
Performance Evaluation 155–156 (2022) 102297

D

s
e
F
(
o
e

s
a
c
t

s
s
c
i

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Service scheduling for random requests with fixedwaiting
costs
Ramya Burra ∗, Chandramani Singh, Joy Kuri
epartment of ESE, Indian Institute of Science, Bangalore, India

a r t i c l e i n f o

Article history:
Received 23 March 2021
Received in revised form 1 June 2022
Accepted 1 June 2022
Available online 16 June 2022

Keywords:
Service scheduling
Fixed waiting cost
Markov decision process

a b s t r a c t

We study service scheduling problems in a slotted system in which agents arrive with
service requests according to a Bernoulli process and have to leave within two slots after
arrival, service costs are quadratic in service rates, and there is also a waiting cost. We
consider fixed waiting costs. We frame the problem as an average cost Markov decision
process. While the studied system is a linear system with quadratic costs, it has state
dependent control. Moreover, it also possesses a non-standard cost function structure
rendering the optimization problem complex. Here, we characterize the optimal policy.
We also consider a system in which the agents make scheduling decisions for their
respective service requests keeping their own cost in view. We frame this scheduling
problem as a stochastic game. Here, we provide Nash equilibrium.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Service scheduling problems have been widely studied in the literature. They apply to a wide range of applications like
peed scaling in CPUs, scheduling of charging of electric vehicles (EVs), job scheduling in mobile edge computing (MEC),
tc. In all these applications, service costs, measured in terms of energy consumption, increase with quantum of service.
or instance, server energy consumption in cloud computing increases as a convex function of the quantum of service
see [1,2]). Similarly, in the context of EV charging, the energy cost can be modeled as a quadratic function of the service
ffered [3]. So, when quanta of services exceed certain thresholds, one may want to defer a part of service requests, saving
nergy cost in lieu of increased latency. However, large latencies must also be avoided.
We capture the above conflicting objectives through a model having soft and hard deadlines. It is desirable to complete

ervice requests by their soft deadlines. The service requests can be deferred beyond their soft deadlines, but then they
lso incur waiting costs. The waiting cost behaves as a disincentive for deferring service to avoid excessive latencies. Of
ourse, service requests must be completed before their hard deadlines. We aim at deriving service scheduling policies
hat optimize the time average sum of service and waiting costs.

Optimal scheduling that intends to minimize the service costs balances service over time. However, since deferring
ervices also incur waiting costs, balancing the quanta of services is sub-optimal. We study service scheduling in slotted
ystems with Bernoulli service arrivals, quadratic service costs, and service delay guarantees. We consider fixed waiting
osts. In particular, we consider the cases where the service requests can stay for two slots but incur fixed waiting costs
n second slots. We see that this service scheduling problem is a special case of constrained linear quadratic control. We

∗ Corresponding author.
E-mail addresses: burra@iisc.ac.in (R. Burra), chandra@iisc.ac.in (C. Singh), kuri@iisc.ac.in (J. Kuri).
https://doi.org/10.1016/j.peva.2022.102297
0166-5316/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.peva.2022.102297
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2022.102297&domain=pdf
mailto:burra@iisc.ac.in
mailto:chandra@iisc.ac.in
mailto:kuri@iisc.ac.in
https://doi.org/10.1016/j.peva.2022.102297

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

s
i

1

a
m
t
r
w
t
T

w
a
a

p
a
a

w
s
w
t
d

s
o
a
w
T
s
b
w
h
c

u
e
w
m
c
a
s

1

c
m
F
a

s
c
e

tudy optimal scheduling and Nash equilibria for selfish agents. These problems consider both service and waiting costs
nto account. We analyze optimal and equilibrium policies.

.1. Related work

In [4], the authors propose a centralized algorithm to minimize the total charging cost of EVs. It determines the optimal
mount of charging to be received at various charging stations en route. There is another line of work which intends to
inimize waiting times at the charging stations. For instance, in [5] the authors propose a distributed scheduling algorithm

hat uses local information of traffic flows measured at the neighboring charging stations to uniformly utilize charging
esources along the highway and minimize the total waiting time. In our work, we consider minimizing both charging and
aiting costs simultaneously. More precisely we look fixed waiting cost. In the context of traffic routing and scheduling,
he authors in [6] consider a scenario where agents compete for a common link to ship their demands to a destination.
hey obtain the optimal and equilibrium flows in the presence of polynomial congestion cost.
In [7], we consider routing on a ring network in the presence of quadratic congestion costs and also linear delay costs

hen traffic is redirected through the adjacent nodes. However, the problems in [7] are one-shot optimization problems
s these do not have a temporal component. In [8], the authors consider a discrete time system in which jobs arrive
ccording to a Poisson process and have exponential deadlines and job sizes.
Minimum energy scheduling has also been considered in the context of CPU power consumption [9], big data

rocessing [10], production scheduling in plants [11]. In [12], the authors consider convex processing cost. They propose
n optimal online algorithm for job arrivals with deadline uncertainty. They also derive competitive ratio for the proposed
lgorithm. Neither of the above discussed works accounts for waiting costs of jobs as considered in our work.
In an earlier work [13], we studied service scheduling for Bernoulli job arrivals, quadratic service costs and linear

aiting costs. We obtained an optimal policy and a symmetric Nash equilibrium. We also extended the analysis to a
cenario where job sizes can take distinct values, and job arrivals constitute a Markov chain. In [13] we discuss linear
aiting costs. Analysis of fixed waiting cost is more complicated owing to discontinuity in the cost function. In contrast
o [13] the optimal policy is not continuous in pending service (see Proposition 3.1, paragraphs above and below it for a
etailed discussion on the optimal policy).
The authors in [14] consider a single server slotted system with impatient customers. Impatience of customers can be

een as their having stochastic deadlines. The authors assume that the customers have geometric sojourn times but fixed
ne-slot service time. They consider three costs, a fixed customer holding cost per slot, a fixed cost of losing a customer,
fixed service cost, for each customer. At the beginning of each slot, if the queue is nonempty, the server has to decide
hether to serve a customer. The simple service discipline and cost structure allow the authors to derive a simple rule.
he authors in [15] generalized the above model by considering exponential service times and γ -Cox distributed customer
ojourn times. They consider two customer classes with different arrival rates and different linear customer waiting costs
ut no other costs. On each service completion, if customers of both the classes are waiting, the server has to decide
hich customer class to choose for service. However, the authors have only performed numerical value iteration and
ave obtained regions in which the first or the second customer classes are chosen. None of these works consider the
ase of rational customers.
Linear systems with quadratic cost have been widely studied in control theory. For instance, in infinite horizon

nconstrained linear quadratic control, the optimal policy is found to be linear in system state and is given by the Riccati
quation [16]. We have at our disposal control problems with state-dependent constraints. Moreover, in case of fixed
aiting costs the problems do not conform to standard assumptions, e.g., positive definiteness of the control weighing
atrix. In [17], the authors obtain a Nash equilibrium for a stochastic game where each arriving customer observes the
urrent load and has to choose between a shared system whose service rate decreases with the number of customers or
constant service rate system. The optimal choice for each customer depends on the decisions of previous ones and the
ubsequent ones, through their effect on the current and future load in the shared server.

.2. Applications and motivation

Our framework is general that can be applied to many contexts like scheduling charging of EVs, job scheduling in data
enters, etc. In all these applications, both hard and soft deadlines arise naturally. In many cases, network (or, resource)
anagers schedule service requests to optimize time-average service and waiting costs while respecting their deadlines.
or instance, in the examples of job scheduling in CPUs or in data centers, service schedulers may want to optimize
verage power and storage costs. These objectives are captured by the proposed optimal scheduling problem.
On the other hand, in some contexts the strategic agents who bring service requests to the system dictate their service

chedules. Their scheduling decisions are aimed at minimizing their respective service and waiting costs. Such scenarios
an naturally be modeled using non-cooperative stochastic games. For instance, if the EV owners in the EV charging
xample strive to minimizing their respective charging and waiting costs a stochastic game emerges.
2

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

i

W

In several systems of interest, agents can enter the system or leave only at slot boundaries, e.g., from [18], compute
tasks derive utility only at slot boundaries. In such tasks that complete only at slot boundaries, the current operating job
will be present in the system until its next slot boundary irrespective of the amount of pending service. Thus the waiting
cost is fixed and does not depend on the amount of deferred service. Similarly, in data centers, the job in execution would
hold a certain amount of fixed storage [19]. That storage is not released till the job exits the system. Thus we intend to
capture the fixed storage costs in fixed waiting costs. In some other systems, service requests have soft deadlines; missing
soft deadlines is tolerable but not desirable. The authors in [20] propose the notion of tardiness which is the difference
between the service requests’ actual service completion times and their soft deadlines. In our formulation, each request
has a soft deadline of one slot and a hard deadline of two slots. The fixed waiting cost models the tardiness of a service
request that is not completely served in its first slot. These scenarios motivate fixed waiting costs proposed in Section 2.2.

We also present a comparative numerical study to illustrate the impact of various waiting cost structures and
performance criteria (optimal scheduling vs. strategic scheduling by selfish agents).

2. System model

We consider a time-slotted system where time is divided into discrete slots. The length of the slot depends on the
application, e.g., in the case of CPU speed scaling the slots are of the order of ms where in the case of job scheduling the
slots many of the order of several tens of minutes. Agents arrive over slots to a service facility. Every agent is characterized
by its arrival time, deadline, and the amount of service it requires. Each service request has to be wholly served before
its deadline. So service can be scheduled such that portions of the agents’ required service are served in the future slots
before their respective deadlines. Serving requests incur a cost, with the cost per unit service in a slot depending on the
quantum of service delivered in that slot. Though the service facility has enough capacity to serve all the agents in the
system, some of the service may be deferred to save on the service cost. We consider two scheduling problems: one where
the service facility makes scheduling decisions to optimize the overall time-average cost and the other where the agents
make scheduling decisions for their respective service requests to minimize their costs. Below we present the system
model and both the problems formally.

2.1. Service request model

Agents with service requests arrive according to an i.i.d. Bernoulli(p) process; p ∈ (0, 1). We assume that all the agents
require equal amount of service, denoted as ψ . Further, each request can be met in at most two slots, i.e., a fraction of
the service request arriving in a slot could be deferred to the next slot. As every agent leaves at the end of two slots, in
any slot there can be a maximum of two agents. Hence the system remains stable. It is assumed that the service facility
can serve up to 2ψ units in a slot.

2.2. Cost model

The cost consists of two components:

• Service cost: The service cost per unit service in a slot is a linear function of the total service offered in that slot.
Thus the total service cost in a slot is square of the total offered service in that slot. For instance, in the context of
EV charging, per unit electricity cost is modeled as a linear function of the load [3,21].

• Waiting cost: Each service incurs a fixed waiting cost d > 0 when a portion of the service is deferred to the next slot.
This waiting cost can be interpreted as the penalty for not serving the service request in the same slot in which it
has arrived. We introduce the waiting cost to strike a balance between service cost and latency. The constant d can
be seen as relative weight of waiting cost vis-s-vis service cost for instance e.g., higher d indicates that the users are
more sensitive to latency.

Let, for k ≥ 1, xk be the remaining demand from slot k− 1 to slot k; x1 = 0. This demand must be met in slot k. Also, for
k ≥ 1, let vk be the extra service offered in slot k over xk. Clearly, vk ∈ [0, ψ] and is 0 if there is no new request in slot k.
A scheduling policy π = (πk, k ≥ 1) is a sequence of functions πk : [0, ψ] → [0, ψ] such that if there is a service request
n slot k then πk(xk) gives the amount of service deferred from slot k to slot k + 1. In other words,

xk+1 =

{
πk(xk) = ψ − vk, if a request arrives in slot k,
0, otherwise.

e consider the following two scheduling problems.
3

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

2

t
t

T

f
a

3

p
s

L

.2.1. Optimal scheduling
We aim to minimize the time-averaged cost of the service facility. Here, waiting cost is imposed by the service facility

o reduce the latency of the individual service requests. More precisely, we want to determine the scheduling policy π
hat minimizes

lim
T→∞

1
T

T∑
k=1

E[(xk + vk)2 + d1{vk∈(0,ψ)}]. (1)

We obtain the optimal solution in Section 3.
At first glance, the optimization problem appears to be a special case of the well-studied constrained linear quadratic

control Markov decision problems. In particular, if we define binary variables ek, k ≥ 1, as

ek =

{
ψ, if slot k has an arrival,
0, otherwise,

then (xk, ek) can be considered to be the system state in slot k. The total service in slot k, ūk ∈ [xk, xk + ek], and wk = ek+1
can be considered the action and the noise in slot k, respectively. Similar to [13, Section II A] the state evolution happens
as (xk+1, ek+1) = (xk + ek − ūk, wk) and the single stage cost is d1xk+ek−ūk>0 + ū2

k . We see that the actions are subject to
state dependent constraints and the single stage costs are not expressible in the form (xk, ek)TQ (xk, ek) + ū2

k with Q a positive
semidefinite matrix. Thus the problem does not conform to the standard framework.

2.2.2. Equilibrium for selfish agents
Recall that, in our model each agent comes with a service request, all service requests being of the same size. Here,

we consider rational agents, each determining how much of its request should be deferred. Further, each agent is aiming
at minimizing his/her own service and waiting costs. We can frame this problem as a non-cooperative dynamic game
among the agents. Here, the waiting cost is imposed by every individual agent in the system to minimize their respective
waiting times. In this context, let us refer to πk as a strategy of the agent who arrives in slot k (if there is one) and
π = (πk, k ≥ 1) as a strategy profile.1 If an agent k sees the system state as x, then the agent chooses the action πk(x).
hen the total demand served in that slot is x +ψ − πk(x), which is per unit cost. Therefore, the total service cost levied

on the agent is (ψ − πk(x))(x + ψ − πk(x)). The expected cost of an agent who arrives in slot k, if it sees a remaining
demand x, is

ck(x, π) = (ψ − πk(x))(ψ − πk(x) + x) + πk(x)(πk(x) + p(ψ − πk+1(πk(x))))

+ d1πk(x)>0. (2)

A strategy profile π is called a Nash equilibrium if

ck(x, π) ≤ ck(x, (µ, π−k))

or all k ≥ 1, x ∈ [0, ψ] and strategies µ : [0, ψ] → [0, ψ].2 We focus on symmetric Nash equilibria of the form (π, π, . . .)
nd obtain one such equilibrium in Section 4.
In the context of Job scheduling in data centers, the parameters introduced above could be mapped as follows.

1. xk: CPU power pending in slot k for the job arrived in slot k − 1.
2. vk: CPU power offered in slot k to the job arrived in slot k.
3. ek: Total CPU power requested in slot k by the job that arrived in slot k.

. Optimal scheduling

As in [13], we first show that the optimal scheduling problem can be transformed into a stochastic shortest path
roblem. Let Ai, i ≥ 1 be the successive slots that have service requests but do not have service requests in the preceding
lots. More precisely,

Ai =

⎧⎨⎩
min{k : slot k has an arrival}, if i = 1,
min {k > Ai−1 : slot k has an arrival but

k − 1 does not} , if i ≥ 2.

Then Ai, i ≥ 1 can be seen to be renewal instants of a delayed renewal process.
The following lemma gives the mean of renewal lifetimes, Ai+1 − Ai, i ≥ 1.

emma 3.1. E(Ai+1 − Ai) =
1

p(1−p) .

1 Notice that π consists of a strategy for each slot but there may not be any agent in a slot to use the corresponding strategy.
2 (µ, π) ≜ (π , . . . , π , µ, π , . . .).
−k 1 k−1 k+1

4

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

P

m

roof. See [22, Appendix A] ■

Hence, from the Renewal Reward Theorem [23],

lim
T→∞

1
T

T∑
k=1

E[(xk + vk)2 + d1{vk∈(0,ψ)}]

=

E
[∑Ai+1−1

k=Ai

(
(xk + vk)2 + d1{vk∈(0,ψ)}

)]
E[Ai+1 − Ai]

= p(1 − p)E

⎡⎣Ai+1−1∑
k=Ai

(
(xk + vk)2 + d1{vk∈(0,ψ)}

)⎤⎦ .
So, we can focus on minimizing the aggregate cost over a ‘‘renewal lifetime’’ Ai+1 − Ai. But we do not incur any cost
after service completion of the last customer in this lifetime. We can thus frame the problem as stochastic shortest path
problemwhere terminal state corresponds to absence of request in a slot (see [24, Section 4.6] for a discussion on stochastic
shortest path problem in infinite spaces).

Stochastic shortest path formulation. We follow the arguments in [13] and let xk be the system state at any slot k and t be
a special terminal state which is hit if there is no new request in a slot. Let xk+1 also denote the action in slot k. Clearly,
the single stage cost before hitting the terminal state is (xk + ψ − xk+1)2 + d1{xk+1>0}. Given the state–action pair in slot
k, (xk, xk+1), the next state is the terminal state with probability 1 − p and the terminal cost is x2k+1. Note that [13] and
this work differ in the single stage cost structure. The single stage cost function before hitting the terminal state in this
article is not continuous in xk+1, thus making the analysis much more complicated.

Let J : [0, ψ] → R+ be the optimal cost function for the problem. It is the solution of the following Bellman’s equation:
For all x ∈ [0, ψ],

J(x) = min{(ψ + x)2 + pJ(0), min
u∈(0,ψ]

{(ψ − u + x)2 + d + pJ(u) + (1 − p)u2
}}.

Notice that the term under the inner minimization at u = 0 exceeds the first term by d. Hence we can change the
constraint on u in the inner minimization to [0, ψ] without altering the solution J(·). In other words, J(·) is also the
solution to the following equation:

J(x) = min
{
(ψ + x)2 + pJ(0), min

u∈[0,ψ]

{
(ψ − u + x)2 + d + pJ(u) + (1 − p)u2}} . (3)

The optimal cost is attained by a stationary policy of the form (π∗, π∗, . . .) where π∗(x) minimizes the right hand side
in the above equation for all x. For brevity, we use π∗ to refer to this policy. Let us define the ‘‘k-stage problem’’ as the
one that allows at most k + 1 service requests. More precisely, here the system is forced to enter the terminal state after
k+ 1 service requests if it has not already done so. Let Jk(·) be the optimal cost function of the k-stage problem. Clearly,

J0(x) = min{(ψ + x)2, min
u∈[0,ψ]

{(ψ + x − u)2 + d + u2
}} (4)

and

Jk(x) = min{(ψ + x)2 + pJk−1(0), min
u∈[0,ψ]

{(ψ + x − u)2d + pJk−1(u) + (1 − p)u2
}}. (5)

Note that the maximum amount of service that can be offered in any slot is 2ψ . Hence the cost in any slot cannot be
ore than 4ψ2

+d. Therefore Jk(·) is upper bounded by 4ψ2
+d

1−p for all k ≥ 1. Observe that J0(x) > x2 from (4). The first and
second terms on the right hand side of (5) are greater than the first and second terms, respectively, on the right hand side
of (4). So, J1(x) > J0(x). Inductively, we can see that Jk(x) > Jk−1(x),∀ x. So the sequence Jk(·)s converges. We now outline
the approach of determining the optimal policy. Let πk(·) be the optimal controls of the k-stage problems (i.e., optimal
controls in (4)–(5)). In the following we argue that πk(·)s are piece-wise linear discontinuous functions that are hard to
fully characterize. We thus cannot follow the approach of deriving π∗(·) via taking limit of πk(·), k ≥ 0. We obtain optimal
policy under certain conditions in Proposition 3.2. We also propose an approximate policy π̄ (x) which forms an upper
bound on the optimal policy (see Proposition 3.3). We then show that when the parameters does not satisfy the above
mentioned conditions π̄ (0) = 0, implying π∗(0) = 0 (see Proposition 3.3). So in this region no service is deferred. This
way we characterize the optimal policy for all the settings. The detailed analysis follows below.

Let us define J−1(x) := x2. We can then unify (4) and (5), i.e., we can use (5) to describe Jk(·), k ≥ 0. We hypothesize
that Jk(·)s are quadratic functions and define, for all k ≥ 0,

pJ (u) + (1 − p)u2
= a u2

+ b u + c . (6)
k−1 k k k

5

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

w
t

i

I

P

R

W
t

L

P

s

here ak, bk and ck are defined at appropriate places. Our hypothesis is clearly true for k = 0. In the following we see
hat it holds for all k ≥ 1 as well. Also observe that for all k ≥ 0,

πk(x) = argmin
u∈[0,ψ]

{(ψ + x − u)2 + d + pJk−1(u) + (1 − p)u2
}

f the minimum value is less than (ψ + x)2 + pJk−1(0) and πk(x) = 0 otherwise. Let us define

θ (a, b) :=

√
d(1 + a) +

b
2

− ψ for a, b ≥ 0. (7)

We begin with the following observation which we will repeatedly use. We use the following lemma later to show
that the optimal policy does not defer any service up to certain value of pending service beyond which it defers strictly
positive amount.

Lemma 3.2. Let π (x) be defined as follows

π (x) =

⎧⎪⎨⎪⎩
argminu∈[0,ψ]{(ψ + x − u)2 + d + au2

+ bu + c},

if minu∈[0,ψ]{(ψ + x − u)2 + d + au2
+ bu + c} ≤ (ψ + x)2 + c

0, otherwise.

f aψ +
b
2 ≥ min{ψ, θ (a, b)}, then

π (x) =

⎧⎪⎨⎪⎩
0, if x ≤ θ (a, b)[

x+ψ−
b
2

1+a

]ψ
, otherwise

else,

π (x) =

{
0, if x ≤

(a−1)ψ+b
2 +

d
2ψ

ψ, otherwise.

roof. See [22, Appendix B]. ■

emark 3.1. If aψ +
b
2 ≥ ψ , then x+ψ−

b
2

1+a ≤ ψ,∀x ∈ [0, ψ]. Therefore,

π (x) =

{
0, if x ≤ θ (a, b)
x+ψ−

b
2

1+a , otherwise.
(8)

Let us define

āi =

{
1, if i = 0,

1 −
p

1+āi−1
, otherwise,

(9)

and

b̄i =

{
2pψ, if i = 0,
p(2āi−1ψ+b̄i−1)

1+āi−1
otherwise.

(10)

e show that the sequences āk, b̄k, k ≥ 0 have the following monotonicity properties. We use these properties in deriving
he optimal policy (e.g., see the proof of Proposition 3.2).

emma 3.3. (a) āk, k ≥ 0 is a decreasing sequence and converges to ā∞ :=
√
1 − p.

(b) b̄k, k ≥ 0 is a decreasing sequence and converges to
b̄∞ :=

2pψ
1+

√
1−p .

roof. See [22, Appendix C]. ■

The following proposition shows that π∗(·) is in general a discontinuous piece-wise linear function with increasing
lopes. We also know all the affine functions that constitute π∗(·), but do not know the jump epochs.
6

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

P

w

P

w
i
s
t
s
a
s
o

P
t

3

i
t
i

P

P

3

w
r
f

T
b
T

w

w

roposition 3.1. The optimal policy π∗(·) of (3) is of the form

π∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 0 ≤ x ≤ x̄0
x+ψ−

b̄i
2

1+āi
, if x̄i < x ≤ x̄i+1, i ≥ 0

x+ψ−
b̄∞
2

1+ā∞
, if x̄∞ < x ≤ ψ

(11)

here x̄i, i ≥ 0 are functions of āi, i ≥ 0 and b̄i, i ≥ 0.

roof. See Appendix A ■

We now provide intuition behind the form of the optimal policies as given by the above proposition. Recall that the
aiting cost d is fixed irrespective of the amount of deferred service whereas the marginal service cost [25] in a slot

ncreases with the amount of service offered in the slot. Hence, for optimality, service is deferred only when the marginal
ervice cost in the slot dominates the sum of d and expected marginal service cost in the subsequent slot. Further, given
hat some service has to be deferred from a slot to the next slot, amount of deferred service is chosen to optimize the
ervice costs in the two slots causing a jump in the optimal policies. Subsequent jumps in the optimal policies can also be
ttributed to similar phenomenon. Finally, owing to increasing marginal service costs, the optimal policies tend to defer
ervices more aggressively at higher values of pending services. This is why slopes of the successive line segments in the
ptimal policies increase monotonically.
We provide the exact optimal policies for a couple of special cases in Section 3.1. As we do not know the jump epochs in

roposition 3.1 we propose an approximate policy in Section 3.2. However, this approximate policy helps us characterize
he optimal policy for all cases (see Section 3.3).

.1. Optimal policy for special cases

Let us notice that (5) for k ≥ 0 constitute value iteration starting with J−1(x) = x2. We can instead perform value
teration starting with a different function. From [26, Chapter 2, Proposition 1.2(b)], in any such iteration, Jk(·) will converge
o the optimal cost function J(·) and πk(·) will converge to π∗(·). The following proposition shows that, starting with certain
nitial functions, limits of πk(·) can be obtained in certain special cases.

roposition 3.2. (a) If ψ <
√
2d

(2−p) , π
∗(x) = 0 for all x ∈ [0, ψ].

(b) If ψ >
√
d(1+ā∞)
ā∞

,

π∗(x) =
x + ψ −

b̄∞

2

1 + ā∞

, for all x ∈ [0, ψ].

roof. See Appendix B. ■

.2. Approximate policy

Let us consider a fictitious problem wherein an agent with demand ψ arrives with probability p and there is no arrival
ith probability 1 − p but a fixed additional cost d is incurred for each service request whether or not a portion of the
equest is deferred to the subsequent slot. The optimal cost function for this fictitious problem, J ′(·), is solution of the
ollowing Bellman’s equation.

J ′(x) = min
u∈[0,ψ]

{
(ψ − u + x)2 + d + pJ ′(ψ) + (1 − p)u2}

his fictitious problem can be seen as a special case of the linear waiting cost problem in [13, Section III] with d = 0
ut with a fixed additional cost d per request. Hence, following the analysis in [13, Appendix I.1] (also see [13, Section 3,
heorem 3.1(a)]), its optimal policy is

π ′(x) =
x + ψ −

b̄∞

2

1 + ā∞

,

here ā∞, b̄∞ are as in Lemma 3.3. Further, the optimal cost function satisfies

pJ ′(x) + (1 − p)x2 = ā∞x2 + b̄∞x + c̄∞,

here c̄∞ is a certain constant. Let us now define the following cost function

J̃(x) = min
{
(ψ + x)2 + pJ ′(0), min

u∈[0,ψ]

(ψ + x − u)2

′ 2}

+d + pJ (u) + (1 − p)u (12)

7

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

A

H

W

W
w

P

P

R
w

3

T

P
θ

p
h
b
F
P
t
c
P
i

3

a
t
a

lso note that

ā∞ψ +
b̄∞

2
=

√
1 − pψ +

pψ
1 +

√
1 − p

= ψ. (13)

ence, from (8), the optimal control of the cost function J̃(x), say π̃ (·), is given by

π̃ (x) =

⎧⎨⎩0, if x ≤ θ (ā∞, b̄∞)

x+ψ−
b̄∞
2

1+ā∞
, otherwise.

(14)

e propose to use the following policy for our fixed waiting cost problem.

π̄ (x) =

⎧⎪⎪⎨⎪⎪⎩
0, if ψ <

√
2d

(2−p) ,

x+ψ−
b̄∞
2

1+ā∞
, if ψ >

√
d(1+ā∞)
ā∞

,

π̃ (x), otherwise.

(15)

e do not have any performance bound for the proposed policy. However, we show below that, for any given backlog,
e defer more under this policy than under the optimal policy.

roposition 3.3. π̄ (x) ≥ π∗(x) for all x ∈ [0, ψ].

roof. See Appendix C. ■

emark 3.2. Note that π̄ (x) = 0 implies π∗(x) = 0, i.e., the proposed approximate policy and the optimal policy agree
hen π̄ (x) = 0.

.3. Optimal policy for the general case

The following theorem completely characterizes the optimal policy.

heorem 3.1. The optimal actions are given as follows

1. if ψ >
√
d(1+ā∞)
ā∞

, then the optimal actions are taken in accordance with π∗(x) as given by Proposition 3.2(b).

2. ψ ≤

√
d(1+ā∞)
ā∞

, π∗(0) = 0, and therefore none of the requests have their services deferred.

roof. Following the definitions of ā∞, b̄∞ and θ (ā∞, b̄∞) (see Lemma 3.3 and (7)) it can be easily checked that
(ā∞, b̄∞) ≥ 0 if and only if ψ ≤

√
d(1+ā∞)
ā∞

. Hence, if ψ ≤

√
d(1+ā∞)
ā∞

, π̄ (0) = π̃ (0) = 0 from (14) and (15), and so,
π∗(0) = 0 from Proposition 3.3. Notice that when π∗(0) = 0 none of the requests have their services deferred under the
optimal policy.

We thus have complete characterization of the optimal scheduling in all the cases. ■

We illustrate the optimal and the approximate policies via a few examples in Fig. 1. We choose ψ = 2, d = 1 and
= 0.5, 0.7 and 0.85 for illustration. When p = 0.5, the parameters meet the hypothesis of Proposition 3.2(b), and

ence, the optimal policy is provided by the proposition. For p = 0.7 and 0.85, the optimal policies have been computed
y value iteration which involves discretization of the state and action spaces and hence is subject to quantization error.
or both these cases the approximate policies are given by (15). When p = 0.7, x̄i = x̄0 > θ (ā∞, b̄∞) for all i ≥ 1 (see
roposition 3.1), and hence, the optimal and the approximate policies coincide for x ≥ x̄0. For both, p = 0.7 and 0.85,
he optimal policies exhibit jumps and are piece-wise linear with the slopes of successive line segments increasing as
laimed in Proposition 3.1. For both these cases the approximate policies upper bound the optimal policies as shown in
roposition 3.3. As expected, for the same pending service, the deferred service decreases as the expected quantum of service
n the next slot increases, i.e., as p increases.

.4. More general models

We agree that the our model is quite simple and does not capture many attributes of real problems. However, evidently,
nalysis and optimization of this simple model also is very complex. Further, the optimal solution to this model can lead
o heuristics for more general models. We briefly discuss here one such generalization allowing more general demand
rrival processes. Assume that, in each slot, with probabilities pi demands ψi arrive where i = 1, 2, . . . ,N , and with

probability 1−
∑N p no demand arrives. We can formulate a fictitious problem with i.i.d. Bernoulli arrivals with arrival
i=1 i

8

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

s

c
a
c

4

S
r

u

W
f

i
e
r
π

a

W
p
W
N

4

N

Fig. 1. The optimal and the approximate policies for ψ = 2, d = 1, p ∈ {0.5, 0.7, 0.85}. For p = 0.5 the optimal and the approximate policies are
ame.

onstant demand ψ̄ = (
∑N

j=1 pjψj)/p̄ and demand arrival probability p̄ =
∑N

i=1 pi. We can then use the optimal policy
ssociated with this fictitious problem for our original problem. Such heuristics are proposed and analyzed in [13] in the
ontext of linear waiting costs.

. Nash equilibrium

In this section we provide a Nash equilibrium for the non-cooperative game among the selfish agents (see Section 2).
pecifically, we look at symmetric Nash equilibria where each agent’s strategy is a piece-wise linear function of the
emaining demand of the previous player.

Let C : [0, ψ] → R+ give the optimal cost for a player as a function of the pending demand given that all other players
se strategy π ′

: [0, ψ] → [0, ψ]. Clearly, C(x) is given by the following equation for all x ∈ [0, ψ].

C(x) = min{(ψ + x)ψ, min
u∈[0,ψ]

{(ψ − u)(ψ − u + x) + u(u + p(ψ − π ′(u))) + d}}

e call π̄ ′
= (π ′, π ′, ..) a symmetric Nash equilibrium if π ′(x) attains the optimal cost in the above optimization problem

or all x, i.e., if

π ′(x) = argmin
u∈[0,ψ]

{(ψ − u)(ψ − u + x) + u(u + p(ψ − π ′(u))) + d}

f the minimum value is less than (ψ + x)2 + c and π ′(x) = 0 otherwise, for all x ∈ [0, ψ]. We characterize one such Nash
quilibrium in the following. As in Section 3 we define k-stage problems, where the tagged player has atmost k service
equests after it, before the terminal state is hit. Let Ck(·) be the tagged user’s optimal cost in the k-stage problem and
′

k(·) be the corresponding optimal strategy. Then

C0(x) = min{(ψ + x)ψ min
u∈[0,ψ]

{(ψ − u)(ψ − u + x) + u2
+ d}} (16)

nd for all k ≥ 1,

Ck(x) = min{(ψ + x)ψ, min
u∈[0,ψ]

{(ψ − u)(ψ − u + x) + d + u(u + p(ψ − π ′

k−1(u)))}}. (17)

e can see C(x) as the limit of Ck(x) as k approaches infinity. Furthermore, the limit of the optimal strategy of k-stage
roblems yield a symmetric Nash equilibrium. We now outline the approach of determining the Nash equilibrium, policy.
e obtain Nash equilibrium policy under certain conditions in Lemma 4.3 and Proposition 4.1. Later we characterize total
ash equilibrium policy in Theorem 4.1.

.1. A symmetric Nash equilibrium for special case

We first focus on symmetric Nash equilibrium in a few special cases. We then use these results to obtain symmetric
ash equilibria for all the cases (see Section 4.2). We begin with defining sequences ãk, b̃k, k ≥ −1 as follows

ãk =

{
0, if k = −1

1 , otherwise
(18)
2(2−pãk−1)

9

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

W

L

L

b̃k =

{
0, if k = −1
(2−p)ψ+pb̃k−1
2(2−pãk−1)

, otherwise
(19)

e state a few properties of the above sequences.

emma 4.1. (a) The sequence ãk, k ≥ −1 converges to

ã∞ :=
1
p

−

√
4 − 2p
2p

.

Also, 1
4 < ã∞ < 1

3 .
(b) The sequence b̃k, k ≥ −1 converges to

b̃∞ :=
ã∞(2 − p)ψ
1 − ã∞p

.

Proof. See [22, Appendix E]. ■

The following lemma states that ã∞x + b̃∞ is strictly positive and strictly less than ψ for all x ∈ [0, ψ]. We use it
later to show that under certain conditions, the symmetric Nash equilibria can be obtained via solving unconstrained
optimization problems.

Lemma 4.2. ã∞x + b̃∞ ∈ (0, ψ) for all x ∈ [0, ψ].

Proof. See [22, Appendix F]. ■

Let us also define x∞ =

√
2ã∞d−b̃∞

ã∞
. The following lemma partially characterizes symmetric Nash equilibrium policies.

emma 4.3.

π ′(x) = 0,∀x ≤ x∞

.

Proof. See [22, Appendix G]. ■

The following proposition gives a symmetric Nash equilibrium in a special case.

Proposition 4.1. If b̃∞

1−ã∞
≥ x∞, then π̄ ′

= (π ′, π ′, . . .) is a symmetric Nash equilibrium where

π ′(x) =

{
0, if x ≤ x∞

ã∞x + b̃∞, otherwise.
(20)

Proof. See Appendix D. ■

Notice that the Nash equilibrium as given by Proposition 4.1 can also have a discontinuity. This jump can be explained
using a similar argument as for the jumps in optimal policies (see the paragraph following Proposition 3.1).

4.2. Nash Equilibrium for the general case

The following theorem completely characterizes Nash equilibrium policy.

Theorem 4.1. The Nash equilibrium actions are given as follows

1. If x∞ ≥ 0, then π ′(0) = 0, none of the requests have their services deferred.
2. If x∞ < 0, then π ′(x), Nash equilibrium actions are taken in accordance with Proposition 4.1.

Proof. If x∞ ≥ 0, π ′(0) = 0 from Lemma 4.3. In this case, none of the agents defer any service as they do not see any
pending service. On the other hand, if x∞ < 0, Proposition 4.1 applies, giving the equilibrium scheduling decisions. We
thus have complete characterization of the users’ scheduling decisions in all the cases. ■

In Fig. 2, we illustrate symmetric Nash equilibria for the same parameters as used to illustrate the optimal policies in
Section 3. In all these examples, it turns out that x∞ < 0, and hence, the equilibria are given by Proposition 4.1. For the
same reason the equilibria do not exhibit jumps.
10

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297
Fig. 2. The symmetric Nash equilibria for ψ = 2, d = 1, p ∈ {0.5, 0.7, 0.85}.

Fig. 3. Fixed waiting costs: histogram of the pending services seen by the jobs for ψ = 2, d = 1, p = 0.5 (left subfigure) and p = 0.85 (right
subfigure).

5. Comparative numerical evaluation

We now discuss the effect of the fixed waiting cost structure, on the scheduling policies, deferred services and costs. For
any given cost structure, we also compare the impact of performance criteria (optimal scheduling vs. strategic scheduling
by selfish agents).

We begin with revisiting the optimal policies and Nash equilibria in Figs. 1 and 2. Recall that we had chosen ψ =

2, d = 1, and p = 0.5, 0.7 and 0.85. Notice that for the same parameters and pending service, e.g., for p = 0.85 and x = 1,
the optimal policy may not defer any service whereas the Nash equilibrium may differ substantial amount (larger than 1). Also,
the equilibria are not as sensitive to p as the optimal policies.

We show histograms of pending services seen by the jobs for both optimal policies and Nash equilibria in Fig. 3. We
use p = 0.5 and p = 0.85 for left subfigure and right subfigure respectively. For p = 0.85, since π∗(0) = 0, all the jobs
see zero pending service under the optimal scheduling policy. When π (0) > 0, (1−p) fraction of jobs see y0 = 0 pending
service, and for k ≥ 1, pk(1 − p) fraction of jobs see yk = π (yk−1) pending service (π ≡ π∗ for an optimal policy whereas
π ≡ π ′ for a Nash equilibrium). Notice that, for all k ≥ 0, yk are upper bounded by, the fixed point of π (x) = x. For
p = 0.85, under Nash equilibrium the system attains a steady state wherein each user observes a pending service = 1.2053
(the fixed point of π ′(x) = x in Fig. 2) and defers the same amount of service. Hence we see a mass (1 − p)

∑
∞

k=9 p
k
= p9 at

y9 = 1.2053.
Next, in Fig. 4(a), we show variation of time-average cost under both optimal policy and Nash equilibrium as p is varied

from 0 to 1. In Fig. 4(b), we show price of anarchy vs. p. We consider two sets of other parameters, ψ = 2, d = 1 and
ψ = 2.5, d = 1.5. For ψ = 2, d = 1 and p ≥ 0.58, no service is deferred in any slot under the optimal policy. Hence,
the optimal average cost is pψ2 in this regime. Under the Nash equilibrium for p = 1, the system attains a steady state
11

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

w

S

N
i

Fig. 4. (a) Average cost vs. p for ψ = 2, d = 1 and ψ = 2.5, d = 1.5. (b) Price of Anarchy vs. p for ψ = 2, d = 1 and ψ = 2.5, d = 1.5.

herein each user observes a pending service given by the fixed point of π ′(x) = x and defers the same amount of service.
Consequently, the amount of offered service in each slot equals ψ in the steady state, and the average cost equals ψ2

+d.
The ratio of the average cost under Nash equilibrium and the optimal cost, often termed as efficiency loss, is 1 for p ≳ 0 and
1 +

d
ψ2 for p = 1. We observe same phenomena for ψ = 2.5, d = 1.5.

6. Conclusion

We studied service scheduling in slotted systems with Bernoulli request arrivals, quadratic service costs, fixed waiting
costs and service delay guarantee of two slots. In the case of fixed waiting cost, we obtained optimal policy in special
cases (Proposition 3.2). We proposed an approximate policy that is an upper bound on the optimal policy (Proposition 3.3).
Finally, we characterize the optimal policy for all cases in Theorem 3.1. Subsequently, we also provided a symmetric
Nash equilibrium when the parameters satisfy certain conditions (Proposition 4.1). And the total characterization of Nash
equilibrium can be found in Theorem 4.1.

Our future work entails extending the results to the scenario where service delay guarantee is of three or more slots.
We would also like to derive online algorithms for the cases where service request statistics are unknown.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The first and second authors acknowledge support from Research Fellowships of Visvesvaraya PhD Scheme and INSPIRE
Faculty Research Grant (DSTO-1363).

Appendix A. Proof of Proposition 3.1

Recall that J−1(x) = x2. Substituting k = 0 in (6), a0 = 1 and b0 = 0. Observe that a0ψ +
b0
2 = ψ . Therefore, using (8),

π0(x) =

{
0, if x ≤ θ (a0, b0)
x+ψ−

b0
2

1+a0
, otherwise.

Let us define

J00(x) := (ψ + x)2 and J01(x) := (ψ + x − π0(x))2 + d + π0(x)2.

o,

J0(x) =

{
J00(x), if x ≤ θ (a0, b0)

J01(x), otherwise.

ote that the function J0(x) can be one of the two quadratic functions J00(x), J01(x) depending upon x. Observe that π0(x)
s piece-wise linear but discontinuous with a jump at θ (a0, b0). However, by definition of θ (a0, b0)

J (θ (a , b)) = J (θ (a , b)).
00 0 0 01 0 0

12

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

F

L

L

or all x < θ (a0, b0), J00(θ (a0, b0)) < J01(θ (a0, b0)) and for all x > θ (a0, b0), J00(x) > J01(x). We define a1,0, b1,0, c1,0, a1,1, b1,1
and c1,1 as follows

pJ00(u) + (1 − p)u2
= a1,0u2

+ b1,0u + c1,0.

and

pJ01(u) + (1 − p)u2
= a1,1u2

+ b1,1u + c1,1.

Using (6) for k = 1, we obtain the following,

a1 =

{
a1,0 = 1, if u ≤ θ (a0, b0)

a1,1 = 1 −
p

1+a0
, otherwise,

(A.1)

b1 =

{
b1,0 = 2pψ, if u ≤ θ (a0, b0)

b1,1 =
p(2a0ψ+b0)

1+a0
, otherwise,

(A.2)

and c1 =

⎧⎨⎩
c1,0 = pψ2, if u ≤ θ (a0, b0)

c1,1 = p
(a0ψ2

+b0ψ−

(
b0
2

)2
1+a0

+ d
)
, otherwise.

et us now define the following fictitious cost function.

J ′1(x) = min
u∈[0,ψ]

{(ψ + x − u)2 + d + a1u2
+ b1u + c1},

et π ′

1(x) be the optimal action in the R.H.S. J ′1(x) can be written as

J ′1(x) =min
{

min
u∈[0,θ (a0,b0)]

{(ψ + x − u)2 + d + a1,0u2
+ b1,0u + c1,0},

min
u∈[θ (a0,b0),ψ]

{(ψ + x − u)2 + d + a1,1u2
+ b1,1u + c1,1}

}
Let us define

ha,b,c(x, u) = (ψ + x − u)2 + d + au2
+ b2 + cand πa,b(x) = argmin

u∈[0,ψ]

ha,b,c(x, u)

(a) If πa10,b10 (x) < θ (a0, b0) and πa11,b11 (x) < θ (a0, b0) then

min
u∈[0,ψ]

ha10,b10 (x, u) = min
u∈[0,θ(a0,b0)]

ha10,b10 (x, u)

< min
u∈[0,ψ]

ha11,b11 (x, u)

≤ min
u∈[θ(a0,b0),ψ]

ha11,b11 (x, u).

Hence in this case π ′

1(x) = πa10,b10 (x).
(b) If πa10,b10 (x) ≥ θ (a0, b0) and πa11,b11 (x) ≥ θ (a0, b0) then

min
u∈[0,ψ]

ha11,b11 (x, u) = min
u∈[θ(a0,b0),ψ]

ha11,b11 (x, u)

< min
u∈[0,ψ]

ha10,b10 (x, u)

≤ min
u∈[0,θ(a0,b0)]

ha10,b10 (x, u).

Hence in this case π ′

1(x) = πa11,b11 (x). Using (A.1) and (A.2), it can be easily verified that there exist x̃ < 0 and y < 0 such
that πa10,b10 (x̃) = πa11,b11 (x̃) = y. Let us define x′ and x′′ as follows

x′
:= max{x : πa10,b10 (x) < θ (a0, b0) and πa11,b11 (x) < θ (a0, b0)}

x′′
:= max{x : πa10,b10 (x) ≥ θ (a0, b0) and πa11,b11 (x) ≥ θ (a0, b0)}

Thus, using case(a) and case(b), we can see that π ′(x) can be written as

π ′

1(x) =

{
πa10,b10 (x), if x < x′

′′
(A.3)
πa11,b11 (x), if x > x

13

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

U

t

sing (A.3) we can write the following

J ′1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,0
1+a1,0

x2 + (2ψa1,0+b1,0
1+a1,0

)x +
a1,0ψ2

+b1,0ψ−
b21,0
4

(1+a1,0)

+c1,0 + d := A0x2 + B0x + C0, if x < x′

a1,1
1+a1,1

x2 + (2ψa1,1+b1,1
1+a1,1

)x +
a1,1ψ2

+b1,1ψ−
b21,1
4

(1+a1,1)

+c1,1 + d := A1x2 + B1x + C1, if x > x′′.

(A.4)

Also,

π ′

1(x) =

{
πa10,b10 (x), if x′

≥ ψ

πa11,b11 (x), if x′′
≤ 0

(A.5)

Therefore, we only discuss the case x′ > 0 and x′′ < ψ .3 Let us observe that solution to the following equation gives us
x̄1 ∈ [x′, x′′

]

A0x2 + B0x + C0 = A1x2 + B1x + C1 (A.6)

As x′ > 0, C0 < C1. Also, A0 > A1 as a1,0 > a1,1. Thus the product of roots of (A.6) is negative. Hence there exists a
x̄1 ∈ [x′, x′′

] such that

π ′

1(x) =

{
πa10,b10 (x), if 0 < x ≤ x̄1
πa11,b11 (x), if x̄1 < x ≤ ψ

It can be noted that x̄1 is a function of a1,0, a1,1, b1,0, b1,1, c1,0 and c1,1 but not easy to determine. Further, we study the
optimal control for 1-stage problem.

J1(x) = min{(ψ + x)2 + pJ0(0), min
u∈[0,ψ]

{(ψ + x − u)2 + d + a1u2
+ b1u2

+ c1}}.

Also pJ0(0) = c1,0 if 0 ≤ x′′ and c1,1 otherwise. As we are discussing a case where x′ > 0 and x′′ < ψ , pJ0(0) = c1,0. Let us
consider the following fictitious cost functions.

J1,0(x) = min
{
(ψ + x)2 + c1,0, min

u∈[0,θ (a0,b0)]
{(ψ + x − u)2 + d + a1,0u2

+ b1,0u2
+ c1,0}

}
and

J1,1(x) = min
{
(ψ + x)2 + c1,0, min

u∈[θ (a0,b0),ψ]

{(ψ + x − u)2 + d + a1,1u2
+ b1,1u2

+ c1,1}
}
.

Let π1,0(x) and π1,1(x) be the optimal functions of J1,0(x) and J1,1(x) respectively. It can be noted that a1,0ψ + b1,0 = ψ
and a1,1ψ + b1,1 = ψ . Therefore using (8),

π1,0(x) =

{
0, if 0 ≤ x ≤ θ (a1,0, b1,0)

πa10,b10 (x), if θ (a1,0, b1,0) < x ≤ ψ
(A.7)

and

π1,1(x) =

{
0, if 0 ≤ x ≤ θ (a1,1, b1,1)

πa11,b11 (x), if θ (a1,1, b1,1) < x ≤ ψ
(A.8)

From (A.7), (A.8) we see that optimal function of π1(x) can be written as

π1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 0 ≤ x ≤ x̄0
x+ψ−

b1,0
2

1+a1,0
, if x̄0 < x ≤ x̄1

x+ψ−
b1,1
2

1+a1,1
, if x̄1 < x ≤ ψ

where x̄0 = min{θ (a1,0, b1,0), θ (a1,1, b1,1)}. We can similarly argue that the optimal policy π∗(·) is of the form (a few of
he intervals (x̄i, x̄i+1] can be empty sets)

π∗(x) =

⎧⎨⎩0, if 0 ≤ x ≤ x̄0
x+ψ−

b̄i
2

1+āi
, if x̄i < x ≤ x̄i+1, i ≥ 0.

3 When x′
≥ ψ , [x̄ , ψ] is an empty set. Similarly, when x′′

≤ 0, then [x̄ , x̄] is an empty set.
1 0 1

14

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

A

a

O

f

x

A

i

i

t

f

ppendix B. Proof of Proposition 3.2

(a) Let us analyze value iteration starting with function J0(x) = (x + ψ)2. Substituting k = 1 in (6), a1 = ā0, b1 = b̄0
nd c1 = ψ2. Following (5),

J1(x) = min{(ψ + x)2 + c1, min
u∈[0,ψ]

(ψ + x − u)2 + d + ā0u2
+ b̄0u + c1}

bserve that ā0ψ +
b̄0
2 > ψ . Hence, from (8), the optimal control in the 1-stage problem, π1(x), can be written as

π1(x) =

{
0, if x ≤ θ (ā0, b̄0) =

√
2d + pψ − ψ

x+ψ−pψ
2 , otherwise.

Note that when
√
2d ≥ (2 − p)ψ , the second case does not arise, i.e., π1(x) = 0 for all x ∈ [0, ψ]. It implies that

J1(x) = (x + ψ)2 + pψ2

or all x ∈ [0, ψ]. Again using (6) for k = 2, we see that a2 = a1, b2 = b1. Hence, following similar arguments as before,
π2(x) = 0 for all x ∈ [0, ψ]. Continuing in this fashion we see that for all k ≥ 1, πk(x) = 0 for all x ∈ [0, ψ]. Therefore
π∗(x) = 0 x ∈ [0, ψ].

(b) Now we analyze value iteration starting with function J0(u) that satisfies

pJ0(u) + (1 − p)u2
= ā∞u2

+ b̄∞u + c̄∞,

where ā∞, b̄∞ are as defined in Lemma 3.3 and c̄∞ is a certain constant. Substituting k = 1 in (6), a1 = ā∞ and b1 = b̄∞.
Following (5),

J1(x) = min{(ψ + x)2 + c̄∞, min
u∈[0,ψ]

(ψ + x − u)2 + d + ā∞u2
+ b̄∞u + c̄∞}.

Using definitions of ā∞ and b̄∞, ā∞ψ +
b̄∞

2 = ψ . Hence, from (8),

π1(x) =

⎧⎨⎩0, if x ≤ θ (ā∞, b̄∞)

x+ψ−
b̄∞
2

1+ā∞
, otherwise.

Further, when ψ ā∞ >
√
d(1 + a∞),

θ (ā∞, b̄∞) =

√
d(1 + ā∞) +

b̄∞

2
− ψ <

b̄∞

2
− ψ(1 − ā∞) = 0,

implying that π1(x) =
x+ψ−

b̄∞
2

1+ā∞
for all x ∈ [0, ψ]. It further implies that

J1(x) = (ψ + x − π1(x))2 + d + ā∞π1(x)2 + b̄∞π1(x) + c̄∞

for all x ∈ [0, ψ]. Again using (6) for k = 2, we see that

a2 = 1 −
p

1 + ā∞

and b2 =
p(2ā∞ψ + b̄∞)

1 + ā∞

.

Following Lemma 3.3, a2 = ā∞ and b2 = b̄∞. Hence, following similar arguments as before, π2(x) = π1(x) for all x ∈ [0, ψ].

Continuing in this fashion we see that for all k ≥ 1, πk(x) = π1(x) for all x ∈ [0, ψ]. Therefore π∗(x) =
x+ψ−

b̄∞
2

1+ā∞
for all

∈ [0, ψ].

ppendix C. Proof of Proposition 3.3

Following Proposition 3.2 and (15) we see that π̄ (x) is either π∗(x) or π̃ (x) depending on the parameters. Therefore, it
s enough to argue that

π̃ (x) ≥ π∗(x) ∀x ∈ [0, ψ]

rrespective of the parameters. We prove this by considering the following two cases separately.
Case (1) x ≤ θ (ā∞, b̄∞): We assume θ (ā∞, b̄∞) ≥ 0 else this case does not arise. In this case, π̃ (x) = 0. We will argue

hat π∗(x) also equals zero in this case. We will do this via iteratively showing that πk(x) = 0 for all k ≥ 0. First recall
that ā∞ψ +

b̄∞

2 = ψ (see Section 3.2, (13)). From Lemma 3.3, āk ≥ ā∞ and b̄k ≥ b̄∞ for all k ≥ 0. Hence ākψ +
b̄k
2 > ψ

or all k ≥ 0 and also, θ (ā , b̄) > θ (ā , b̄) for all k ≥ 0.
k k ∞ ∞

15

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

N

L

a

r

f

Let us now consider value iteration starting with function J0(x) = (x+ψ)2 as in the proof of Proposition 3.2(a). Recall
that a1 = 1 = ā0, b1 = 2pψ = b̄0 and

π1(x) =

{
0, if x ≤ θ (ā0, b̄0)
x+ψ−pψ

2 , otherwise.

Clearly, π1(x) = 0 for all x ≤ θ (ā∞, b̄∞). Next we analyze π2(x). Using (6) for k = 2, pJ1(u)+(1−p)u2
= a2u2

+b2u+c2,
where

a2 =

{
a21 = ā0, if u ≤ θ (ā0, b̄0)

a22 = 1 −
p

1+ā0
, otherwise

b2 =

{
b21 = b̄0, if u ≤ θ (ā0, b̄0)

b22 =
p(2ā0ψ+b̄0)

1+ā0
, otherwise

c2 =

⎧⎨⎩
c21 = p(ψ2

+ c̄1), if u ≤ θ (ā0, b̄0)

c22 = p(ā0ψ
2
+b̄0ψ−

b̄20
4

1+ā0
+ c̄1 + d), otherwise.

ote that

a21u2
+ b21u + c21 < a22u2

+ b22u + c22

for all u ∈ [0, θ (ā0, b̄0)), implying that c21 < c22. Moreover,

J2(x) = min
{
(ψ + x)2 + c21, min

u∈[0,θ (ā0,b̄0)]
(ψ + x − u)2 + d + a21u2

+ b21u + c21,

min
u∈[θ (ā0,b̄0),ψ]

(ψ + x − u)2 + d + a22u2
+ b22u + c22

}
.

et us define functions

J21(x) = min{(ψ + x)2 + c21, min
u∈[0,ψ]

(ψ + x − u)2 + d + a21u2
+ b21u + c21}

and

J22(x) = min{(ψ + x)2 + c21, min
u∈[0,ψ]

(ψ + x − u)2 + d + a22u2
+ b22u + c22}.

The optimal controls in the above optimization problems are

π21(x) =

{
0, if x ≤ θ (a21, b21)
x+ψ−

b21
2

1+a21
, otherwise

nd

π22(x) =

{
0, if x ≤

√
(d + c22 − c21)(1 + a22) +

b22
2 − ψ

x+ψ−
b22
2

1+a22
, otherwise

espectively. Note that, since c22 > c21,
√
(d + c22 − c21)(1 + a22) +

b22
2 − ψ > θ (a22, b22), and hence, π22(x) = 0 for all

x ∈ [0, θ (a22, b22)]. Finally, comparing J2, J21 and J22, we see that when both π21(x) and π22(x) equal zero, π2(x) also equals
zero. In other words, π2(x) = 0 for all x ≤ min{θ (a21, b21), θ (a22, b22)}. In particular, π2(x) = 0 for all x ≤ θ (ā∞, b̄∞).

We can similarly argue that, for all k ≥ 1, πk(x) = 0 for all x ≤ θ (ā∞, b̄∞) as desired.
Case (2) x > θ (ā∞, b̄∞): In this case

π̃ (x) =
x + ψ −

b̄∞

2

1 + ā∞

.

From Lemma 3.3, āk ≥ ā∞ and b̄k ≥ b̄∞ for all k ≥ 0, and hence,

π̃ (x) ≥
x + ψ −

b̄k
2

1 + āk

or all x > θ (ā∞, b̄∞). Therefore, following (11), π̃ (x) ≥ π∗(x) for all x > θ (ā∞, b̄∞). Combining Cases (1) and (2) we see
that π̃ (x) ≥ π∗(x) for all x ∈ [0, ψ] as desired.
16

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

A

F
i
f

π

a
t

N

L

U

N

W

C

w

C

ppendix D. Proof of Proposition 4.1

Let us define

ha,b(x, u) = (ψ + x − u)(ψ − u) + d + u(u + p(ψ − au − b)), (D.1)

and πa,b(x) = argmin
u∈[0,ψ]

ha,b(x, u).

The following can be verified

πa,b(x) =
x + (2 − p)ψ + pb

2(2 − pa)
(D.2)

ha,b(x, u) =

(
u2

2
− u

(2 − p)ψ + x + pb
2(2 − ap)

+
d

2(2 − ap)

)
2(2 − ap) + ψ(ψ + x).

rom [26, Chapter 2, Proposition 1.2(b)], Ck(·)s converge to the optimal cost function C(·) and π ′

k(·) converge to π ′(·)
rrespective of the initial function C0(x) in the value iteration. Now we analyze value iteration starting with a different
unction.

C0(x) = min{(ψ + x)ψ, hã∞,b̃∞
(x, πã∞,b̃∞

(x))}.

Recall that π ′

0(x) is the solution to C0(x). To determine π ′

0(x), we need to find argmin hã∞,b̃∞
(x, πã∞,b̃∞

(x)). Realize that

ã∞,b̃∞
(x) is argmin hã∞,b̃∞

(x, πã∞,b̃∞
(x)). Using (D.2), it can be seen that πã∞,b̃∞

(x) =
x+(2−p)ψ+pb̃∞

2(2−pã∞) . As the sequences
˜k, b̃k, k ≥ −1 converge to ã∞, b̃∞ (see (18),(19)). From Lemma 4.2 we know that πã∞,b̃∞

(x) ∈ (0, ψ), therefore we infer
hat

πã∞,b̃∞
(x) = ã∞x + b̃∞. (D.3)

ow to determine π ′

0(x), we need the following lemma which is proved at [22, Appendix II-C].

emma D.1. The following inequality holds if and only if x ≤ x∞.

ψ(ψ + x) ≤ hã∞,b̃∞
(x, πã∞,b̃∞

(x)). (D.4)

Using Lemmas D.1 and 4.2, we infer

π ′

0(x) =

{
0, if x ≤ x∞

ã∞x + b̃∞, otherwise
(D.5)

sing (D.1), ã∞ > 0, b̃∞ > 0 we infer the following

hã∞,b̃∞
(x, u) ≤ h0,0(x, u),∀x, u ∈ [0, ψ] (D.6)

ow from (17) and (D.5), the following can be written

C1(x) = min{(ψ + x)ψ, min
u∈[0,x∞]

h0,0(x, u), min
u∈[x∞,ψ]

hã∞,b̃∞
(x, u)}.

e would now determine π ′

1(x). Let us study the following two cases separately.

ase 1. x ≤ x∞: From Lemma D.1, we infer the following when x ≤ x∞

ψ(ψ + x) ≤ min
u∈[0,ψ]

hã∞,b̃∞
(x, u),

< min
{

min
u∈[0,x∞]

h0,0(x, u), min
u∈[x∞,ψ]

hã∞,b̃∞
(x, u)

}
,

here the second inequality follows from (D.6). Hence π ′

1(x) = 0,∀x ≤ x∞.

ase 2. x > x∞: Note that b̃∞

1−ã∞
≥ x∞ implies ã∞x∞ + b̃∞ > x∞. When ã∞x∞ + b̃∞ > x∞ the following holds

min
u∈[x∞,ψ]

hã∞,b̃∞
(x, u) = min

u∈[0,ψ]

hã∞,b̃∞
(x, u)

< min
{
(ψ + x)ψ, min

u∈[0,x∞]

h0,0(x, u)
}

Last inequality follows from Lemma D.1 and (D.6). Hence, π ′

1(x) = ã∞x + b̃∞,∀x > x∞.
Combining both the cases π ′

1(x) = π ′

0(x),∀x ∈ [0, ψ]. We can iteratively show that π ′

k(x) = π ′

0(x),∀x ∈ [0, ψ]. Hence
π ′(x) = π ′ (x).
0

17

R. Burra, C. Singh and J. Kuri Performance Evaluation 155–156 (2022) 102297

R

R
a

C
o
f
B
2

J
a
c
W
E

E

eferences

[1] M. Lin, A. Wierman, L.L.H. Andrew, E. Thereska, Dynamic right-sizing for power-proportional data centers, in: 2011 Proceedings IEEE INFOCOM,
2011, pp. 1098–1106, http://dx.doi.org/10.1109/INFCOM.2011.5934885.

[2] S. Ren, M. van der Schaar, Energy-efficient community cloud for real-time stream mining, in: 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), 2012, pp. 424–429, http://dx.doi.org/10.1109/CDC.2012.6425967.

[3] P. Samadi, A. Mohsenian-Rad, R. Schober, V.W.S. Wong, J. Jatskevich, Optimal real-time pricing algorithm based on utility maximization for smart
grid, in: 2010 First IEEE International Conference on Smart Grid Communications, 2010, pp. 415–420, http://dx.doi.org/10.1109/SMARTGRID.
2010.5622077.

[4] S. Bae, A. Kwasinski, Spatial and temporal model of electric vehicle charging demand, IEEE Trans. Smart Grid 3 (1) (2012) 394–403,
http://dx.doi.org/10.1109/TSG.2011.2159278.

[5] A. Gusrialdi, Z. Qu, M.A. Simaan, Scheduling and cooperative control of electric vehicles’ charging at highway service stations, in: 53rd IEEE
Conference on Decision and Control, 2014, pp. 6465–6471, http://dx.doi.org/10.1109/CDC.2014.7040403.

[6] M.K. Hanawal, E. Altman, R. El-Azouzi, B.J. Prabhu, Spatio-temporal control for dynamic routing games, in: R. Jain, R. Kannan (Eds.), Game
Theory for Networks, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 205–220.

[7] R. Burra, C. Singh, J. Kuri, E. Altman, Routing on a ring network, in: J.B. Song, H. Li, M. Coupechoux (Eds.), Game Theory for Networking
Applications, Springer International Publishing, Cham, 2019, pp. 25–36.

[8] J. Anselmi, B. Gaujal, L.-S. Rebuffi, Optimal speed profile of a DVFS processor under soft deadlines, Perform. Eval. 152 (2021) 102245,
http://dx.doi.org/10.1016/j.peva.2021.102245, URL https://www.sciencedirect.com/science/article/pii/S0166531621000626.

[9] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in: Proceedings of IEEE 36th Annual Foundations of Computer
Science, 1995, pp. 374–382, http://dx.doi.org/10.1109/SFCS.1995.492493.

[10] J.V. Gautam, H.B. Prajapati, V.K. Dabhi, S. Chaudhary, A survey on job scheduling algorithms in Big data processing, in: 2015 IEEE International
Conference on Electrical, Computer and Communication Technologies (ICECCT), 2015, pp. 1–11, http://dx.doi.org/10.1109/ICECCT.2015.7226035.

[11] Y. Wang, X. Wu, Y. Yu, W. Li, Manufacturing chain and it’s production scheduling problem, in: 2007 IEEE International Conference on Control
and Automation, 2007, pp. 1435–1439, http://dx.doi.org/10.1109/ICCA.2007.4376598.

[12] G. Reddy, R. Vaze, Robust online speed scaling with deadline uncertainty, in: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, 2018, pp. 22:1–22:17, http://dx.doi.org/10.4230/
LIPIcs.APPROX-RANDOM.2018.22.

[13] R. Burra, C. Singh, J. Kuri, Service scheduling for random requests with deadlines and linear waiting costs, IEEE Trans. Netw. Sci. Eng. 8 (3)
(2021) 2355–2371, http://dx.doi.org/10.1109/TNSE.2021.3091763.

[14] B. Legros, O. Jouini, G. Koole, A uniformization approach for the dynamic control of queueing systems with abandonments, Oper. Res. 66 (1)
(2018) 200–209, http://dx.doi.org/10.1287/opre.2017.1652.

[15] E. Hyon, A. Jean-Marie, Scheduling services in a queuing system with impatience and setup costs, Comput. J. 55 (5) (2012) 553–563,
http://dx.doi.org/10.1093/comjnl/bxq096.

[16] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II, third ed., Athena Scientific, 2007.
[17] E. Altman, N. Shimkin, Individual equilibrium and learning in processor sharing systems, Oper. Res. 46 (6) (1998) 776–784, http://dx.doi.org/

10.1287/opre.46.6.776.
[18] S. Chen, L. Tong, T. He, Optimal deadline scheduling with commitment, in: 2011 49th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), 2011, pp. 111–118, http://dx.doi.org/10.1109/Allerton.2011.6120157.
[19] C. Joe-Wong, I. Kamitsos, S. Ha, Interdatacenter job routing and scheduling with variable costs and deadlines, IEEE Trans. Smart Grid 6 (6)

(2015) 2669–2680.
[20] A. Srinivasan, J.H. Anderson, Efficient scheduling of soft real-time applications on multiprocessors, in: 15th Euromicro Conference on Real-Time

Systems, 2003. Proceedings, 2003, pp. 51–59, http://dx.doi.org/10.1109/EMRTS.2003.1212727.
[21] Y. He, B. Venkatesh, L. Guan, Optimal scheduling for charging and discharging of electric vehicles, IEEE Trans. Smart Grid 3 (3) (2012) 1095–1105,

http://dx.doi.org/10.1109/TSG.2011.2173507.
[22] R. Burra, C. Singh, J. Kuri, Service scheduling for random requests with fixed waiting costs, 2021, arXiv:2110.05148.
[23] S.M. Ross, Stochastic Processes, second ed., Wiley, 1996.
[24] D.P. Bertsekas, Abstract Dynamic Programming, second ed., Athena Scientific, 2018.
[25] T. Roughgarden, Routing games, in: N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani (Eds.), Algorithmic Game Theory, Cambridge University

Press, 2007, pp. 461–486, http://dx.doi.org/10.1017/CBO9780511800481.020.
[26] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I, third ed., Athena Scientific, 2007.

amya Burra is a Ph.D. student in the Department of ESE at the Indian Institute of Science, Bangalore. She currently works on optimal resource
llocation and their game theoretic solutions.

handramani K. Singh is an Assistant Professor in the Department of ESE at the Indian Institute of Science, Bangalore. His interests are in the areas
f communication networks, data centers and smart grids. Chandramani received the M.E. and Ph.D. degrees in electrical communication engineering
rom the Indian Institute of Science, Bangalore, India, in 2005 and 2012, respectively. He worked at ESQUBE Communication Solutions Pvt. Ltd.,
angalore, from 2005 to 2006. He was a Research Engineer with TREC, a joint research team between INRIA Rocquencourt and ENS de Paris, from
012 to 2013, and a Postdoctoral Research Associate at CSL, University of Illinois at Urbana Champaign, IL, USA, from 2013 to 2014.

oy Kuri is a Professor in the Department of Electronic Systems Engineering, Indian Institute of Science (IISc). Over the last two decades, his research
nd teaching interests have been in stochastic modeling, analysis, design and control of networks arising in various application contexts, including
ommunication, information dissemination, security, transportation and power. Examples of some specific topics are: Ad hoc and Infrastructure
ireless LANs, 5G networks — Network Function Virtualization and Software Defined Networking, Information Dissemination in Social Networks,
lectric Vehicle Networks, and Cyber-security.

He is a co-author of two widely cited books and has published 120 articles in peer-reviewed journals and conferences. He was an Associate
ditor of the IEEE/ACM Transactions on Networking during the period June 2014–July 2016.
18

http://dx.doi.org/10.1109/INFCOM.2011.5934885
http://dx.doi.org/10.1109/CDC.2012.6425967
http://dx.doi.org/10.1109/SMARTGRID.2010.5622077
http://dx.doi.org/10.1109/SMARTGRID.2010.5622077
http://dx.doi.org/10.1109/SMARTGRID.2010.5622077
http://dx.doi.org/10.1109/TSG.2011.2159278
http://dx.doi.org/10.1109/CDC.2014.7040403
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb6
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb6
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb6
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb7
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb7
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb7
http://dx.doi.org/10.1016/j.peva.2021.102245
https://www.sciencedirect.com/science/article/pii/S0166531621000626
http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1109/ICECCT.2015.7226035
http://dx.doi.org/10.1109/ICCA.2007.4376598
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.22
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.22
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.22
http://dx.doi.org/10.1109/TNSE.2021.3091763
http://dx.doi.org/10.1287/opre.2017.1652
http://dx.doi.org/10.1093/comjnl/bxq096
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb16
http://dx.doi.org/10.1287/opre.46.6.776
http://dx.doi.org/10.1287/opre.46.6.776
http://dx.doi.org/10.1287/opre.46.6.776
http://dx.doi.org/10.1109/Allerton.2011.6120157
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb19
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb19
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb19
http://dx.doi.org/10.1109/EMRTS.2003.1212727
http://dx.doi.org/10.1109/TSG.2011.2173507
http://arxiv.org/abs/2110.05148
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb23
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb24
http://dx.doi.org/10.1017/CBO9780511800481.020
http://refhub.elsevier.com/S0166-5316(22)00011-6/sb26

	Service scheduling for random requests with fixed waiting costs
	Introduction
	Related work
	Applications and motivation

	System model
	Service request model
	Cost model
	Optimal scheduling
	Equilibrium for selfish agents

	Optimal scheduling
	Optimal policy for special cases
	Approximate policy
	Optimal policy for the general case
	More general models

	Nash equilibrium
	A symmetric Nash equilibrium for special case
	Nash Equilibrium for the general case

	Comparative numerical evaluation
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of Proposition 3.1
	Appendix B. Proof of Proposition 3.2
	Appendix C. Proof of Proposition 3.3
	Appendix D. Proof of Proposition 4.1
	References

