ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Modeling and on-line recognition of PD signal buried in excessive noise

Shetty, Pradeep Kumar and Srikanth, R and Ramu, TS (2004) Modeling and on-line recognition of PD signal buried in excessive noise. In: Signal Processing, 84 (12). pp. 2389-2401.

[img] PDF
252.pdf
Restricted to Registered users only

Download (984kB) | Request a copy

Abstract

The problem of on-line recognition and retrieval of relatively weak industrial signal such as partial discharges (PD), buried in excessive noise has been addressed in this paper. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI), due to, overlapping broadband frequency spectrum of PI and PD pulses. Therefore, on-line, on-site, PD measurement is hardly possible in conventional frequency-based DSP techniques. We provide new methods to detect, estimate and classify the PD signal. The observed PD signal is modeled as linear combination of systematic and random components employing probabilistic principal component analysis (PPCA) and pdf of the underlying stochastic process is obtained. The PD/PI pulses are assumed as the mean of the process and modeled using both parametric and non-parametric methods. A Gaussian model is incorporated in parametric modeling and smooth FIR filter method is used in non-parametric modeling and the parameters of the models are estimated using maximum-likelihood (ML) estimation technique. The methods proposed by the authors are able to recognize and retrieve the PD pulses, completely automatic without any user interference.

Item Type: Journal Article
Publication: Signal Processing
Publisher: Elsevier
Additional Information: Copyright of this article belongs to Elsevier.
Keywords: PPCA; Boot-strap;Parametric model;Non-parametric model;Smooth fir filter
Department/Centre: Division of Electrical Sciences > High Voltage Engineering (merged with EE)
Division of Electrical Sciences > Electrical Engineering
Date Deposited: 09 Aug 2006
Last Modified: 19 Sep 2010 04:30
URI: http://eprints.iisc.ac.in/id/eprint/7995

Actions (login required)

View Item View Item