π∈Sn

∑
(π̄,q̄)∈A(b,e)

1≤�1,...,�s−1,�s+1,...,�n≤k

∑
1≤q2,...,qn≤n

k∑
�s=1

n∑
a=1

swgt (φ((π̄, q̄), a)) .

We will now perform the three inner sums. The common factor for these sums is

sgn(π)
n∏

i=1
i�=s

wgt( i A

�i
πi ) = sgn(π)

n∏
i=1
i�=s

(A�i)i,πi
.

Since all three are independent, we can perform them in any order. We first perform

k∑
�s=1

n∑
a=1

wgt( s A

�s
a )

×
∑

1≤q2,...,qn≤n

wgt

⎛⎜⎝ a B

�1
q2

⎞⎟⎠ · · ·wgt

⎛⎜⎝ qn B

�n
e

⎞⎟⎠ .

(13)

Using the pairwise commutativity of B1, . . . , Bk, cycle the labels �1, . . . , �s in the path 
to bring �s to the front so that we have
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k∑
�s=1

n∑
a=1

wgt( s A

�s
a )

∑
1≤q2,...,qn≤n

wgt

⎛⎜⎝ a B

�s
q2

⎞⎟⎠

× wgt

⎛⎜⎝ q2 B

�1
q3

⎞⎟⎠ · · ·wgt

⎛⎜⎝ qs B

�s−1
qs+1

⎞⎟⎠

× wgt

⎛⎜⎝ qs+1 B

�s+1
qs+2

⎞⎟⎠ · · ·wgt

⎛⎜⎝ qn B

�n
e

⎞⎟⎠ .

We now perform the sum over a and �s first. This amounts to

k∑
�s=1

n∑
a=1

wgt( s A

�s
a ) wgt( a B

�s
q2 ) =

k∑
�s=1

n∑
a=1

(A�s)s,a(B�s)a,q2 , (14)

which, by matrix multiplication is the (s, q2)’th entry of A1B1 + · · · + AkBk, which is 
zero by (4). This completes the proof. �
Lemma 15. Let A1, . . . , Ak, B1, . . . , Bk be n × n matrices satisfying (4) and where the 
Bi’s commute pairwise, and let b, e ∈ [n]. Then∑

(m,q̄)∈H(b,e)

swgt(m, q̄) = 0.

Proof. By Proposition 13, every pair in H(b, e) is equal to φ((π̄, q̄), j) for some (π̄, q̄) ∈
A(b, e) and 1 ≤ j ≤ n, j �= b. Define a map f : H(b, e) → H(b, e) such that if 
f(φ((π̄, q̄), j)) = φ((π̄′, q̄), j), then

π̄′
r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
r A

�r
j if πr = b,

r A

�r
b if πr = j,

π̄r otherwise.

Clearly, f is an involution. We claim that it is sign-reversing and weight-preserving. Let 
(m, q̄) = φ((π̄, q̄), j) and suppose that s = π−1

b < t = π−1
j . Then, by (11), we have

π̄s = s A

�s
b , π̄t = t A

�t
j ,

ms = s A

�s
j , mt = t A

�t
j .
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By the definition of f , π̄′ will have

π̄′
s = s A

�s
j , π̄′

t = t A

�t
b .

Let (m′, q̄) = φ((π̄′, q̄), j), then

m′
s : t A

�t
j , m′

t : s A

�s
j .

Thus, the weights of m and m′ are the same, and π and π′ differ by a single transposition. 
Hence, swgt(m′, q̄) = − swgt(m, q̄) by (12). The case of s > t proceeds in a very similar 
manner. �
Proof of Theorem 1. We first claim that

swgt(A(b, e)) = p(B1, . . . , Bk)b,e.

To see this, begin by expanding the polynomial p as

p(x1, . . . , xk) =
∑
σ∈Sn

sgn(σ)
n∏

r=1
((A1)r,σr

x1 + · · · + (Ak)r,σr
xk) .

Now, substitute xi by Bi and use the fact that Bi’s commute pairwise to obtain

p(B1, . . . , Bk) =
∑
σ∈Sn

sgn(σ)
n∏

r=1
((A1)r,σr

B1 + · · · + (Ak)r,σr
Bk)

=
∑
σ∈Sn

sgn(σ)
∏

(z1,...,zn)∈[k]n
(Az1)1,σ1 · · · (Azn)n,σn

Bz1 · · ·Bzn .

Now consider the (b, e)’th entry of this sum. For each permutation σ and each element 
z = (z1, . . . , zn) ∈ [k]n, we obtain a decorated permutation σ̄, the label of whose i’th 
element is zi as seen above. Now expand the product of Bzi ’s on the right hand side. 
The (b, e)’th entry is a sum of terms, each of which corresponds exactly to a decorated 
path with initial vertex b and final vertex e. This proves the claim above.

Now, we have by construction, G(b, e) = A(b, e) ∪ H(b, e). We have proved that 
swgt(G(b, e)) = 0 in Lemma 14 and that swgt(H(b, e)) = 0 in Lemma 15. Therefore, 
we have shown swgt(A(b, e)) = 0, completing the proof. �
2.1. Illustration for n = 2

The essence of the proof of Theorem 1 is contained in Lemmas 14 and 15. We illustrate 
the ideas behind the proofs of these lemmas by looking at the case of n = k = 2 in detail 
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π̄: 1 A

α

1 2 A

β

2

q̄: 1 B

α

1 1 B

β

2

m: 1 A

α

2 2 A

β

2

q̄: 2 B

α

1 1 B

β

2
(a) +(Aα)1,1(Aβ)2,2(Bα)1,1(Bβ)1,2 (b) +(Aα)1,2(Aβ)2,2(Bα)2,1(Bβ)1,2

Fig. 3. The terms proportional to (Aβ)2,2(Bβ)1,2 along with their signed weights.

π̄: 1 A

α

1 2 A

β

2

q̄: 1 B

α

2 2 B

β

2

m: 1 A

α

2 2 A

β

2

q̄: 2 B

α

2 2 B

β

2
(c) +(Aα)1,1(Aβ)2,2(Bα)1,2(Bβ)2,2 (d) +(Aα)1,2(Aβ)2,2(Bα)2,2(Bβ)2,2

Fig. 4. The terms proportional to (Aβ)2,2(Bβ)2,2 along with their signed weights.

π̄: 1 A

α

2 2 A

β

1

q̄: 1 B

α

1 1 B

β

2

m: 2 A

β

2 1 A

α

2

q̄: 2 B

α

1 1 B

β

2
(e) −(Aα)1,2(Aβ)2,1(Bα)1,1(Bβ)1,2 (f) −(Aα)1,2(Aβ)2,2(Bα)2,1(Bβ)1,2

π̄: 1 A

α

2 2 A

β

1

q̄: 1 B

α

2 2 B

β

2

m: 2 A

β

2 1 A

α

2

q̄: 2 B

α

2 2 B

β

2
(g) −(Aα)1,2(Aβ)2,1(Bα)1,2(Bβ)2,2 (h) −(Aα)1,2(Aβ)2,2(Bα)2,2(Bβ)2,2

Fig. 5. The terms proportional to (Aα)1,2 along with their signed weights.

for b = 1 and e = 2. We will keep the labels �1 = α and �2 = β arbitrary, so that we have 
4 pathmutations, which are shown in the left columns of Figs. 3, 4 and 5. Similarly, there 
are (2 − 1)2!21 = 4 such pathmaps in H(1, 2), which are shown in the right columns of 
Figs. 3, 4 and 5.

We now illustrate Lemma 14 for s = 1. This will amount to summing over all con-
figurations in Figs. 3 and 4. First compare the pathmutation (π̄, q̄) in Fig. 3(a) and the 
pathmap (m′, q̄′) in Fig. 3(b). To explain the sign of the pathmap, note that φ−1(m′, q̄′)
is given by

π̄ : 1 A

α
1 2 A

β

2

q̄ : 1 B

α
1 1 B

β

2

,

using Proposition 13. Thus the corresponding permutation according to (12) is (1, 2). 
Now, the sum of weights of these are
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2∑
r=1

2∑
s=1

(Aβ)2,2(Bβ)1,2
(
(Aα)1,1(Bα)1,1 + (Aα)1,2(Bα)2,1

)

=
2∑

s=1
(Aβ)2,2(Bβ)1,2

2∑
r=1

(AαBα)1,1,

which is zero by (4). A very similar computation goes through for the terms in Fig. 4(c) 
and (d).

We now illustrate Lemma 14 for s = 2. This will amount to summing over all possible 
configurations in Fig. 5. Complications arise in the remaining terms shown in Fig. 5(e), 
(f), (g) and (h). The sign for the terms in (f) and (h) are computed as described above. 
In this case, combining terms (e) and (g), we get

−
2∑

r=1

2∑
s=1

(Aα)1,2(Aβ)2,1
(
(Bα)1,1(Bβ)1,2 + (Bα)1,2(Bβ)2,2

)

= −
2∑

r=1

2∑
s=1

(Aα)1,2(Aβ)2,1
2∑

r=1
(BαBβ)1,2

= −
2∑

r=1

2∑
s=1

(Aα)1,2(Aβ)2,1
2∑

r=1
(BβBα)1,2

= −
2∑

r=1

2∑
s=1

(Aα)1,2(Aβ)2,1
(
(Bβ)1,1(Bα)1,2 + (Bβ)1,2(Bα)2,2

)
,

where we have used the commutativity of Bα and Bβ in the third line. Similarly, com-
bining terms (f) and (h), we get

−
2∑

r=1

2∑
s=1

(Aα)1,2(Aβ)2,2
(
(Bβ)2,1(Bα)1,2 + (Bβ)2,2(Bα)2,2

)
.

Now, add the first summands in both the above equations to obtain

−
2∑

r=1

2∑
s=1

(Aα)1,2(Bα)1,2
(
(Aβ)2,1(Bβ)1,1 + (Aβ)2,2(Bβ)2,1

)

=
2∑

r=1
(Aα)1,2(Bα)1,2

2∑
s=1

(AβBβ)2,1,

which is now 0 by (4). A similar computation goes through for the sums involving the 
second and fourth summands. This computation is what is essentially carried out in 
Lemma 14.
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Now focus on the pathmap terms, namely (b), (d), (f) and (h). The (b) and (f) 
terms have the same weights but opposite signs. Ditto for (d) and (h) terms. This is an 
illustration of the sign-reversing involution in the proof of Lemma 15.

2.2. Reduction to the Cayley–Hamilton theorem

The Cayley–Hamilton theorem is a specialization of Theorem 1 when k = 2 and 
A1 = −I, A2 = M, B1 = M, B2 = I. Straubing’s proof of the Cayley–Hamilton theo-
rem [11] gives a weight-preserving and sign-reversing involution on A(b, e). Our proof 
when specialized to the Cayley–Hamilton theorem presents a weight-preserving and sign-
reversing involution directly on G(b, e).

The constraint A1B1 + A2B2 = 0, in this case, is (−I)M + M(I) = 0 which means

swgt

⎛⎝ x A

1
y

⎞⎠ = − swgt

⎛⎝ x B

2
y

⎞⎠ = −δx,y,

swgt

⎛⎝ x A

2
y

⎞⎠ = swgt

⎛⎝ x B

1
y

⎞⎠ = Mx,y.

(15)

Therefore, we also have

swgt

⎛⎝ y B

1
z

⎞⎠ swgt

⎛⎝ z A

1
z

⎞⎠
= swgt

⎛⎝ y A

1
y

⎞⎠ swgt

⎛⎝ y B

1
z

⎞⎠ .

(16)

Now consider the sum over a in the left hand side of (14). For example

wgt( s A

1
a ) wgt( a B

1
q2 ) = δs,aMa,q2 ,

and therefore a = s. In that case

swgt

⎛⎝ s A

1
s

⎞⎠ swgt

⎛⎝ s B

1
q2

⎞⎠
=swgt

⎛⎝ s B

1
q2

⎞⎠ swgt

⎛⎝ q2 A

1
q2

⎞⎠
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= − swgt

⎛⎝ s B

2
s

⎞⎠ swgt

⎛⎝ s A

2
q2

⎞⎠
= − swgt

⎛⎝ s A

2
q2

⎞⎠ swgt

⎛⎝ q2 B

2
q2

⎞⎠ ,

where the first equality follows by (16), and the second and third by (15). This shows 
that the two terms in (14) cancel pairwise for �s = 1, 2, and demonstrates the involution 
on G(b, e).

Notice that our proof strategy does not reduce to an involution on A(b, e). Therefore, 
we have a different combinatorial proof of the Cayley–Hamilton theorem as compared 
to the one by Straubing [11].

2.3. Relation to the proof by Phillips

We show now that our combinatorial proof is a reinterpretation of the alge-
braic proof of Theorem 1 by Phillips [10]. Recall that we have matrices A1, . . . , Ak, 
B1, . . . , Bk satisfying (4), where the Bi’s commute pairwise. Let M(x1, . . . , xk) =
(A1x1 + · · · + Akxk)1≤i,j≤n be an n ×n matrix and Mi,j(x1, . . . , xk) be its (i, j)’th entry. 
Then, let

MB
i,j = Mi,j(B1, . . . , Bk) = (A1)i,jB1 + · · · + (Ak)i,jBk (17)

be the n × n matrix obtained by setting Bi in place of xi for i ∈ [k]. For a matrix A, let 
A[i|j] be the matrix A with row i and column j removed, and denote detB M [i|j] to be 
the matrix obtained by substituting Bi in place of xi for i ∈ [k] in det

(
M(x1, . . . , xk)[i|j]

)
so that

detB M [i|j] = (−1)i+j
∑
σ∈Sn
σi=j

sgn(σ)
n∏

r=1
r �=i

MB
r,σr

, (18)

using (17).
Let us compute the signed weight of G(b, e), which we know by Lemma 14 to be 0.

∑
(m,q̄)∈G(b,e)

swgt(m, q̄) =
n∑

j=1

∑
(π̄,q̄)∈A(b,e)

swgt(φ((π̄, q̄), j))

=
n∑

j=1

∑
σ∈Sn

sgn(σ)
∑

(σ̄,q̄)∈A(b,e)

wgt(φ((σ̄, q̄), j))

=
n∑

j=1

n∑
s=1

∑
σ∈Sn

sgn(σ)
k∑

�1,...,�n=1

(A�s)s,j

σs=b
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×

⎛⎜⎝ n∏
r=1
r �=s

(A�r)r,σr

⎞⎟⎠(
n∏

r=1
B�r

)
j,e

.

Next we rely on the commutativity of the Bi’s to write this as

n∑
j=1

n∑
s=1

∑
σ∈Sn
σs=b

sgn(σ)
k∑

�1,...,�n=1

(
(A�s)s,jB�s

n∏
r=1
r �=s

(A�r)r,σr
B�r

)
j,e

=
n∑

j=1

n∑
s=1

∑
σ∈Sn
σs=b

sgn(σ)

⎛⎜⎝MB
s,j

n∏
r=1
r �=s

MB
r,σr

⎞⎟⎠
j,e

,

where we have first performed the �1, . . . , �n sums before taking the (j, e)’th entry and 
used (17) in the last step. Now let us perform the inner sum. Since the product over 
r �= s is not dependent on j, we can use (18) to arrive at

n∑
j=1

n∑
s=1

(−1)s+j
(
MB

s,j detB M [s|b]
)
j,e

.

By the standard Laplace expansion, the only contribution to the j sum comes from j = b, 
giving

n∑
s=1

(−1)s+b
(
MB

s,b detB M [s|b]
)
b,e

.

This is precisely what Phillips shows to be 0 in [10, Theorem I].

3. Application to mixed discriminants

In this section, we will prove Theorem 5 using the same strategy as for the proof 
of Theorem 1 in Section 2. We recall the setup. We have 2nk matrices, which we call 
(Ai,j)i∈[n],j∈[k] and (Bi,j)i∈[n],j∈[k] which satisfy the conditions:

• Bi,jBi′,j′ = Bi′,j′Bi,j for all 1 ≤ i < i′ ≤ n, 1 ≤ j, j′ ≤ k, and
•

Ai,1Bi,1 + · · · + Ai,kBi,k = 0, 1 ≤ i ≤ n. (19)

Recall the polynomial p̂
(
(xi,j)i∈[n],j∈[k]

)
from (3),

p̂
(
(xi,j)i∈[n],j∈[k]

)
= D(A1,1x1,1 + · · · + A1,kx1,k, . . . , An,1xn,1 + · · · + An,kxn,k),
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in nk variables (xi,j)i∈[n],j∈[k], where D is the mixed discriminant given in Definition 3.

Definition 16. A decorated 2-permutation α̂π is an n-tuple of quadruples (α̂π)i =
(i, αi, πi, �i) for i ∈ [n], �i ∈ [k], where π, α ∈ Sn and the pairs απi

, �i are called labels. 

We will denote (α̂π)i as i A

απi
, �i

πi , which has weight (Aαπi
,�i)i,πi

. The signed 
weight of the decorated 2-permutation is given by

swgt(α̂π) = sgn(π)
n∏

i=1
(Aαπi

,�i)i,πi
.

The set of all decorated 2-permutations is denoted Ŝ2
n,k.

Since there are n! permutations and all labels are independently chosen, the cardinality 
of Ŝ2

n,k is n!2kn.

Definition 17. A decorated 2-path of length n is a tuple q̂ = (q1, . . . , qn+1), where each 

qi ∈ [n]. For i ∈ [n], the i’th labeled edge is denoted q̂i = qi B

αi, �i
qi+1 and has 

weight (Bαi,�i)qi,qi+1 , where α ∈ Sn and the label �i ∈ [k]. The weight of the decorated 
2-path is

wgt(q̂) =
n∏

i=1
(Bαi,�i)qi,qi+1 .

The set of all decorated 2-paths is denoted Q̂2
n,k.

Definition 18. A 2-pathmutation is a pair (α̂π, q̂) where α̂π ∈ Ŝ2
n,k, q̂ ∈ Q̂2

n,k such that 
the labels of the i’th element of the permutation and the i’th edge of the path are the 
same for all i ∈ [n]. The signed weight of a 2-pathmutation is

wgt(α̂π, q̂) = swgt(α̂π) wgt(q̂).

The set of 2-pathmutations beginning with q1 = b and ending with qn+1 = e is denoted 
A2(b, e).

The cardinality of A2(b, e) is n!2knnn−1 for every b, e ∈ [n] because we can choose 
q2, . . . , qn−1 arbitrarily.

Fig. 6 shows a 2-pathmutation (α̂π, q̂).

Definition 19. A decorated 2-map m̂ is an n-tuple of quadruples m̂i = (σi, τi, αi, �i), 
where σ ∈ Sn is either the identity or a single transposition, α ∈ Sn, τi ∈ [n] and �i ∈ [k]
for all i such that
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α̂π: 1 A

απ1 , �1
π1 · · · s A

αb, �s

b · · · n A

απn
, �n

πn

q̂: b B

απ1 , �1
q2 · · · qs B

αb, �s
qs+1 · · · qn B

απn
, �n

e

Fig. 6. A 2-pathmutation (α̂π, q̂) ∈ A2(b, e) where πs = b.

• #{τ1, . . . , τn} ≥ n − 1,
• if #{τ1, . . . , τn} = n, then σ is the identity permutation,
• if τi = τj for some (i, j), then either σi = i, σj = j or σi = j, σj = i.

The weight of m̂i is (Aαi,�i)σi,τi and is denoted σi A

αi, �i
τi . The weight of m̂ is 

then

wgt(m̂) =
n∏

i=1
(Aαi,�i)σi,τi .

The set of all decorated 2-maps is denoted M̂2
n,k.

When #{τ1, . . . , τn} = n, we get exactly decorated 2-permutations. When #{τ1, . . . ,
τn} = n − 1, there are n(n − 1) × n!/2 possibilities for τ and 2 possibilities for σ so that 
the cardinality of M̂2

n,k is

kn(n! + n(n− 1)n!) = n!2kn(n2 − n + 1).

Definition 20. A 2-pathmap is a pair (m̂, q̂) where m̂ ∈ M̂2
n,k, q̂ ∈ Q̂2

n,k such that

• If {τ1, . . . , τn} = [n], then (m̂, q̂) is a 2-pathmutation.
• If #{τ1, . . . , τn} = n − 1 and τi = τj for some i �= j, then q1 = τi. In this case, the 

labels of m̂k and q̂k must match for all k �= i, j. In addition, if σi = i, σj = j (resp. 
σi = j, σj = i), then the labels of m̂i and m̂j are equal to those of q̂i, q̂j (resp. q̂j , q̂i) 
respectively.

The weight of the 2-pathmap (m̂, q̂) is

wgt(m̂, q̂) = wgt(m̂) wgt(q̂).

The set of 2-pathmaps with #{τ1, . . . , τn} = n −1 such that {τ1, . . . , τn} = [n] \{b} and 
ending with qn+1 = e is denoted H2(b, e). In addition, let G2(b, e) = H2(b, e) ∪ A2(b, e).

Analogous to the enumeration of pathmaps, the cardinality of H2(b, e) is again n − 1
times that of A2(b, e). As in the proof of Phillips’ theorem, we will need to attach a sign 
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to a 2-pathmap in G2(b, e). As before, define a map φ̂ : A2(b, e) × [n] → G2(b, e). Set 
φ̂((α̂π, q̂), j) = (m̂′, q̂′) as follows. First, set

q̂′r =

⎧⎪⎨⎪⎩ i′ B

απ1 , �1
q2 r = 1,

q̂r otherwise.

Next, set s = π−1
b and t = π−1

j . Then let

m̂′
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
min(s, t) A

απmin(s,t) , �min(s,t)

j if r = s,

max(s, t) A

απmax(s,t) , �max(s,t)

j if r = t,

(α̂π)r otherwise.

(20)

The sign of an element (m̂, q̂) ∈ G2(b, e) can be defined in the same way as before. If 
φ̂−1(m̂, q̂) = ((α̂π, q̂), j), then the signed weight of (m̂, q̂) is given by

swgt(m̂, q̂) = sgn(π) wgt(m̂, q̂). (21)

Proof of Theorem 5. We first claim that∑
(α̂π,q̂)∈A2(b,e)

swgt(α̂π, q̂) = p̂
(
(Bi,j)i∈[n],j∈[k]

)
b,e

. (22)

To see this, begin by expanding the polynomial q in (3) as

p̂
(
(xi,j)i∈[n],j∈[k]

)
= 1

n!
∑
α∈Sn

∑
π∈Sn

sgn(π)

×
n∏

i=1

(
(Aαπi

,1)i,πi
xαπi

,1 + · · · + (Aαπi
,k)i,πi

xαπi
,k

)
.

Now, substitute xi,j by Bi,j and use the fact that Bi,j ’s commute pairwise to obtain

p̂
(
(Bi,j)i∈[n],j∈[k]

)
= 1

n!
∑
α∈Sn

∑
π∈Sn

sgn(π)

×
n∏

i=1

(
(Aαπi

,1)i,πi
Bαπi

,1 + · · · + (Aαπi
,k)i,πi

Bαπi
,k

)
,

which now simplifies to
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α̂(1,2): 1 A

α1, r

1 2 A

α2, s

2

q̂: 1 B

α1, r

1 1 B

α2, s

2

m̂: 1 A

α1, r

2 2 A

α2, s

2

q̂: 2 B

α1, r

1 1 B

α2, s

2
(a) +(Aα1,r)1,1(Aα2,s)2,2(Bα1,r)1,1(Bα2,s)1,2 (b) +(Aα1,r)1,2(Aα2,s)2,2(Bα1,r)2,1(Bα2,s)1,2

Fig. 7. The 2-pathmap terms proportional to (Aα2,s)2,2(Bα2,s)1,2 along with their signed weights.

α̂(1,2): 1 A

α1, r

1 2 A

α2, s

2

q̂: 1 B

α1, r

2 2 B

α2, s

2

m̂: 1 A

α1, r

2 2 A

α2, s

2

q̂: 2 B

α1, r

2 2 B

α2, s

2
(c) +(Aα1,r)1,1(Aα2,s)2,2(Bα1,r)1,2(Bα2,s)2,2 (d) +(Aα1,r)1,2(Aα2,s)2,2(Bα1,r)2,2(Bα2,s)2,2

Fig. 8. The 2-pathmap terms proportional to (Aα2,s)2,2(Bα2,s)2,2 along with their signed weights.

p̂
(
(Bi,j)i∈[n],j∈[k]

)
= 1

n!
∑
α∈Sn

∑
π∈Sn

sgn(π)
∑

(�1,...,�n)∈[k]n

n∏
i=1

(Aαπi
,�i)i,πi

Bαπi
,�i .

Now consider the (b, e)’th entry of this sum. For each pair of permutations α, π and each 
element � = (�1, . . . , �n) ∈ [k]n, we can represent the product of Aαπi

,�i over i as the 
weight of the decorated 2-permutation α̂π, the label of whose i’th element is (απi

, �i) as 
seen above. Now expand the product of Bαπi

,�i ’s on the right hand side. The (b, e)’th 
entry is a sum of terms, each of which corresponds exactly to a decorated 2-path with 
initial vertex b and final vertex e. The i’th edge in the decorated 2-path has the same 
label, (απi

, �i). Therefore, each term corresponds to a 2-pathmutation, whose weight is 
equal to the term. This proves the claim above.

We now have the analogues of Lemma 14 and Lemma 15.∑
(m̂,q̂)∈G2(b,e)

swgt(m̂, q̂) =0, (23)

∑
(m̂,q̂)∈H2(b,e)

swgt(m̂, q̂) =0. (24)

The proofs of these equations proceed in essentially the same manner as the above 
lemmas and we omit them. By definition, the left hand side of (22) is the difference of 
the left hand sides of (23) and (24), proving the result. �
3.1. Illustration for n = 2

We illustrate the ideas in the proof of (23) and (24), which are key to the proof of 
Theorem 5, for n = k = 2. As in Section 2.1, we will look at b = 1 and e = 2 in detail 
and keep the labels �1 = r and �2 = s in addition to the permutation α arbitrary. We 
then have 4 2-pathmutations, which are shown in the left columns of Figs. 7, 8 and 9. 
Similarly, there are 4 such 2-pathmaps in H2(1, 2), which are shown in the right columns 
of Figs. 7, 8 and 9.
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α̂(2,1): 1 A

α2, r

2 2 A

α1, s

1

q̂: 1 B

α2, r

1 1 B

α1, s

2

m̂: 2 A

α1, s

2 1 A

α2, r

2

q̂: 2 B

α2, r

1 1 B

α1, s

2
(e) −(Aα2,r)1,2(Aα1,s)2,1(Bα2,r)1,1(Bα1,s)1,2 (f) −(Aα2,r)1,2(Aα1,s)2,2(Bα2,r)2,1(Bα1,s)1,2

α̂(1,2): 1 A

α2, r

2 2 A

α1, s

1

q̂: 1 B

α2, r

2 2 B

α1, s

2

m̂: 2 A

α1, s

2 1 A

α2, r

2

q̂: 2 B

α2, r

2 2 B

α1, s

2
(g) −(Aα2,r)1,2(Aα1,s)2,1(Bα2,r)1,2(Bα1,s)2,2 (h) −(Aα2,r)1,2(Aα1,s)2,2(Bα2,r)2,2(Bα1,s)2,2

Fig. 9. The 2-pathmap terms proportional to (Aα2,r)1,2 along with their signed weights.

Let us compare the 2-pathmutation in Fig. 7(a) and the 2-pathmap in Fig. 7(b). One 
can check that the latter has positive sign. Now, the sum of weights of these are

∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,s)2,2(Bα2,s)1,2
(
(Aα1,r)1,1(Bα1,r)1,1 + (Aα1,r)1,2(Bα1,r)2,1

)

=
2∑

α1=1

2∑
s=1

(A3−α1,s)2,2(B3−α1,s)1,2
2∑

r=1
(Aα1,rBα1,r)1,1,

which is zero by (19). A very similar computation goes through for the terms in Fig. 8(c) 
and (d) and gives

2∑
α1=1

2∑
s=1

(A3−α1,s)2,2(B3−α1,s)2,2
2∑

r=1
(Aα1,rBα1,r)1,2,

which is also zero for the same reason.
Complications arise in the remaining terms shown in Fig. 9(e), (f), (g) and (h). The 

sign for the terms in (g) and (h) are computed as described above. In this case, combining 
terms (e) and (g), we get

−
∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Aα1,s)2,1
(
(Bα2,r)1,1(Bα1,s)1,2 + (Bα2,r)1,2(Bα1,s)2,2

)

= −
∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Aα1,s)2,1
2∑

r=1
(Bα2,rBα1,s)1,2

= −
∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Aα1,s)2,1
2∑

r=1
(Bα1,sBα2,r)1,2

= −
∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Aα1,s)2,1
(
(Bα1,s)1,1(Bα2,r)1,2 + (Bα1,s)1,2(Bα2,r)2,2

)
,
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where we have used the commutativity of Bα2,r and Bα1,s in the third line. Similarly, 
combining terms (f) and (h), we get

∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Aα1,s)2,2
(
(Bα2,r)2,1(Bα)1,2 + (Bα1,s)2,2(Bα2,r)2,2

)
.

Now, add the first summands in both the above equations to obtain

−
∑
α∈S2

2∑
r=1

2∑
s=1

(Aα2,r)1,2(Bα2,r)1,2
(
(Aα1,s)2,1(Bα1,s)1,1 + (Aα1,s)2,2(Bβ)2,1

)

= −
2∑

α1=1

2∑
r=1

(A3−α1,r)1,2(B3−α1,r)1,2
2∑

s=1
(Aα1,sBα1,s)2,1,

which is now 0 by (19). A similar computation goes through for the second and fourth 
summands. This kind of computation is what needs to carried out to prove (23).

Now focus on the 2-pathmap terms in Figs. 7, 8 and 9, namely (b), (d), (f) and (h). 
Focus on the (b) and (f) figures. If we interchange α1 and α2 in the weight of the (b) 
figure, we obtain the negative of the weight of the (f) figure. Similarly, for (d) and (h) 
terms. Thus, an involution of the same kind used in the proof of Lemma 15 in addition 
to an appropriate involution on α will prove (24).
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