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Abstract

We study zero-sum stochastic games for controlled discrete time Markov chains with risk-sensitive
verage cost criterion with countable/compact state space and Borel action spaces. The payoff function
s nonnegative and possibly unbounded for countable state space case and for compact state space case
t is a real-valued and bounded function. For countable state space case, under a certain Lyapunov
ype stability assumption on the dynamics we establish the existence of the value and a saddle
oint equilibrium. For compact state space case we establish these results without any Lyapunov type
tability assumptions. Using the stochastic representation of the principal eigenfunction of the associated
ptimality equation, we completely characterize all possible saddle point strategies in the class of
tationary Markov strategies. Also, we present and analyze an illustrative example.
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1. Introduction

We address a risk-sensitive discrete-time zero-sum game with long-run (or ergodic) cost
riterion where the underlying state dynamics is given by a controlled Markov processes
etermined by a prescribed transition kernel. The state space is a denumerable/compact set,
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actions spaces are Borel spaces and the cost function is possibly unbounded for countable state
space case and for compact state space case it is a real-valued and bounded function. In [7]
this problem is studied with bounded cost under a uniform ergodicity condition. Here we have
extended the results of [7] to the case with unbounded cost. This is carried out under a certain
Lyapunov type stability condition. Also, we have extended the results of [7] to a compact state
space case.

In the risk-neutral criterion, players consider the expected value of the total cost, but in the
isk-sensitive criterion, they consider the expected value of the exponential of the total costs.
s a result, the risk-sensitive criterion provides comprehensive protection from the risk since

t captures the effects of the higher order moments of the cost as well as its expectation; for
ore details see [54]. We refer to [30,56] for risk-neutral Markov decision processes (MDP),

nd [28,29,52] for stochastic games with risk-neutral criterion.
The analysis of stochastic systems with the risk-sensitive average criteria can be traced back

o the seminal papers by Jacobson in [37] and Howard and Matheson in [36]. The literature on
isk-sensitive MDP under different cost criteria is quite extensive, e.g., [1,9,13–16,20,21,27,31–
3,36,41,42,51,54]. The corresponding literature on discrete-time ergodic risk-sensitive games
an be found in [7,8,10,53]. In this respect we mention some interesting works, [6,38,39]
tudying multiplicative ergodic theorem for geometrically stable Markov processes. In [39, p.
7, sec. 2.4] authors made a strong connection between ergodic theory and Perron–Frobenius
igenvalue theory. For the classical approach to study risk-sensitive ergodic control problem
ased on equivalent game formulation, one can see [24]. In [15], the authors studied risk-
ensitive ergodic cost criterion for discrete-time MDP with bounded cost using a simultaneous
oeblin condition on a countable state space. Also, see [1,14] and the references therein for
ultiplicative ergodic theory. These papers used eigenvalue approach to study risk-sensitive

rgodic control problem. Ergodic problem for controlled Markov processes refers to the
roblem of minimizing a time average cost over an infinite time horizon. Hence the cost
ver any finite initial time segment does not affect the ergodic cost. This makes the analysis
f ergodic problem analytically more difficult. The authors in [27,49] used the results of
38,39] to study their risk-sensitive ergodic control problems. Also, in the context of controlled
iffusions, eigenvalue approach is used in [3–5,12] to study the risk-sensitive ergodic control
roblems. The articles [7,10] address zero-sum risk-sensitive stochastic games for discrete-time
arkov chains with discounted as well as ergodic cost criteria. The analysis of the ergodic

ost criterion in [7] is carried out using vanishing discount asymptotics. The results of the
rticle [7] are extended to the general state space case in [10]. In [10], the ergodic cost criterion
s studied under a local minorization property and a Lyapunov condition. The analogous
esults in continuous time setup are carried out in [26]. The corresponding nonzero-sum risk-
ensitive ergodic stochastic games for discrete-time Markov chains are studied in [8,53]. The
apers [7,10,26] studied the game problems under the assumption that the running cost is a
ounded function, but in many real-life situations the cost functions may be unbounded, for
xample in inventory control, queuing control etc.

In this article, we study the stochastic game problems for ergodic cost criterion by analyzing
he principal eigenpair of the associated Shapley equation. The analysis of our ergodic game
roblems is inspired from the work of [1,13]. In [13], the authors studied risk-sensitive
iscrete/continuous-time ergodic control problem for controlled Markov processes with count-
ble state space. They established the existence of a principal eigenpair of the associated ergodic
JB equation. For this, they first studied the corresponding Dirichlet eigenvalue problems on

nite set and then pass to the limit by increasing the finite sets to countable state space.
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In [1], authors used a novel technique to provide a variational formula for infinite horizon
risk-sensitive reward on a compact state and action spaces. They build a nonlinear version of
Kreĭn–Rutman theorem to study the corresponding ergodic HJB equation which leads to the
xistence of optimal ergodic control.

In the literature, the Kreĭn–Rutman theorem has been studied extensively, see [1,2,40,
43,44,46–48,55] and the references therein. In the pioneering works of Perron [50] and
Frobenius [25], it was proved that the spectral radius of a nonnegative square matrix is an
eigenvalue with a nonnegative eigenvector. In [40], Kreĭn–Rutman extended the results of
Perron and Frobenius’s theory to a positive compact linear operator, which is the celebrated
Kreĭn–Rutman theorem. For Kreĭn–Rutman theorem of a linear/nonlinear operator on ordered
Banach space (under different set of conditions), see [1,2,44,46–48,55] and the references
therein.

In this manuscript, using a nonlinear version of the Kreĭn–Rutman theorem, we establish
the existence of a principal eigenpair to the associated Shapley equations for both count-
able/compact state space cases. Under a certain condition, for both countable/compact state
space, we show that the principal eigenvalues are the values of the corresponding games. Also,
we establish the existence of a saddle-point equilibrium via the outer maximizing/minimizing
selectors of the associated Shapley equations. Additionally, we give a complete characterization
of all possible saddle-point strategies in the space of stationary Markov strategies.

The rest of this article is arranged as follows. Section 2 deals with problem description and
preliminaries. In Section 3, we study Dirichlet eigenvalue problems. In Section 4, we show that
the risk-sensitive optimality equation (i.e., Shapley equation) has a solution, obtain the value
of the game and saddle-point equilibrium in the class of stationary Markov strategies. We also
completely characterize all possible saddle point strategies in the class of stationary strategies
in this section. In Section 5, we present an illustrative example. In the next section, we study
the same problem on compact state space. Section 7 concludes the paper with some concluding
remarks.

2. The game model

In this section we introduce a discrete-time zero-sum stochastic game model which consists
of the following elements

{S,U, V, (U (i) ⊂ U, V (i) ⊂ V, i ∈ S), P(·|i, u, v), c(i, u, v)}. (2.1)

Here S is the state space which is assumed to be the set of all nonnegative integers endowed
with the discrete topology of our controlled Markov processes X := {X0, X1, . . .}; U and V
re action spaces for players 1 and 2, respectively. The action spaces U and V are assumed
o be Borel spaces with the Borel σ -algebras B(U ) and B(V ), respectively. For each i ∈ S,

(i) ∈ B(U ) and V (i) ∈ B(V ) denote the sets of admissible actions for players 1 and 2,
espectively, when the system is at state i . For any metric space Y , let P(Y ) denote the space
f probability measures on B(Y ) with Prohorov topology. Next P : K → P(S) is a transition
stochastic) kernel, where K := {(i, u, v)|i ∈ S, u ∈ U (i), v ∈ V (i)}, a Borel subset of

S × U × V . We assume that the function P( j |i, u, v) is continuous in (u, v) ∈ U (i) × V (i)
or any fixed i, j ∈ S. Finally, the function c : K → R+ denotes the cost function which is
ssumed to be continuous in (u, v) ∈ U (i) × V (i) for any fixed i ∈ S.

The game evolves as follows. When the state i ∈ S at time t ∈ N0 := {0, 1, . . .},
layers independently choose actions ut ∈ U (i) and vt ∈ V (i) according to some strategies,
espectively. As a consequence of this, the following happens:
42
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• player 1 incurs an immediate cost c(i, ut , vt ) and player 2 receives a reward c(i, ut , vt );
• the system moves to a new state j ̸= i with the probability determined by P( j |i, ut , vt ).

hen the state of the system transits to a new state j , the above procedure repeats. Both
he players have full information of past and present states and past actions of both players.
he goal of player 1 is to minimize his/her accumulated costs, whereas that of player 2

s to maximize the same with respect to some performance criterion J·,·(·, ·), which in our
resent case is defined by (2.3). At each stage, the players choose their actions on the basis
f accumulated information. The available information for decision making at time t ∈ N0,
.e., the history of the process up to time t is given by

ht := (i ′

0, (u0, v0), i ′

1, (u1, v1), . . . , i ′

t−1, (ut−1, vt−1), i ′

t ),

here H0 = S, Ht = Ht−1 × (U × V × S), . . . , H∞ = (U × V × S)∞ are the history spaces.
n admissible strategy for player 1 is a sequence π1

:= {π1
t : Ht → P(U )}t∈N0 of stochastic

ernels satisfying π1
t (U (X t )|ht ) = 1, for all ht ∈ Ht ; t ≥ 0, where {X t } is the state process.

he set of all such strategies for player 1 is denoted by Π 1
ad . A strategy for player 1 is called

Markov strategy i if

π1
t (·|ht−1, u, v, i) = π1

t (·|h′

t−1, u′, v′, i)

or all ht−1, h′

t−1 ∈ Ht−1, u, u′
∈ U, v, v′

∈ V, i ∈ S, t ∈ N0. Thus a Markov strategy for player
can be identified with a sequence of maps, denoted by π1

≡ {π1
t : S → P(U )}t∈N0 . A Markov

trategy {π1
t } is called stationary Markov for player 1, if it does not have any explicit time

ependence, i.e., π1
t (·|ht ) = φ̃(·|i ′

t ) for all ht ∈ Ht for some mapping φ̃ satisfying φ̃(U (i)|i) = 1
or all i ∈ S. The set of all Markov strategies and all stationary Markov strategies for player 1,
re denoted by Π 1

M and Π 1
SM , respectively. Similarly, the set of all admissible strategies, Markov

trategies and stationary Markov strategies for player 2 are defined similarly and denoted by
2
ad , Π 2

M , and Π 2
SM , respectively. For each i, j ∈ S, µ ∈ P(U (i)) and ν ∈ P(V (i)), the cost

unction c and the transition kernel P are extended as follows:

c(i, µ, ν) :=

∫
V (i)

∫
U (i)

c(i, u, v)µ(du)ν(dv),

P( j |i, µ, ν) :=

∫
V (i)

∫
U (i)

P( j |i, u, v)µ(du)ν(dv)

by an abuse of notation we use the same notation c and P). For a given initial distribution
˜0 ∈ P(S) and a pair of strategies (π1, π2) ∈ Π 1

ad × Π 2
ad , by Tulcea’s Theorem (see

roposition 7.28 of [11]), there exists unique probability measure Pπ1,π2

π̃0
on (Ω ,B(Ω )), where

= (S ×U × V )∞. When π̃0 = δi , i ∈ S this probability measure is simply written by Pπ1,π2

i
atisfying

Pπ1,π2

i (X0 = i) = 1 and Pπ1,π2

i (X t+1 ∈ A|Ht , π
1
t , π

2
t ) = P(A|X t , π

1
t , π

2
t ) ∀ A ∈ B(S).

(2.2)

Let Eπ1,π2

i denote the expectation with respect to the probability measure Pπ1,π2

i . Now from
34, p. 6], we know that under any (π1, π2) ∈ Π 1

M ×Π 2
M , the corresponding stochastic process
X is strong Markov.
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We now introduce some useful notations.

otations:
For any finite set D̃ ⊂ S, we define BD̃ = { f : S → R | f is Borel measurable and f (i) =

∀ i ∈ D̃c
}, B+

D̃
⊂ BD̃ denotes the cone of all nonnegative functions vanishing outside

˜ . Given any real-valued function V ≥ 1 on S, we define a Banach space (L∞

V , ∥ · ∥
∞

V ) of
-weighted functions by

L∞

V =

{
f : S → R | ∥ f ∥

∞

V := sup
i∈S

| f (i)|
V(i)

< ∞

}
.

or any ordered Banach space X̃ , a subset C̃ ⊂ X̃ and x, y ∈ X̃ , we define ⪰ as x ⪰ y ⇔

x − y ∈ C̃, i.e., the partial ordering in X̃ with respect to the cone C̃. For any subset B̂ ⊂ S,
ˇ(B̂) = inf{t : X t ∈ B̂}, i.e., the first entry time of X t to B̂. Also, for any subset D̃ ⊂ S,
τ (D̃) := inf{t > 0 : X t /∈ D̃} denotes the first exit time from D̃.

We now introduce the cost evaluation criterion.
Ergodic cost criterion: Now we define the risk-sensitive average cost criterion for zero-

sum discrete-time games. Let θ > 0 be the risk-sensitive parameter. For each i ∈ S and any
(π1, π2) ∈ Π 1

ad × Π 2
ad , the risk-sensitive ergodic cost criterion is given by

Jπ
1,π2

(i, c) := lim sup
T →∞

1
T

ln Eπ1,π2

i

[
eθ
∑T −1

t=0 c(X t ,π
1
t ,π

2
t )
]
. (2.3)

ince the risk-sensitive parameter remains the same throughout, we assume without loss of
enerality that θ = 1. The lower value and upper value of the game, are functions on S,
efined as
L(i) := supπ2∈Π 2

ad
infπ1∈Π 1

ad
Jπ

1,π2
(i, c) and U(i) := infπ1∈Π 1

ad
supπ2∈Π 2

ad
Jπ

1,π2
(i, c) respec-

ively. It is easy to see that

L(i) ≤ U(i) for all i ∈ S.

f L(i) = U(i) for all i ∈ S, then the common function is called the value of the game and is
enoted by J∗(i). A strategy π∗1 in Π 1

ad is said to be optimal for player 1 if

Jπ
∗1,π2

(i, c) ≤ sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i) = L(i) ∀ i ∈ S, ∀π2
∈ Π 2

ad .

imilarly, π∗2
∈ Π 2

ad is optimal for player 2 if

Jπ
1,π∗2

(i, c) ≥ inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(i) = U(i) ∀ i ∈ S, ∀π1
∈ Π 1

ad .

f π∗k
∈ Π k

ad is optimal for player k (k=1,2), then (π∗1, π∗2) is called a pair of optimal
trategies. The pair of strategies (π∗1, π∗2) at which this value is attained i.e., if

Jπ
∗1,π2

(i, c) ≤ Jπ
∗1,π∗2

(i, c) ≤ Jπ
1,π∗2

(i, c), ∀π1
∈ Π 1

ad , ∀π2
∈ Π 2

ad ,

hen the pair (π∗1, π∗2) is called a saddle-point equilibrium, and then π∗1 and π∗2 are optimal
or player 1 and player 2, respectively.
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Following [7], the Shapley equation for the above problem is given by

eρψ(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ( j)P( j |i, µ, ν)
]
, i ∈ S.

n the above equation, ρ is a scalar and ψ is an appropriate function.
Our goal is to establish the existence of a saddle-point equilibrium among the class of

dmissible history-dependent strategies and provide its complete characterization. We now
escribe briefly our technique for establishing the existence of a saddle-point equilibrium.
e first construct an increasing sequence of bounded subsets of the state space S. Then we

pply Kreĭn–Rutman theorem [2] on each bounded subset to obtain a bounded solution of the
orresponding Dirichlet eigenvalue problem, i.e., a solution to the above equation on each finite
ubset with the condition that the solution is zero in the complement of that subset. Using a
uitable Lyapunov stability condition (to be stated shortly), we pass to the limit and show that
isk-sensitive zero sum ergodic optimality equation admits a principal eigenpair. Subsequently
e establish a stochastic representation of the principal eigenfunction. This enables us to

haracterize all possible saddle point equilibria in the space of stationary Markov strategies.
o this end we make certain assumptions. First we define a norm-like function which is used

n our assumptions.

efinition 2.1. A function f : S → R is said to be norm-like if for every k ∈ R, the set
i ∈ S : f (i) ≤ k} is either empty or finite.

Since the cost function (i.e., c(i, u, v)) may be unbounded, to guarantee the finiteness of
Jπ

1,π2
(i, c), we use the following assumption.

Assumption 2.1. We assume that the Markov chain {X t }t≥0 is irreducible under every pair of
stationary Markov strategies (π1, π2) ∈ Π 1

SM × Π 2
SM . Also, assume that there exist a constant

˜ > 0, a real-valued function W ≥ 1 on S and, a finite set K̃ such that one of the following
hold.

(a) If the running cost is bounded: For some positive constant γ̃ > ∥c∥∞, we have the
following blanket stability condition

sup
(u,v)∈U (i)×V (i)

∑
j∈S

W( j)P( j |i, u, v) ≤ C̃ IK̃(i) + e−γ̃W(i) ∀i ∈ S, (2.4)

where ∥c∥∞ := sup(i,u,v)∈K c(i, u, v).
(b) If the running cost is unbounded: For some real-valued nonnegative norm-like function

ℓ̃ on S it holds that

sup
(u,v)∈U (i)×V (i)

∑
j∈S

W( j)P( j |i, u, v) ≤ C̃ IK̃(i) + e−ℓ̃(i)W(i) ∀i ∈ S, (2.5)

where the function ℓ̃(·) − max(u,v)∈U (·)×V (·) c(·, u, v) is norm-like.

Assumption 2.1 and its variants are key conditions of standard ergodicity hypothesis, see
13,30,45]. In this context, [15] used Doeblin condition, a stronger assumption than a variant of

ssumption 2.1(a) to study ergodic control problems. The condition (2.5) plays important role
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in studying the ergodic optimal control problems with unbounded running cost. We show that,
(2.5) implies (2.3) is finite. Similar condition is also used in [6, Theorem 1.2], [14, Theorem
2.2] in the study of multiplicative ergodicity. Also, we refer [17–19,53] to see the importance
of Lyapunov stability assumption in studying stochastic control problem .

Let i0 ∈ S be a fixed state, we call it as the reference state. Consider an increasing sequence
f finite subsets D̃n ⊂ S such that ∪

∞

n=1D̃n = S and i0 ∈ D̃n for all n ∈ N. Recall that
(D̃n) := inf{t > 0 : X t /∈ D̃n}, is the first exit time from D̃n . For our game problem,
e wish to establish the existence of a saddle-point equilibrium in the space of stationary
arkov strategies. To ensure the existence of saddle-point equilibrium, we make the following

ssumptions.

ssumption 2.2.

(i) The admissible action spaces U (i)(⊂ U ) and V (i)(⊂ V ) are compact for each i ∈ S.
(ii) We assume that for any n and any pair i, j ∈ D̃n , the probability of hitting j from i

before exiting D̃n is bounded from below by some δi j,n > 0 under all stationary Markov
strategies i.e.,

inf
(π1,π2)∈Π 1

SM ×Π 2
SM

Pπ1,π2

i (τ̌ j < τ (D̃n)) ≥ δi j,n, (2.6)

where τ̌ j denotes the hitting time to j i.e., for any pair i, j ∈ D̃n , under any pair of
strategies (π∗1, π∗2) ∈ Π 1

SM × Π 2
SM , there exists i1, i2, . . . , im ∈ D̃n satisfying

P( j |im, π
∗1(im), π∗2(im))P(im |im−1, π

∗1(im−1), π∗2(im−1)) · · · P(i1|i, π∗1(i), π∗2(i)) > 0.

(2.7)

(iii) (i, u, v) →
∑

j∈S W( j)P( j |i, u, v) is continuous in (u, v) ∈ U (i) × V (i), where W is
the Lyapunov function defined in Assumption 2.1 .

emark 2.1.

(1) Assumption 2.2(i) and (iii) are standard continuity-compactness assumption.
(2) Under Assumption 2.2(i), for each i ∈ S, by in [11, Proposition 7.22, p. 130], we know

that P(U (i)) and P(V (i)) are compact and metrizable. Note that π1
∈ Π 1

SM can be
identified with a map π1

: S → P(U ) such that π1(·|i) ∈ P(U (i)) for each i ∈ S. Thus,
we have Π 1

SM = Πi∈SP(U (i)). Similarly, Π 2
SM = Πi∈SP(V (i)). Therefore by Tychonoff

theorem, the sets Π 1
SM and Π 2

SM are compact metric spaces endowed with the product
topology. Also, it is clear that these sets are convex.

(3) Instead of using (2.6), we can assume inf(π1,π2)∈Π 1
SM ×Π 2

SM
Pπ1,π2

i (τ̌ j < τ (D̃n)) > 0. Then
this weaker condition also implies that ψn > 0, (see Lemma 3.3) .

Using generalized Fatou’s lemma as in [23], [35, Lemma 8.3.7], from Assumption 2.2 one
an easily get the following result, which will be used in subsequent sections; we omit the
etails.

emma 2.1. Under Assumptions 2.1 and 2.2, the functions
∑

j∈S P( j |i, µ, ν) f ( j) and
∞
(i, µ, ν) are continuous at (µ, ν) on P(U (i)) × P(V (i)) for each fixed f ∈ LW and i ∈ S.
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3. Dirichlet eigenvalue problems

We begin this section by stating a version of the nonlinear Kreĭn–Rutman theorem from
2, Section 3.1], (cf. [40]) which plays a crucial role in our analysis of the Dirichlet eigenvalue
roblems.

heorem 3.1. Let X̃ be an ordered Banach space and C̃ a nonempty closed subset of X̃
atisfying X̃ = C̃ − C̃. Let T̃ : X̃ → X̃ be a 1-homogeneous, order-preserving, continuous,
nd compact map satisfying the property that for some nonzero ζ ∈ C̃ and N̂ > 0, we have

N̂ T̃ (ζ ) ⪰ ζ . Then there exists a nontrivial f̂ ∈ C̃ and a scalar λ̃ > 0, such that T̃ f̂ = λ̃ f̂ .

In the following lemma we establish a few important estimates which will play crucial role
n our analysis.

emma 3.1. Suppose that Assumption 2.1 holds. Let B̃ ⊃ K̃ be a finite subset of S and let
ˇ(B̃) = inf{t : X t ∈ B̃}, be the first entry time of X t to B̃. Then for any pair of strategies
π1, π2) ∈ Π 1

ad × Π 2
ad we have the following:

(i) If Assumption 2.1(a) holds: Then

Eπ1,π2

i

[
eγ̃ τ̌ (B̃)W(X τ̌ (B̃))

]
≤ W(i) ∀ i ∈ B̃c. (3.1)

(ii) If Assumption 2.1(b) holds:

Eπ1,π2

i

[
e
∑τ̌ (B̃)−1

s=0 ℓ̃(Xs )W(X τ̌ (B̃))
]

≤ W(i) ∀ i ∈ B̃c. (3.2)

Proof. This result is proved in [13, Lemma 2.3] for one controller case. The proof for two
controller case is analogous. □

Now we prove the following existence result which is useful in establishing the existence
of a Dirichlet eigenpair.

Proposition 3.1. Suppose Assumption 2.2 holds. Take any function c̄ : K → R which is
ontinuous in (u, v) ∈ U (i) × V (i) for each fixed i ∈ S, satisfying the relation c̄ < −δ in
˜ n , where δ > 0 is a constant and D̃n is a finite set as described previously. Then for any
g ∈ BD̃n

, there exits a unique solution ϕ ∈ BD̃n
to the following nonlinear equation

ϕ(i) = inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec̄(i,µ,ν)

∑
j∈S

ϕ( j)P( j |i, µ, ν) + g(i)
]

= sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec̄(i,µ,ν)

∑
j∈S

ϕ( j)P( j |i, µ, ν) + g(i)
]

∀i ∈ D̃n. (3.3)

oreover, we have

ϕ(i) = inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
1
s ,π

2
s )g(X t )

]

= sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
1
s ,π

2
s )g(X t )

]
∀i ∈ S, (3.4)

˜ ˜ ˜
here τ (Dn) := inf{t > 0 : X t /∈ Dn}, first exit time from Dn .
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Proof. Let g ∈ BD̃n
. Define a map T̂ : BD̃n

→ BD̃n
by

sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec̄(i,µ,ν)

∑
j∈S

φ̃( j)P( j |i, µ, ν) + g(i)
]

= T̂ φ̃(i), i ∈ D̃n, φ̃ ∈ BD̃n

and T̂ φ̃(i) = 0 for i ∈ D̃c
n. (3.5)

ow, let φ̃1, φ̃2 ∈ BD̃n
. Then

(T̂ φ̃2(i) − T̂ φ̃1(i)) ≤ max
i∈D̃n

sup
ν∈P(V (i))

sup
µ∈P(U (i))

ec̄(i,µ,ν)
∥φ̃2 − φ̃1∥D̃n

.

imilarly, we have

(T̂ φ̃1(i) − T̂ φ̃2(i)) ≤ max
i∈D̃n

sup
ν∈P(V (i))

sup
µ∈P(U (i))

ec̄(i,µ,ν)
∥φ̃2 − φ̃1∥D̃n

.

ence

∥T̂ φ̃1(i) − T̂ φ̃2(i)∥D̃n
≤ max

i∈D̃n

sup
ν∈P(V (i))

sup
µ∈P(U (i))

ec̄(i,µ,ν)
∥φ̃2 − φ̃1∥D̃n

,

here for any function f ∈ BD̃n
, ∥ f ∥D̃n

= max{| f (i)| : i ∈ D̃n}. Since c̄ < 0, it is easy
o see that maxi∈D̃n

supν∈P(V (i)) supµ∈P(U (i)) ec̄(i,µ,ν) < 1. Hence T̂ is a contraction map. Thus
y Banach fixed point theorem, there exists a unique ϕ ∈ BD̃n

such that T̂ (ϕ) = ϕ. Now by
pplying Fan’s minimax theorem in [22, Theorem 3], we get

sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec̄(i,µ,ν)

∑
j∈S

ϕ( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec̄(i,µ,ν)

∑
j∈S

ϕ( j)P( j |i, µ, ν)
]
.

ence we conclude that (3.3) has unique solution. Now let (π∗1
n , π

∗2
n ) ∈ Π 1

SM × Π 2
SM be a

ini-max selector of (3.3), i.e.,

ϕ(i) = inf
µ∈P(U (i))

[
ec̄(i,µ,π∗2

n (i))
∑
j∈S

ϕ( j)P( j |i, µ, π∗2
n (i)) + g(i)

]
= sup

ν∈P(V (i))

[
ec̄(i,π∗1

n (i),ν)
∑
j∈S

ϕ( j)P( j |i, π∗1
n (i), ν) + g(i)

]
. (3.6)

ow by Dynkin’s formula [53, Lemma 3.1], for any (π1, π2) ∈ Π 1
ad × Π 2

ad and N ∈ N, we
ave

Eπ1,π2

i

[
e
∑N∧τ (D̃n )−1

t=0 c̄(X t ,π
1
t ,π

2
t )ϕ(X N∧τ (D̃n ))

]
− ϕ(i)

= Eπ1,π2

i

[ N∧τ (D̃n )∑
t=1

e
∑t−1

r=0 c̄(Xr ,π
1
r ,π

2
r )

×

(∑
j∈S

ϕ( j)P( j |X t−1, π
1
t−1, π

2
t−1) − e−c̄(X t−1,π

1
t−1,π

2
t−1)ϕ(X t−1)

) ]
. (3.7)
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Then, using (3.6) and (3.7), we obtain

Eπ∗1
n ,π2

i

[N∧τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )g(X t )
]

≤ −Eπ∗1
n ,π2

i

[
e
∑N∧τ (D̃n )−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )ϕ(X N∧τ (D̃n ))
]

+ ϕ(i).

Since c̄ < 0 and ϕ ∈ BD̃n
, taking N → ∞ in the above equation and using the dominated

convergence theorem, we deduce that

Eπ∗1
n ,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )g(X t )
]

≤ −Eπ∗1
n ,π2

i

[
e
∑τ (D̃n )−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )ϕ(Xτ (D̃n ))
]

+ ϕ(i).

ence

ϕ(i) ≥ Eπ∗1
n ,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )g(X t )
]
.

ince π2
∈ Π 2 is arbitrary,

ϕ(i) ≥ sup
π2∈Π 2

ad

Eπ∗1
n ,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
∗1
n (Xs ),π2

s )g(X t )
]

≥ inf
π1∈Π 1

ad

sup
π2∈Π 2

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
1
s ,π

2
s )g(X t )

]
. (3.8)

y similar arguments, using (3.6), (3.7) and the dominated convergence theorem, we obtain

ϕ(i) ≤ inf
π1∈Π 1

ad

Eπ1,π∗2
n

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
1
s ,π

∗2
n (Xs ))g(X t )

]

≤ sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c̄(Xs ,π
1
s ,π

2
s )g(X t )

]
. (3.9)

ow combining (3.8) and (3.9), we obtain (3.4). □

Next using Theorem 3.1, we show that for each n ∈ N, Dirichlet eigenpair exists in D̃n .
hat is we establish the following result.

emma 3.2. Suppose Assumptions 2.1 and 2.2 hold. Then there exists an eigenpair (ρn, ψn) ∈

× B+

D̃n
, ψn ⪈ 0 on D̃n , for the following Dirichlet nonlinear eigenequation

eρnψn(i) = inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψn( j)P( j |i, µ, ν)
]

= sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
ψn( j)P( j |i, µ, ν)

]
. (3.10)
j∈S
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The eigenvalue of the above equation satisfies

ρn ≤ sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c), (3.11)

or all i ∈ S such that ψn(i) > 0.

roof. For some constant δ > 0, let us define c′(i, µ, ν) = c(i, µ, ν) − kn − δ in D̃n ,
here kn = sup(i,µ,ν)∈D̃n×P(U (i))×P(V (i)) |c(i, µ, ν)|. Then it is easy to see that c′(i, µ, ν) < −δ,
(i, µ, ν) ∈ D̃n,×P(U (i)) × P(V (i)). Now consider a mapping T̄n : BD̃n

→ BD̃n
defined by

T̄n(g)(i) := sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

2
s )g(X t )

]
, i ∈ D̃n , (3.12)

ith T̄n(g)(i) = 0 for i ∈ D̃c
n , where g ∈ BD̃n

.
From Proposition 3.1 it is clear that T̄n is well defined. Since c′ < −δ, for g1, g2 ∈ B̂D̃n

, it
ollows that

∥T̄n(g1) − T̄n(g2)∥D̃n
≤ α1∥g1 − g2∥D̃n

,

or some constant α1 > 0. Hence the map T̄n is continuous.
Let g1, g2 ∈ BD̃n

with g1 ⪰ g2. Also, let T̄n(gk) = ϕk , k = 1, 2. Thus ϕ2 is a solution of

ϕ2(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec′(i,µ,ν)

∑
j∈D̃n

ϕ2( j)P( j |i, µ, ν) + g2(i)
]

= inf
µ∈P(U (i))

[
ec′(i,µ,π∗2

n (i))
∑
j∈D̃n

ϕ2( j)P( j |i, µ, π∗2
n (i)) + g2(i)

]
∀i ∈ D̃n,

here π∗2
n ∈ Π 2

SM is an outer maximizing selector. Therefore

T̄n(g1)(i)−T̄n(g2)(i)

= sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

2
s )g1(X t )

]

− sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

2
s )g2(X t )

]

= sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

2
s )g1(X t )

]

− inf
π1∈Π 1

ad

Eπ1,π∗2
n

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

∗2
n (Xs ))g2(X t )

]

≥ inf
1 1

Eπ1,π∗2
n

i

[τ (D̃n )−1∑
e
∑t−1

s=0 c′(Xs ,π
1
s ,π

∗2
n (Xs ))ds g1(X t )

]

π ∈Πad t=0
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− inf
π1∈Π 1

ad

Eπ1,π∗2
n

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

∗2
n (Xs ))g2(X t )

]

≥ inf
π1∈Π 1

ad

Eπ1,π∗2
n

i

[τ (D̃n )−1∑
t=0

e
∑t−1

s=0 c′(Xs ,π
1
s ,π

∗2
n (Xs ))(g1(X t ) − g2(X t ))

]
.

ence T̄n(g1)(i) − T̄n(g2)(i) ≥ 0 for all i ∈ S. This implies that T̄n(g1) ⪰ T̄n(g2). Choose a
unction g ∈ BD̃n

such that g(i0) = 1 and g( j) = 0 for all j ̸= i0, where i0 is a fixed state
see p. 7). Thus by (3.12), we have

T̄n(g)(i0) ≥ g(i0) > 0.

hus we have T̄n(g) ⪰ g. Let {gm} ⊂ BD̃n
be a bounded sequence. Then since c′ < 0, from

3.12), we get ∥T̄ngm∥∞ ≤ α2, for some constant α2 > 0. So, by a diagonalization argument,
here exists a subsequence mk of m and a function φ ∈ B̂D̃n

such that ∥T̄ngmk − φ∥D̃n
→ 0

s k → ∞. Thus the map T̄n is completely continuous. By the definition of the map T̄n , it is
asy to see that T̄n(λg) = λT̄n(g) for all λ ≥ 0. Hence by Theorem 3.1, there exists a nontrival
n ∈ B+

D̃n
and a constant λ′

D̃n
> 0 such that

T̄n(ψn) = λ′

D̃n
ψn i.e.,

λ′

D̃n
ψn(i) = sup

ν∈P(V (i))
inf

µ∈P(U (i))

[
ec′(i,µ,ν)

∑
j∈D̃n

λ′

D̃n
ψn( j)P( j |i, µ, ν) + ψn(i)

]
∀i ∈ D̃n.

(3.13)

ince ψn ≥ 0 and ψn(i) > 0, for some i ∈ D̃n , it follows from (3.13) that
[
λ′

D̃n
−1

λ′

D̃n

]
≥ 0.

ext we prove (3.11). Now if
[
λ′

D̃n
−1

λ′

D̃n

]
= 0, it is easy to show that (3.11) holds. Assume that[

λ′

D̃n
−1

λ′

D̃n

]
> 0. Let ρ ′

n = log
[
λ′

D̃n
−1

λ′

D̃n

]
. Then from, (3.13), we get

eρ
′
nψn(i) = sup

ν∈P(V (i))
inf

µ∈P(U (i))

[
ec′(i,µ,ν)

∑
j∈D̃n

ψn( j)P( j |i, µ, ν)
]

∀i ∈ D̃n. (3.14)

ow multiplying both sides of (3.14) by ekn + δ and applying Fan’s minimax theorem, (see
22, Theorem 3]), we obtain

eρnψn(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψn( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψn( j)P( j |i, µ, ν)
]

∀i ∈ D̃n , (3.15)

here ρn = ρ ′
n + kn + δ , (where kn is defined on p. 12).

Let π∗2
n ∈ Π 2

SM be an outer maximizing selector of (3.10). Then we have

eρnψn(i) = inf
µ∈P(U (i))

[
ec(i,µ,π∗2

n (i))
∑

ψn( j)P( j |i, µ, π∗2
n (i))

]
∀i ∈ D̃n. (3.16)
j∈S
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Therefore by using Dynkin’s formula and (3.16), we obtain

ψn(i) ≤ Eπ1,π∗2
n

i

[
e
∑T −1

s=0 (c(Xs ,π
1
s ,π

∗2
n (Xs ))−ρn )ψn(XT )I

{T<τ (D̃n )}

]
≤ (sup

D̃n

ψn)Eπ1,π∗2
n

i

[
e
∑T −1

s=0 (c(Xs ,π
1
s ,π

∗2
n (Xs ))−ρn )

]
. (3.17)

Now, taking logarithm on the both sides of (3.17), dividing by T and letting T → ∞, for each
∈ S for which ψn > 0, we deduce that

ρn ≤ Jπ
1,π∗2

n (i, c).

Since π1
∈ Π 1

ad is arbitrary, we get

ρn ≤ inf
π1∈Π 1

ad

Jπ
1,π∗2

n (i, c) ≤ sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c). □

Now, we show that the sequence {ρ}n is bounded, and for each n, ψn > 0 on D̃n and
im infn→∞ ρn ≥ 0 .

emma 3.3. Suppose Assumptions 2.1 and 2.2 hold. Then for each n, ψn > 0 on D̃n and the
equence of eigenvalues {ρn}n of Eq. (3.10) is bounded . Moreover, we have

lim inf
n→∞

ρn ≥ 0 . (3.18)

roof. We first prove that {ρn}n is bounded. Under Assumption 2.1(a) since ∥c∥∞ < γ̃ , it
s easy to see that Jπ

1,π2
(i, c) ≤ γ̃ . Under Assumption 2.1(b) since K̃ is finite, there exists a

onstant k1 such that (2.5) can be written as

sup
(u,v)∈U (i)×V (i)

∑
j∈S

W( j)P( j |i, u, v) ≤ e(k1−ℓ̃(i))W(i) ∀i ∈ S. (3.19)

hen by using (2.2) and successive conditioning, we get

Eπ1,π2

i

[
e
∑T −1

t=0 (ℓ̃(X t )−k1)W(XT )
]

≤ W(i) ∀i ∈ S. (3.20)

ince, W ≥ 1, from (3.20), we get

Jπ
1,π2

(i, ℓ̃) ≤ k1 for all i ∈ S.

ow since ℓ̃ − sup(u,v)∈U (i)×V (i) c(·, u, v) is norm-like, there exists a constant k2 such that for
ll i ∈ S, we have sup(u,v)∈U (i)×V (i) c(i, u, v) ≤ ℓ̃(i) + k2. Hence we get

Jπ
1,π2

(i, c) ≤ k1 + k2 ∀(π1, π2) ∈ Π 1
ad × Π 2

ad ,∀i ∈ S. (3.21)

herefore using (3.11), it is clear that ρn has an upper bound.
Next we want to show that ρn is bounded below. To this end, first we claim that ψn > 0 on

˜ n for each n. Let n ∈ N be fixed . Suppose that the claim is not true, then there exists ĩ ∈ D̃n

uch that ψn(ĩ) = 0. Also, since ψn ⪈ 0 on D̃n , there exists î ∈ D̃n such that ψn(î) > 0. Now,
or any outer minimizing selector π∗1

n ∈ Π 1
SM of (3.15), Eq. (3.16) can be rewritten as

0 = eρnψn(ĩ) =

[
ec(ĩ,π∗1

n (ĩ),π∗2
n (ĩ))

∑
ψn( j)P( j |ĩ, π∗1

n (ĩ), π∗2
n (ĩ))

]
. (3.22)
j∈S
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Again, in view of Assumption 2.2(ii), under any pair of strategies (π∗1
n , π

∗2
n ) ∈ Π 1

SM × Π 2
SM ,

here exists i1, i2, . . . , im ∈ D̃n satisfying

P(î |im, π
∗1
n (im), π∗2

n (im))P(im |im−1, π
∗1
n (im−1), π∗2

n (im−1)) · · · P(i1|ĩ, π∗1
n (ĩ), π∗2

n (ĩ)) > 0.

(3.23)

hus, from (3.22) and (3.23), we deduce that ψn(î) = ψn(i1) = · · · = ψn(im) = ψn(ĩ) = 0.
ut this contradicts to the fact that ψn is nontrivial. Since, n is arbitrary, this establishes our
laim. So, for all n we can pin ψn such that ψn(i0) = 1, where i0 is a reference state (defined
s in p. 7).

Now, suppose that the sequence {ρn}n is not bounded below. Hence, along a subsequence
n → −∞ as n → ∞. So, ρn < 0 for all large enough n. Let (π∗1

n , π
∗2
n ) ∈ Π 1

SM × Π 2
SM be a

ini-max selector of (3.10), thus we have

1 = ψn(i0) = e−ρn sup
ν∈P(V (i0))

[
ec(i0,π∗1

n (i0),ν)
∑
j∈S

ψn( j)P( j |i0, π
∗1
n (i0), ν)

]
= e−ρn

[
ec(i0,π∗1

n (i0),π∗2
n (i0))

∑
j∈S

ψn( j)P( j |i0, π
∗1
n (i0), π∗2

n (i0))
]
. (3.24)

ince ρn < 0 for all large enough n, and our cost function c is nonnegative, it is easy to see that
(i0, π

∗1
n (i0), π∗2

n (i0))−ρn > 0, for all large enough n. Assumption 2.2(ii), implies that for any
j ∈ D̃n , under any pair of strategies (π1, π2) ∈ Π 1

SM × Π 2
SM , there exists i1, i2, . . . , im ∈ D̃n

atisfying

P( j |im, π
1(im), π2(im))P(im |im−1, π

1(im−1), π2(im−1)) · · · P(i1|i0, π
1(i0), π2(i0)) > 0.

(3.25)

e claim that if j ∈ D̃n , then

inf
(π1,π2)∈Π 1

SM ×Π 2
SM

Pπ1,π2

i0
(τ̌ j ≤ n ∧ τ (D̃n)) ≥ k( j, n), for some constant k( j, n) > 0.

(3.26)

f not, suppose there exists a pair (π̃1
k , π̃

2
k ) ∈ Π 1

SM ×Π 2
SM such that P

π̃1
k ,π̃

2
k

i0
(τ̌ j ≤ n∧τ (D̃n)) → 0

s k → ∞. Now, since Π 1
SM and Π 2

SM are compact, there exist a further subsequence and
˜

1
∈ Π 1

SM and π̃2
∈ Π 2

SM , such that π̃1
k → π̃1 and π̃2

k → π̃2 as k → ∞. By Assumption 2.2,
e know that the law of Xk converges to X , where Xk (X) is the DTCMC governed by (π̃1

k , π̃
2
k )

(π̃1, π̃2) respectively). So, for every p ≤ n,

P π̃1,π̃2

i0
(X i ∈ D̃n\{i0, j}, X p = j for all i ≤ p − 1)

= lim
k→∞

P
π̃1

k ,π̃
2
k

i0
(Xk,i ∈ D̃n\{i0, j}, Xk,p = j for all i ≤ p − 1)

≤ lim
k→∞

P
π̃1

k ,π̃
2
k

i0
(τ̌ j ≤ n ∧ τ (D̃n)) = 0.

o, this contradicts (3.25). Hence, we must have (3.26).
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From the monotonicity of τ (D̃n), it then follows that for D̃n ⊃ D̃m ∋ j , we have

inf
(π1,π2)∈Π 1

SM ×Π 2
SM

Pπ1,π2

i0
(τ̌ j ≤ m ∧ τ (D̃n)) ≥ inf

(π1,π2)∈Π 1
SM ×Π 2

SM

Pπ1,π2

i0
(τ̌ j ≤ m ∧ τ (D̃m))

≥ k( j,m). (3.27)

Since for large enough n, c(i0, π
∗1
n (i0), π∗2

n (i0)) − ρn > 0, from (3.24), we have

1 = ψn(i0) = Eπ∗1
n ,π∗2

n
i0

[
e
∑m∧τ (D̃n )∧τ̌ j −1

t=0 (c(X t ,π
∗1
n (X t ),π∗2

n (X t ))−ρn )ψn(Xm∧τ (D̃n )∧τ̌ j
)
]

≥ Eπ∗1
n ,π∗2

n
i0

[
ψn(Xm∧τ (D̃n )∧τ̌ j

)
]

≥ ψn( j) inf
(π1,π2)∈Π 1

SM ×Π 2
SM

Pπ1,π2

i0
(τ̌ j ≤ m ∧ τ (D̃n))

≥ k( j,m)ψn( j) (using (3.27)).

hoose m = j + 1. Then for all n > j , we have ψn( j) ≤
1

k( j, j+1) , ∀ j ∈ S. This implies
that, {ψn} has an upper bound. Thus by a standard diagonalization argument, there exists a
subsequence (by an abuse of notation denoting by the same sequence) and a bounded function
ψ ≥ 0 with ψ(i0) = 1 such that ψn(i) → ψ(i), as n → ∞ for all i ∈ S. Now, since Π 1

SM and
2
SM are compact, there exist a further subsequence and π∗1

∈ Π 1
SM and π∗2

∈ Π 2
SM , such that

∗1
n → π∗1 and π∗2

n → π∗2 as n → ∞. Since c ≥ 0, (3.10) gives us

eρnψn(i) ≥

[∑
j∈S

ψn( j)P( j |i, π∗1
n (i), π∗2

n (i))
]
. (3.28)

ence, by taking n → ∞, it follows that∑
j∈S

ψ( j)P( j |i, π∗1(i), π∗2(i)) ≤ 0, i ∈ S. (3.29)

n view of (3.29), we claim that ψ ≡ 0. If not then there exists î ∈ S such that ψ∗(î) > 0.
lso, since ψ ≥ 0 from (3.29), it is easy to see that there exists a point ĩ ∈ S for which
(ĩ) = 0. Now, since {X t } is irreducible under any pair of strategies (π∗1, π∗2) ∈ Π 1

SM ×Π 2
SM ,

here exists i1, i2, . . . , im ∈ S satisfying

P(î |im, π
∗1(im), π∗2(im))P(im |im−1, π

∗1(im−1), π∗2(im−1)) · · · P(i1|ĩ, π∗1(ĩ), π∗2(ĩ)) > 0.

hus, from (3.29) we deduce that ψ(î) = ψ(i1) = · · · = ψ(im) = ψ(ĩ) = 0. But this contradicts
o the fact that ψ(î) > 0. This proves the claim . But since ψ(i0) = 1, this is a contradiction.
herefore, we obtain that, {ρn} is bounded below.

Now we show that ρ∗
= lim infn→∞ ρn ≥ 0. If not, then on contrary, ρ∗ < 0. So,

or large enough n, ρn < 0. Since, our cost function c is nonnegative, for large enough n,
(i, µ, ν) − ρn > 0 for all (µ, ν) ∈ P(U (i)) ×P(V (i)). So, by repeating the above arguments,
here exists a subsequence (by an abuse of notation denoting by the same sequence) and a
ounded function φ ≥ 0 with φ(i0) = 1 such that ψn(i) → φ(i), as n → ∞ for all i ∈ S.
rom (3.10), we have

ψn(i) ≥

[∑
ψn( j)P( j |i, π∗1

n (i), π∗2
n (i))

]
, (3.30)
j∈S
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where (π∗1
n , π

∗2
n ) is a mini-max selector of (3.10) . By Fatou’s lemma, taking n → ∞, we

deduce that

φ(i) ≥ Eπ∗1,π∗2

i [φ(X1)] ∀i ∈ S,

for some pair of stationary strategies (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM . Hence, {φ(Xm),Fm} is
upermartingale where {X t } is the Markov process under the pair of stationary strategies
π∗1, π∗2) ∈ Π 1

SM × Π 2
SM . So, by Doob’s martingale convergence theorem φ(Xm) → Ŷ

lmost surely, as m → ∞. On the other hand by Assumption 2.1, we have {X t } is recurrent.
ence {X t } visits every state (in particular i0) of S infinitely often. Since, φ(i0) = 1, {φ(Xm)}

onverges only if φ ≡ 1. Now, taking limit n → ∞ in (3.10), we obtain

1 = φ(i) ≥ ec(i,π∗1(i),π∗2(i))−ρ∗

> 1.

ut this is a contradiction. Thus, lim infn→∞ ρn ≥ 0. □

. Existence of risk-sensitive average optimal strategies

In this section we prove the existence of a risk-sensitive average optimal stationary strategy
sing the Shapley equation. Now we state and prove our main result of this section.

heorem 4.1. Suppose Assumptions 2.1 and 2.2 hold. Then there exists a unique (up to a
calar multiplication) eigenpair (ρ∗, ψ∗) ∈ R+ × L∞

W with ψ∗ > 0, such that

eρ
∗

ψ∗(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]
, i ∈ S. (4.1)

oreover, we have the following

(i)

ρ∗
= inf

i∈S
sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c) = inf
i∈S

inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(i, c). (4.2)

(ii) If (π∗1, π∗2) ∈ Π 1
SM ×Π 2

SM be a mini-max selector of (4.1), then (π∗1, π∗2) ∈ Π 1
SM ×Π 2

SM
is a saddle point equilibrium, i.e.,

Jπ
∗1,π2

(i, c) ≤ Jπ
∗1,π∗2

(i, c) = ρ∗
≤ Jπ

1,π∗2
(i, c), ∀π1

∈ Π 1
ad , ∀π2

∈ Π 2
ad . (4.3)

Thus the value of the game is independent of the initial state.
(iii) Let (π∗1, π∗2) ∈ Π 1

SM ×Π 2
SM is a saddle point equilibrium, then this pair is a mini-max

selector of (4.1).

Rest of this section is dedicated to the proof of Theorem 4.1.
Since c ≥ 0, using Assumption 2.1, there exists a finite set B̂ containing K̃ such that we

ave the following:

• Under Assumption 2.1(a): since γ̃ > ∥c∥∞, from (3.11) we have ρn ≤ γ̃ . Thus, for all
large enough n it holds that(

sup c(i, u, v) − ρn

)
< γ̃ ∀i ∈ B̂c. (4.4)
(u,v)∈U (i)×V (i)
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• Under Assumption 2.1(b): since the function ℓ(·)−max(u,v)∈U (·)×V (·) c(·, u, v) is norm-like,
for all large enough n it holds that(

sup
(u,v)∈U (i)×V (i)

c(i, u, v) − ρn

)
< ℓ̃(i) ∀i ∈ B̂c. (4.5)

ow letting n → ∞ from (3.10) we show that the limiting equation admits a positive eigenpair.

emma 4.1. Suppose Assumptions 2.1 and 2.2 hold. Then there exists an eigenpair (ρ∗, ψ∗) ∈

R+ × L∞

W with ψ∗ > 0, such that

eρ
∗

ψ∗(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]
, i ∈ S. (4.6)

urthermore, for any mini-max selector (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM of (4.6) we have the
ollowing:

(i)

ρ∗
≤ inf

i∈S
sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c). (4.7)

(ii) For any finite set B̂1 ⊃ B̂, we have the following stochastic representation of the
eigenfunction

ψ∗(i) = inf
π1∈Π 1

ad

Eπ1,π∗2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
1
t ,π

∗2(X t ))−ρ∗)ψ∗(X
τ̌ (B̂1))

]
= sup

π2∈Π 2
ad

Eπ∗1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
∗1(X t ),π2

t )−ρ∗)ψ∗(X
τ̌ (B̂1))

]
∀i ∈ B̂c

1. (4.8)

roof. First we scale ψn in such a way that we obtain ψn(i) ≤ W(i) for all i ∈ S. Set

θ̃n = sup{α > 0 : (W − αψn) > 0 in S}.

ince ψn vanishes in D̃c
n and ψn > 0 on D̃n , it follows that θ̃n is finite. We claim that if we

eplace ψn by θ̃nψn , then ψn touches W inside B̂. If this is not true, then on the contrary, we
ssume that for some state î ∈ B̂c

∩ D̃n , (W −ψn)(î) = 0 and W −ψn > 0 in B̂∪ D̃c
n . Let π∗2

n
e an outer maximizing selector of (3.10). Then under Assumption 2.1(b), applying Dynkin’s
ormula (as in [53, Lemma 3.1]), we obtain

ψn(î) ≤ Eπ1,π∗2
n

î

[
e
∑N∧τ̌ (B̂)−1

s=0 (c(Xs ,π
1
s ,π

∗2
n (Xs ))−ρn )ψn(X N∧τ̌ (B̂))I

{N∧τ̌ (B̂)<τ (D̃n )}

]
≤ Eπ1,π∗2

n
î

[
e
∑N∧τ̌ (B̂)−1

s=0 ℓ̃(Xs )ψn(X N∧τ̌ (B̂))I
{N∧τ̌ (B̂)<τ (D̃n )}

]
.

ince ψn ≤ W (by our scaling), in view of Lemma 3.1, by the dominated convergence theorem
aking N → ∞, we get

ψn(î) ≤ Eπ1,π∗2
n

ˆ

[
e
∑τ̌ (B̂)−1

s=0 ℓ̃(Xs )dsψn(X
τ̌ (B̂))

]
.

i
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Combining this and (3.2), we get

0 = (W − ψn)(î) ≥ Eπ1,π∗2
n

î

[
e
∑τ̌ (B̂)−1

s=0 ℓ̃(Xs )ds(W − ψn)(X
τ̌ (B̂))

]
> 0.

ut this is a contradiction. Thus ψn touches W inside B̂. Using estimate as in (3.1), one can
how that similar conclusion holds under Assumption 2.1(a) .

So, there exists a point i∗
∈ B̂ such that (W −ψn)(i∗) = 0, for all large n. Since ψn ≤ W ,

y diagonalization arguments, there exist a subsequence (here we use the same sequence by
n abuse of notation), and a function ψ∗

≤ W such that ψn → ψ∗ as n → ∞. Again, from
emma 3.3, we know that the sequence {ρn} is bounded and lim infn→∞ ρn ≥ 0, thus along a

urther subsequence we have ρn → ρ∗ as n → ∞ for some ρ∗
≥ 0.

Also, we have (W − ψ∗)(î∗) = 0 for some î∗
∈ B̂. By the continuity-compactness

ssumptions, for any mini-max selector (π∗1
n , π

∗2
n ) ∈ Π 1

SM × Π 2
SM of (3.10), we get

eρnψn(i) = sup
ν∈P(V (i))

[
ec(i,π∗1

n (i),ν)
∑
j∈S

ψn( j)P( j |i, π∗1
n (i), ν)

]
= inf

µ∈P(U (i))

[
ec(i,µ,π∗2

n (i))
∑
j∈S

ψn( j)P( j |i, µ, π∗2
n (i))

]
. (4.9)

ote that since ψn ∈ L∞

W , we have∑
j∈S

ψn( j)P( j |i, u, v) ≤

∑
j∈S

W( j)P( j |i, u, v) ∀(i, u, v) ∈ K. (4.10)

ince Π 1
SM and Π 2

SM are compact there exists (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM such that π∗1
n → π∗1

nd π∗2
n → π∗2 as n → ∞. Now from (4.9) we obtain,

eρnψn(i) ≥

[
ec(i,π∗1

n (i),ν)
∑
j∈S

ψn( j)P( j |i, π∗1
n (i), ν)

]
. (4.11)

hen, using Lemma 2.1, taking n → ∞ from (4.11), by the extended Fatou’s lemma [23], [35,
emma 8.3.7], we obtain

eρ
∗

ψ∗(i) ≥ ec(i,π∗1(i),ν)
∑
j∈S

ψ∗( j)P( j |i, π∗1(i), ν).

hus

eρ
∗

ψ∗(i) ≥ sup
ν∈P(V (i))

[
ec(i,π∗1(i),ν)

∑
j∈S

ψ∗( j)P( j |i, π∗1(i), ν)
]

≥ inf
µ∈P(U (i))

sup
µ∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]
. (4.12)

lso, from (4.9), we get

eρnψn(i) ≤

[
ec(i,µ,π∗2

n (i))
∑
j∈S

ψn( j)P( j |i, µ, π∗2
n (i))

]
.
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Using (4.10), by the dominated convergence theorem, taking limit n → ∞ in above equation,
e deduce that

eρ
∗

ψ∗(i) ≤ inf
µ∈P(U (i))

[
ec(i,µ,π∗2(i))

∑
j∈S

ψ∗( j)P( j |i, µ, π∗2(i))
]

≤ sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]
. (4.13)

ence by (4.12) and (4.13), we get (4.6). Since we have (W − ψ∗)(î∗) = 0 and W ≥ 1, it
ollows that ψ∗ is nontrivial.

Now, we claim that ψ∗ > 0. If not, then on contrary there exists a point ĩ ∈ S for which
∗(ĩ) = 0. Again by continuity-compactness assumptions, there exists a mini-max selector
π∗1, π∗2) such that (4.6) can be rewritten as

eρ
∗

ψ∗(i) =

[
ec(i,π∗1(i),π∗2(i))

∑
j∈S

ψ∗( j)P( j |i, π∗1(i), π∗2(i))
]

∀i ∈ S.

o, we get

0 = eρ
∗

ψ∗(ĩ) =

[
ec(ĩ,π∗1(ĩ),π∗2(ĩ))

∑
j∈S

ψ∗( j)P( j |ĩ, π∗1(ĩ), π∗2(ĩ))
]
. (4.14)

ince ψ∗ is nontrivial, there exists î ∈ S such that ψ∗(î) > 0. Again, since X is irreducible
nder any pair of strategies (π∗1, π∗2) ∈ Π 1

SM × Π 2
SM , there exists i1, i2, . . . , in ∈ S satisfying

P(î |in, π
∗1(in), π∗2(in))P(in|in−1, π

∗1(in−1), π∗2(in−1)) · · · P(i1|ĩ, π∗1(ĩ), π∗2(ĩ)) > 0.

hus, from (4.14) we deduce that ψ∗(î) = ψ∗(i1) = · · · = ψ∗(in) = ψ∗(ĩ) = 0. But this
ontradicts to the fact that ψ∗ is nontrivial. This establishes our claim.

Next we prove (4.7). Since ψn > 0 on D̃n for all n, using (3.11), we have ρ∗
= limn→∞ ρn ≤

upπ2∈Π 2
ad

infπ1∈Π 1
ad
Jπ

1,π2
(i, c) for all i ∈ S.

Finally we prove the stochastic representation (4.8) of ψ∗. As before there exists a pair of
trategies (π∗1, π∗2) ∈ Π 1

SM × Π 2
SM satisfying

eρ
∗

ψ∗(i) = sup
ν∈P(V (i))

[
ec(i,π∗1(i),ν)

∑
j∈S

ψ∗( j)P( j |i, π∗1(i), ν)
]

= inf
µ∈P(U (i))

[
ec(i,µ,π∗2(i))

∑
j∈S

ψ∗( j)P( j |i, µ, π∗2(i))
]
. (4.15)

ow for any finite set B̂1 ⊃ B̂, applying Dynkin’s formula (as in [53, Lemma 3.1]) from
4.15), we get

ψ∗(i) ≤ Eπ1,π∗2

i

[
e
∑τ̌ (B̂1)∧N−1

t=0 (c(X t ,π
1
t ,π

∗2(X t ))−ρ∗)ψ∗(X
τ̌ (B̂1)∧N )

]
∀i ∈ B̂c

1.

ince ψ∗
≤ W , using estimates of Lemma 3.1, by the dominated convergence theorem taking

N → ∞, it follows that

ψ∗(i) ≤ Eπ1,π∗2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
1
t ,π

∗2(X t ))−ρ∗)ψ∗(X
τ̌ (B̂ ))

]
∀i ∈ B̂c

1. (4.16)

1
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ψ∗(i) ≤ inf
π1∈Π 1

ad

Eπ1,π∗2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
1
t ,π

∗2(X t ))−ρ∗)ψ∗(X
τ̌ (B̂1))

]
≤ sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Eπ1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
1
t ,π

2
t )−ρ∗)ψ∗(X

τ̌ (B̂1))
]
, ∀i ∈ B̂c

1. (4.17)

ow using (4.15) and Dynkin’s formula

ψ∗(i) ≥ Eπ∗1,π2

i

[
e
∑τ̌ (B̂1)∧N−1

t=0 (c(X t ,π
∗1(X t ),π2

t )−ρ∗)ψ∗(X
τ̌ (B̂1)∧N )

]
∀i ∈ B̂c

1.

n view of Lemma 3.1 by Fatou’s lemma taking N → ∞, we get

ψ∗(i) ≥ Eπ∗1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
∗1(X t ),π2

t )−ρ∗)ψ∗(X
τ̌ (B̂1))

]
, ∀i ∈ B̂c

1. (4.18)

ence,

ψ∗(i) ≥ sup
π2∈Π 2

ad

Eπ∗1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
∗1(X t ),π2

t )−ρ∗)ψ∗(X
τ̌ (B̂1))

]
≥ inf

π1∈Π 1
ad

sup
π1∈Π 1

ad

Eπ1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c(X t ,π
1
t ,π

2
t )−ρ∗)ψ∗(X

τ̌ (B̂1))
]
, ∀i ∈ B̂c

1. (4.19)

rom (4.17) and (4.19), we get Eq. (4.8). □

Next we prove the existence of the value of the game. To this end we first perturb the cost
unction as follows:

• When Assumption 2.1(a) holds: Let α3 > 0, be a small number satisfying ∥c∥∞+α3 < γ̃ .
Now we define c̃n(i, u, v) = c(i, u, v)ID̃n

(i) + (∥c∥∞ + α3)ID̃c
n

∀(u, v) ∈ U (i) × V (i),
i ∈ S. Note ∥c̃n∥∞ < γ̃ , where ∥c̃n∥∞ = sup(i,u,v)∈K c̃n(i, u, v).

• When Assumption 2.1(b) holds: Define

c̃n(i, u, v) = c(i, u, v)+
1
n

[ℓ̃(i)− sup
(u,v)∈U (i)×V (i)

c(i, u, v)]+ ∀(u, v) ∈ U (i)×V (i), i ∈ S.

Since the function [ℓ̃(·) − sup(u,v)∈U (·)×V (·) c(·, u, v)]+ is norm-like function, we have
ℓ̃− sup(u,v)∈U (·)×V (·) c̃n(·, u, v) is norm-like for large enough n.

heorem 4.2. Suppose that Assumptions 2.1 and 2.2 hold. Let (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM be
ny mini-max selector of (4.6), i.e. (π∗1, π∗2) ∈ Π 1

SM × Π 2
SM satisfies

eρ
∗

ψ∗(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ∗( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

[
ec(i,µ,π∗2(i))

∑
j∈S

ψ∗( j)P( j |i, µ, π∗2(i))
]

= sup
ν∈P(V (i))

[
ec(i,π∗1(i),ν)

∑
ψ∗( j)P( j |i, π∗1(i), ν)

]
, i ∈ S. (4.20)
j∈S
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Then we have

ρ∗
= inf

i∈S
sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c) = inf
i∈S

inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(i, c)

= inf
i∈S

inf
π1∈Π 1

ad

Jπ
1,π∗2

(i, c) = inf
i∈S

sup
π2∈Π 2

ad

Jπ
∗1,π2

(i, c) = Jπ
∗1,π∗2

(i, c). (4.21)

roof. Arguing as Lemma 4.1, for the stationary strategy π∗1
∈ Π 1

SM , there exists an eigenpair
ρ̂n, ψ̂n) ∈ R+ × L∞

W with ψ̂n > 0 satisfying

eρ̂n ψ̂n(i) = sup
ν∈P(B(i))

[
ec̃n (i,π∗1(i),ν)

∑
j∈S

ψ̂n( j)P( j |i, π∗1(i), ν)
]
, i ∈ S (4.22)

uch that

0 ≤ ρ̂n ≤ sup
π2∈Π 2

ad

Jπ
∗1,π2

(i, c̃n). (4.23)

lso,

ψ̂n(i) = sup
π2∈Π 2

ad

Eπ∗1,π2

i

[
e
∑τ̌ (B̂1)−1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )ψ̂n(X
τ̌ (B̂1))

]
, i ∈ B̂c

1, (4.24)

or some finite set B̂1 containing B̂.
Now as in Lemma 4.1, we have a finite set B̃1, depending on n, containing K̃ such that:

• Under Assumption 2.1(a): From (4.23), we have ρ̂n ≤ ∥c̃n∥∞. So, from the above
definition of c̃n , for i ∈ D̂c

n , we have c̃n(i, u, v) − ρ̂n ≥ 0 for all (u, v) ∈ U (i) × V (i).
Consequently, we may take B̃1 = D̂n such that c̃n(i, u, v) − ρ̂n ≥ 0 in B̃c

1 for all
(u, v) ∈ U (i) × V (i).

• Under Assumption 2.1(b): since c̃n is norm-like function, we can choose suitable finite
set B̃1 such that (c̃n(i, u, v) − ρ̂n) ≥ 0 in B̃c

1 for all (u, v) ∈ U (i) × V (i).

rom (4.22), we obtain

ψ̂n(i) ≥

[
e(c̃n (i,π∗1(i),ν)−ρ̂n )

∑
j∈S

ψ̂n( j)P( j |i, π∗1(i), ν)
]
. (4.25)

y Dynkin’s formula from (4.25), we deduce that

ψ̂n(i) ≥ Eπ∗1,π2

i

[
e
∑τ̌ (B̃1)∧N−1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )ψ̂n(X τ̌ (B̃1)∧N )
]
.

ince c̃n(i, u, v)− ρ̂n ≥ 0, in B̃c
1, for all (u, v) ∈ U (i)× V (i), by Fatou lemma taking N → ∞,

e obtain

ψ̂n(i) ≥ Eπ∗1,π2

i

[
e
∑τ̌ (B̃1)−1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )ψ̂n(X τ̌ (B̃1))
]

≥ min
B̃1

ψ̂n ∀ i ∈ B̃c
1.

o, ψ̂n has a lower bound. Again by Dynkin’s formula from (4.22), we get

ψ̂n(i) ≥ Eπ∗1,π2

i

[
e
∑T ∧τ (D̃m )−1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )ψ̂n(XT ∧τ (D̃m ))
]
.
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By Fatou’s lemma, taking m → ∞, we obtain

ψ̂n(i) ≥ Eπ∗1,π2

i

[
e
∑T −1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )ψ̂n(XT )
]

≥ (min
B̃1

ψ̂n)Eπ∗1,π2

i

[
e
∑T −1

t=0 (c̃n (X t ,π
∗1(X t ),π2

t )−ρ̂n )
]
.

o, taking logarithm both sides, dividing by T and letting T → ∞, we deduce that

ρ̂n ≥ Jπ
∗1,π2

(i, c̃n).

ince π2
∈ Π 2

ad is arbitrary,

ρ̂n ≥ sup
π2∈Π 2

ad

Jπ
∗1,π2

(i, c̃n) ≥ sup
π2∈Π 2

ad

Jπ
∗1,π2

(i, c).

sing this and (4.23), we get supπ2∈Π 2
ad
Jπ

∗1,π2
(i, c) ≤ supπ2∈Π 2

ad
Jπ

∗1,π2
(i, c̃n) = ρ̂n for all n.

ow, by suitable scaling as in the proof of Lemma 4.1, it is easy to see that ψ̂n ≤ W and it
ouches W . Also, we note from the definition of c̃n that ρ̂n is a monotone decreasing sequence
ounded below. Thus, using diagonalization arguments, there exists subsequence (denoting the
ame sequence) and a pair (ρ̂, ψ̂), ψ̂ > 0 such that ρ̂n → ρ̂ and ψ̂n → ψ̂ as n → ∞. Now
rguing as in the proof of Lemma 4.1, taking n → ∞ in (4.22), we get

eρ̂ψ̂(i) = sup
ν∈P(V (i))

[
ec(i,π∗1(i),ν)

∑
j∈S

ψ̂( j)P( j |i, π∗1(i), ν)
]
. (4.26)

lso, we have limn→∞ ρ̂n = ρ̂ ≥ supπ2∈Π 2 Jπ
∗1,π2

(i, c) ≥ infπ1∈Π 1 supπ2∈Π 2 Jπ
1,π2

(i, c) ≥ ρ∗.
We want to show that ρ̂ = ρ∗. By continuity-compactness assumptions, there exists π̂∗2

uch that (4.26) can be rewritten as

eρ̂ψ̂(i) =

[
ec(i,π∗1(i),π̂∗2(i))

∑
j∈S

ψ̂( j)P( j |i, π∗1(i), π̂∗2(i))
]
. (4.27)

y Dynkin’s formula, for some B̂2 containing B̂, we have

ψ̂(i) = Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B̂2)∧N−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ̂)ψ̂(X (τ̌ (B̂2)∧N ))

]
, ∀i ∈ B̂c

2. (4.28)

sing the estimates of Lemma 3.1 and the dominated convergence theorem, taking N → ∞

n (4.28), we obtain

ψ̂(i) = Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B̂2)−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ̂)ψ̂(X

τ̌ (B̂2))
]
, ∀i ∈ B̂c

2. (4.29)

ince ρ̂ ≥ ρ∗, from (4.8) we have

ψ∗(i) ≥ Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B̂2)−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ̂)ψ∗(X

τ̌ (B̂2))
]

∀i ∈ B̂c
2. (4.30)

ence, from (4.29) and (4.30), it follows that

ψ∗(i) − k̂1ψ̂(i) ≥ Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B2)−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ̂)(ψ∗

− k̂1ψ̂)(X
τ̌ (B̂2))

]
∀i ∈ B̂c

2.

(4.31)
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Let k̂1 = min
B̂2

ψ∗

ψ̂
, thus we have (ψ∗

− k̂1ψ̂) ≥ 0 in B̂2 and for some î0 ∈ B̂2,

ψ∗
− k̂1ψ̂)(î0) = 0. Therefore, from (4.31), we obtain that (ψ∗

− k̂1ψ̂) ≥ 0 in S. Now since
ˆ ≥ ρ∗, from (4.20) and (4.27), we deduce that

eρ̂(ψ∗
− k̂1ψ̂)(î0) ≥

[
ec(î0,π∗1(i0),π̂∗2(i0))

∑
j∈S

(ψ∗
− k̂1ψ̂)( j)P( j |î0, π

∗1(î0), π̂∗2(î0))
]
.

his gives us

0 =

∑
j∈S

(ψ∗
− k̂1ψ̂)( j)P( j |î0, π

∗1(î0), π̂∗2(î0)). (4.32)

hus, in view of irreducibility property of the Markov chain under stationary Markov strategies,
t follows that ψ∗

= k̂1ψ̂ in S. Hence from (4.20) and (4.26), it is easy to see that ρ̂ = ρ∗ for
ll i ∈ S. Therefore, we obtain

ρ∗
= inf

i∈S
sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c) = inf
i∈S

inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(i, c)

= inf
i∈S

sup
π2∈Π 2

ad

Jπ
∗1,π2

(i, c)

≥ inf
i∈S

Jπ
∗1,π∗2

(i, c). (4.33)

ow arguing as in [13, Lemma 2.6], it follows that for π∗2
∈ Π 2

SM , there exists (ψ ′, ρ ′) ∈

L∞

W × R+, ψ ′ > 0 satisfying

eρ
′

ψ ′(i) = inf
µ∈P(U (i))

[
ec(i,µ,π∗2(i))

∑
j∈S

ψ ′( j)P( j |i, µ, π∗2(i))
]
, (4.34)

ith

ρ ′
= inf

i∈S
inf

π1∈Π 1
ad

Jπ
1,π∗2

(i, c). (4.35)

hus, we have

ρ ′
= inf

i∈S
inf

π1∈Π 1
ad

Jπ
1,π∗2

(i, c) ≤ inf
i∈S

Jπ
∗1,π∗2

(i, c) ≤ ρ∗. (4.36)

For any minimizing selector π̃∗1 of (4.34), we obtain

eρ
′

ψ ′(i) =

[
ec(i,π̃∗1(i),π∗2(i))

∑
j∈S

ψ ′( j)P( j |i, π̃∗1(i), π∗2(i))
]
. (4.37)

lso, arguing as in Lemma 4.1, for some finite set B̂3 ⊃ B̂ , we deduce that

ψ ′(i) = E π̃∗1,π∗2

i

[
e
∑τ̌ (B̂3)−1

t=0 (c(X t ,π̃
∗1(X t )),π∗2(X t ))−ρ′)dtψ ′(X

τ̌ (B̂3))
]
, i ∈ B̂c

3. (4.38)

rom (4.20), we have

eρ
∗

ψ∗(i) ≤

[
ec(i,π̃∗1(i),π∗2(i))

∑
j∈S

ψ∗( j)P( j |i, π̃∗1(i), π∗2(i))
]
, i ∈ S . (4.39)

lso, from (4.8), it follows that

ψ∗(i) ≤ E π̃∗1,π∗2

i

[
e
∑τ̌ (B3)−1

t=0 (c(X t ,π̃
∗1(X t ),π∗2(X t ))−ρ∗)dtψ∗(X τ̌ (B3))

]
∀i ∈ B̂c

3 . (4.40)
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Therefore, by analogous arguments as above, using irreducibility property of the Markov chain,
we get ψ ′

= k̂2ψ
∗, for some positive constant k̂2. Thus, from (4.20) and (4.34), it follows

hat

ρ∗
= ρ ′. (4.41)

ence, by (4.33), (4.36) and (4.41), we obtain (4.21). This completes the proof of the
heorem. □

Now we prove the uniqueness of the eigenpair of the optimality equation (4.6) in the space
+ × L∞

W .

Lemma 4.2. Suppose that Assumptions 2.1 and 2.2 hold. Then the eigenpair (ρ∗, ψ∗) ∈

R+ × L∞

W is a unique solution of (4.6) (up to a scalar multiplication).

Proof. Let (ρ̃, ψ̃) ∈ R+ × L∞

W , ψ̃ > 0 be another solution of (4.6). Then using Fan’s minimax
theorem and (4.6), we get

eρ̃ψ̃(i) = sup
ν∈P(V (i))

inf
µ∈P(U (i))

[
ec(i,µ,ν)

∑
j∈S

ψ̃( j)P( j |i, µ, ν)
]

= inf
µ∈P(U (i))

sup
ν∈P(V (i))

[
ec(i,µ,ν)

∑
j∈S

ψ̃( j)P( j |i, µ, ν)
]
, i ∈ S. (4.42)

here exists an outer minimizing selector π̃∗1
∈ Π 1

SM such that (4.42) can be written

eρ̃ψ̃(i) = sup
ν∈P(V (i))

[
ec(i,π̃∗1(i),ν)

∑
j∈S

ψ̃( j)P( j |i, π̃∗1(i), ν)
]
, i ∈ S. (4.43)

e claim that ρ∗
= ρ̃. If possible let us assume that ρ̃ < ρ∗. Now from (4.8), for some finite

et B̂4 ⊃ B̂, we get

ψ(i) ≤ E π̃∗1,π∗2

i

[
e
∑τ̌ (B̂4)−1

t=0 (c(X t ,π̃
∗1(X t ),π∗2(X t ))−ρ∗)ψ(X

τ̌ (B̂4))
]

∀i ∈ B̂c
4, (4.44)

here π∗2 is an outer maximizing selector of (4.6) as in (4.20). Since ρ∗ > ρ̃, in view of
4.18), by Dynkin’s formula and Fatou’s lemma from (4.43), we deduce that

ψ̃(i) ≥ E π̃∗1,π∗2

i

[
e
∑τ̌ (B̂4)−1

t=0 (c(X t ,π̃
∗1(X t ),π∗2(X t ))−ρ∗)ψ̃(X

τ̌ (B̂4))
]

∀i ∈ B̂c
4. (4.45)

herefore, by analogous arguments as above (see (4.29)–(4.32) or (4.37)–(4.41)), using
rreducibility property of the Markov chain and (4.6), (4.43), (4.44) and (4.45) and by taking
ˆ3 = min

B̂4

ψ̃

ψ∗ , we get ψ̃ = k̂3ψ
∗. Thus, from (4.6) and (4.42), it follows that ρ∗

= ρ̃. Hence
e arrive at a contradiction and it contradicts to the fact that ρ̃ < ρ∗. Thus, we obtain ρ∗

≤ ρ̃ .
Next, if possible let ρ∗ < ρ̃. Then by analogous arguments, (by taking outer maximizer of

4.42) and outer minimizer of (4.6)), we will arrive at a contradiction to the fact that ρ∗ < ρ̃.
ence, we deduce that

ρ∗
= ρ̃ and ψ∗

= k̂4ψ̃, (4.46)

or some positive constant k̂4.

In particular, this implies that the eigenpair of (4.6) is unique up to a scalar multiplication. □
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Remark 4.1. In deriving (4.34), we used [13, Lemma 2.6]. It should be noted that the results
of the paper [13] can be derived by using the assumptions of this paper (see [13, Remark 2.3]) .

Next we prove the converse of the above theorem. That is, any saddle point equilibrium of
ur game problem will be a mini-max selector of the associated optimality equation .

heorem 4.3. Suppose Assumptions 2.1 and 2.2 hold. Suppose there exists a saddle point
quilibrium (π̂∗1, π̂∗2) ∈ Π 1

SM × Π 2
SM , i.e., for all i ∈ S ,

Jπ̂
∗1,π̂∗2

(i, c) ≤ Jπ
1,π̂∗2

(i, c), for all π1
∈ Π 1

ad ,

Jπ̂
∗1,π̂∗2

(i, c) ≥ Jπ̂
∗1,π2

(i, c), for all π2
∈ Π 2

ad . (4.47)

hen (π̂∗1, π̂∗2) is a mini-max selector of (4.6).

roof. By Theorem 4.2 and (4.47), we have

ρ∗
= inf

π1∈Π 1
ad

sup
π2∈Π 2

ad

Jπ
1,π2

(i, c) ≤ sup
π2∈Π 2

ad

Jπ̂
∗1,π2

(i, c) ≤ Jπ̂
∗1,π̂∗2

(i, c)

≤ inf
π1∈Π 1

ad

Jπ
1,π̂∗2

(i, c) ≤ sup
π2∈Π 2

ad

inf
π1∈Π 1

ad

Jπ
1,π2

(i, c) = ρ∗ .

his implies that ρ∗
= Jπ̂

∗1,π̂∗2
(i, c) = supπ2∈Π 2

ad
Jπ̂

∗1,π2
(i, c) = infπ1∈Π 1

ad
Jπ

1,π̂∗2
(i, c) . Now

rguing as in Lemma 4.1 and Theorem 4.2, it follows that for π̂∗2
∈ Π 2

SM there exists
ρπ̂

∗2
, ψ∗

π̂∗2 ) ∈ R+ × L∞

W with ψ∗

π̂∗2 > 0 such that

eρ
π̂∗2
ψ∗

π̂∗2 (i) = inf
µ∈P(U (i))

[
ec(i,µ,π̂∗2(i))

∑
j∈S

ψ∗

π̂∗2 ( j)P( j |i, µ, π̂∗2(i))
]
, (4.48)

nd ρπ̂
∗2

= infπ1∈Π 1
ad
Jπ

1,π̂∗2
(i, c) = ρ∗. Thus for π∗1 as in (4.20), we have

eρ
π̂∗2
ψ∗

π̂∗2 (i) ≤

[
ec(i,π∗1(i),π̂∗2(i))

∑
j∈S

ψ∗

π̂∗2 ( j)P( j |i, π∗1(i), π̂∗2(i))
]
. (4.49)

rguing as in Lemma 4.1, for some finite set B̂5 ⊃ B̂ it follows that

ψ∗

π̂∗2 (i) ≤ Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B5)−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ∗)ψ∗

π̂∗2 (X
τ̌ (B̂4))

]
∀i ∈ B̂c

5. (4.50)

lso, from (4.20), we deduce that

eρ
∗

ψ∗(i) ≥

[
ec(i,π∗1(i),π̂∗2(i))

∑
j∈S

ψ∗( j)P( j |i, π∗1(i), π̂∗2(i))
]
. (4.51)

y Dynkin’s formula and Fatou’s lemma (as in Lemma 4.1), we obtain

ψ∗(i) ≥ Eπ∗1,π̂∗2

i

[
e
∑τ̌ (B5)−1

t=0 (c(X t ,π
∗1(X t ),π̂∗2(X t ))−ρ∗)ψ∗(X

τ̌ (B̂5))
]

∀i ∈ B̂c
5. (4.52)

ow, in view of (4.50) and (4.52) and applying the same technique as before (as in the proof
f Theorem 4.2), it follows that ψ∗

= k̂5ψ
∗

π̂∗2 , for some constant k̂5 > 0. Hence from (4.20)
nd (4.48), it is easy to see that π̂∗2 is an outer maximizing selector of (4.6). Similarly, one
an show that π̂∗1 is an outer minimizing selector of (4.6). This completes the proof. □
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Now we are ready to prove Theorem 4.1.

roof of Theorem 4.1. Existence of an eigenpair (ρ∗, ψ∗) of Eq. (4.1) follows from
Lemma 4.1. Uniqueness of the eigenpair of Eq. (4.1) is proved in Lemma 4.2. Also, from
Theorem 4.2, we have Theorem 4.1(i) and Theorem 4.1(ii). Theorem 4.1(iii) follows from
Theorem 4.3. This completes the proof. □

5. Example

We present here an illustrative example in which all our assumptions hold, and the cost
function is nonnegative and unbounded.

Example 5.1. Consider a controlled birth-and-death system in which the state variable stands
for the total population size at time t ≥ 0. Thus, the state space can be represented by S :=

{0, 1, 2, . . .}. Suppose that there are two players, player 1 and player 2, and they can control
birth and death, respectively. Depending on the number of population in the system, player 1
can modify the number of births by choosing some action u, from the set U (i) = [δ, L1]. But
this action results in a cost given by c̃1(i, u) ≥ 0 (or a reward c̃1(i, u) ≤ 0), if i is the state of
the system. On the other hand, player 2 can modify the number of deaths by choosing some
action v from the set V (i) = [δ, L1]. The action of player 2 incurs a cost given by c̃2(i, v) ≥ 0
or a reward c̃2(i, v) ≤ 0). Also, in addition, assume that player 1 ‘owns’ the system and he/she
ets a cost r (i) := p̂ · i for each unit of time during which the system remains in the state
∈ S, where p̂ > 0 is a fixed cost per population.

We next formulate this model as a discrete-time Markov game. The corresponding transition
tochastic kernel P( j |i, u, v) and reward c(i, u, v) for player 1 are given as follows: for
0, u, v) ∈ K (K as in the game model (2.1)).∑

j∈S

P( j |0, u, v) = 1, and P( j |0, u, v) = e−
j2
3 −3

∀ j ≥ 1. (5.1)

imilarly, for (1, u, v) ∈ K,

P( j |1, u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
3e−2v

2(L1+L2) , if j = 0
e−2v

2(L1+L2) , if j = 1
e−2v

2(L1+L2) if j = 2
e−2v

2(L1+L2) , if j = 3

0, otherwise.

Also, for (i, u, v) ∈ K with i ≥ 2,

P( j |i, u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue−i

2(L1+L2) , if j = i − 1
ue−i

+ve−2i

2(L1+L2) if j = i
ve−2i

2(L1+L2) , if j = i + 1

1 −
2(ue−i

+ve−2i )
2(L1+L2) , if j = 0
0, otherwise.
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c(i, u, v) := p̂ · i + c̃1(i, u) − c̃2(i, v) for (i, u, v) ∈ K. (5.2)

We make the following assumptions to ensure the existence of a pair of optimal strategies.

(I) The functions c̃1(i, u), and c̃2(i, v) are continuous with their respective variables for each
fixed i ∈ S.

(II) Suppose that p̂ · i + c̃1(i, u) − c̃2(i, v) ≥ 0 for (i, u, v) ∈ K and p̂ < 1
6 . Also, assume

that f , is a norm-like function, where f (i) := min(u,v)∈U (i)×V (i)[c̃2(i, v)− c̃1(i, u)] for all
i ∈ S.

(III) We also consider an increasing sequence of finite subsets D̃n ⊂ S such that ∪
∞

n=1D̃n = S
and 0 ∈ D̃n for all n ∈ N. We assume that for any pair i, j ∈ D̃n , the probability of
hitting j from i before exiting D̃n is bounded from below by some constant δi j,n > 0
for any stationary Markov strategy.

roposition 5.1. Under conditions (I)–(III), the above controlled system satisfies the
ssumptions 2.1 and 2.2. Hence by Theorem 4.1, there exists a saddle-point equilibrium for

his controlled model.

roof. Consider the Lyapunov function W(i) := e
i2
6 +1 for i ∈ S. Then W(i) ≥ 1 for all i ∈ S.

ow for each i ≥ 2, and (u, v) ∈ U (i) × V (i), we have∑
j∈S

P( j |i, u, v)W( j)

= P(i − 1|i, u, v)W(i − 1) + P(i |i, u, v)W(i)

+ P(i + 1|i, u, v)W(i + 1) + P(0|i, u, v)W(0)

=
1

2(L1 + L2)

[
ue−i e

(i−1)2
6 +1

+ e
i2
6 +1

(
ue−i

+ ve−2i
)

+ ve−2i e
(i+1)2

6 +1
]

+ e
(

1 −
2(ue−i

+ ve−2i )
2(L1 + L2)

)
= e

i2
6 +1

[
ue−i

2(L1 + L2)
e−

i
3 +

1
6 +

(
ue−i

+ ve−2i

2(L1 + L2)

)
+

ve−2i

2(L1 + L2)
e

i
3 +

1
6 + e−

i2
6

(
1 −

2(ue−i
+ ve−2i )

2(L1 + L2)

)]
≤ e

i2
6 +1e−

i
3 +

1
6

[
ue−i

2(L1 + L2)
+

u + v

2(L1 + L2)
+

v

2(L1 + L2)
+

(
1 −

2(ue−i
+ ve−2i )

2(L1 + L2)

)]
≤ 4e

i2
6 +1e−

i
3 +

1
6

≤ e( i2
6 +1)− 1

3 (i+3)+4

= W(i)e−
1
6 (i+3)− 1

6 (i+3)+4

≤ e−
1
6 (i+3)+4IM(i)W(i) ≤ e−

1
6 (i+3)W(i) + max

j∈M
W( j)e4 IM(i) ≤ e−ℓ̃(i)W(i) + C̃ IM(i),

(5.3)
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s
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s
C

W

A

where ℓ̃(i) =
1
6 (i + 3), M := {i : 4 −

1
6 (i + 3) > 0}, and C̃ = max{max j∈M W( j)e4, e−2∑

i≥1

e−
i2
6 − e−

i2
3 ) + e}. It is clear that 0, 1 ∈ M. Also, we have∑

j∈S

P( j |0, u, v)W( j) = eP(0|0, u, v) +

∑
j≥1

e−2e−
j2
6 ≤ C̃ IM(i). (5.4)

y similar arguments as in (5.3), we have∑
j∈S

P( j |1, u, v)W( j)

= P(0|1, u, v)W(0) + P(1|1, u, v)W(1) + P(2|1, u, v)W(2) + P(3|1, u, v)W(3)

= e
(

1 −
3e−2v

2(L1 + L2)

)
+ e

1
6 +1
(

e−2v

2(L1 + L2)

)
+ e

4
6 +1
(

e−2v

2(L1 + L2)

)
+ e

9
6 +1
(

e−2v

2(L1 + L2)

)
≤ e−

1
6 (1+3)+4IM(1)W(1) ≤ e−

2
3 W(1) + max

j∈M
W( j)e4 IM(1) ≤ e−ℓ̃(1)W(1) + C̃ IM(1).

(5.5)

ow

ℓ̃(i) − max
(u,v)∈U (i)×V (i)

c(i, u, v) =
1
2

+ (
1
6

− p̂)i + min
(u,v)∈U (·)×V (·)

[c̃2(i, v) − c̃1(i, u)]. (5.6)

e see from condition (II) and (5.6) that ℓ̃(i)−sup(u,v)∈U (i)×V (i) c(i, u, v) is norm-like function.
o, by condition (II), Eqs. (5.3), (5.4), (5.5), and (5.6), Assumption 2.1 is satisfied. Now,
y the transition probability defined above and condition (III), Assumption 2.2(ii) is verified.
ext, Assumption 2.2(iii) is verified by (5.3), (5.4) and (5.5). Also, by the above construction
f probability kernel, (5.2), and condition (I), P(·|i, u, v) and c(i, u, v) are continuous in
u, v) ∈ U (i) × V (i) for all i, j ∈ S. Hence by Theorem 4.1, it follows that there exists a
addle-point equilibrium for this controlled model. □

. Eigenvalue problem for compact state space case

In this section we extend our results to compact state space S without assuming any
yapunov type stability assumptions since compact state space eliminates the need for any
tability consideration. To this end, let us first introduce some notations. Let C+(S) := { f ∈

(S) : f (x) ≥ 0 ∀x ∈ S} denotes the closed cone of C(S), where C(S) denotes the Banach
pace of continuous maps f : C(S) → R with the supremum norm, denoted by ∥ · ∥. Thus
+(S) defines a partial order on C(S), denoted ⪰, given by this: for any f, g ∈ C(S), we define

f ⪰ g if f − g ∈ C+(S), i.e., the partial ordering in C(S) with respect to the cone C+(S).
e write f ≻ g (equivalently, g ≺ f ) if f ⪰ g, f ̸= g, and we write f ≫ g (equivalently,

g ≪ f ) if f − g is a strictly positive function in C(S) i.e., if f − g ∈ interior(C+(S)).
For our analysis we need to impose the following set of assumptions on the system.

ssumption 6.1.

(i) The admissible action spaces U (x)(⊂ U ) and V (x)(⊂ V ) are compact for each x ∈ S.
(ii) The functions P(D|x, u, v) and c : K → R are continuous in (x, u, v) ∈ S × U (x) ×
V (x) , D ⊆ S.
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(iii) The maps (x, u, v) →
∫

S f (y)P(dy|x, u, v), f ∈ C(S) with ∥ f ∥ ≤ 1 are equicontinuous.
(iv) We assume that the transition kernel P(dy|x, u, v) of the Markov chain {X t }t≥0 has the

full support for all (x, u, v) ∈ K i.e., support(P(dy|x, u, v)) = S ∀(x, u, v) ∈ K.

Now, using the nonlinear version of the Kreĭn–Rutman theorem, see [1, Theorem 2.2], [2,
47,48] we establish the existence of an eigenpair to the associated Shapley equation .

Theorem 6.1. Suppose Assumption 6.1 holds. Then there exists a unique eigenpair (ρ∗, ψ∗) ∈

R+ × C+(S), ψ∗
∈ interior (C+(S)) (unique up to a multiplicative constant) for the following

nonlinear eigenequation

eρ
∗

ψ∗(x) = inf
µ∈P(U (x))

sup
ν∈P(V (x))

[
ec(x,µ,ν)

∫
S
ψ∗(y)P(dy|x, µ, ν)

]
= sup

ν∈P(V (x))
inf

µ∈P(U (x))

[
ec(x,µ,ν)

∫
S
ψ∗(y)P(dy|x, µ, ν)

]
. (6.1)

Furthermore, for any mini-max selector (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM of (6.1) we have the
following:

ρ∗
= inf

x∈S
sup

π2∈Π 2
ad

inf
π1∈Π 1

ad

Jπ
1,π2

(x, c) = inf
x∈S

inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(x, c)

= inf
x∈S

inf
π1∈Π 1

ad

Jπ
1,π∗2

(x, c) = inf
x∈S

sup
π2∈Π 2

ad

Jπ
∗1,π2

(x, c) = Jπ
∗1,π∗2

(x, c), (6.2)

and consequently (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM is a saddle-point equilibrium.

Proof. Let us consider a mapping T̂ : C(S) → C(S) defined by

T̂ g(x) = sup
ν∈P(V (x))

inf
µ∈P(U (x))

[
ec(x,µ,ν)

∫
S

g(y)P(dy|x, µ, ν)
]
, (6.3)

where g ∈ C(S) and x ∈ S.
Note that in view of Remark 2.1, the sets P(U (x)) and P(V (x)) are compact as well as

onvex. Also, the extreme points of P(U (x)) and P(V (x)) corresponds to the Dirac measures
t points in U (x) and V (x) respectively. Hence,

T̂ g(x) = sup
ν∈P(V (x))

inf
µ∈P(U (x))

[
ec(x,µ,ν)

∫
S

g(y)P(dy|x, µ, ν)
]

= sup
v∈V (x)

inf
u∈U (x)

[
ec(x,u,v)

∫
S

g(y)P(dy|x, u, v)
]
, (6.4)

or details, see [1, p. 965].
Next, we show that the map T̂ is well defined on C(S). So, it is sufficient to take the family

g ∈ C(S) : ∥g∥ ≤ R}, for some R > 0. Let x, z ∈ S be arbitrary but fixed points. Then in
iew of (6.4), we have

|T̂ g(x) − T̂ g(z)|

≤ e∥c∥ sup
v∈V

sup
u∈U

sup
g:∥g∥≤R

⏐⏐⏐⏐ ∫
S

g(y)P(dy|x, u, v) −

∫
S

g(y)P(dy|z, u, v)
⏐⏐⏐⏐

+ R sup sup
⏐⏐⏐⏐ec(x,u,v)

− ec(z,u,v)
⏐⏐⏐⏐. (6.5)
v∈V u∈U
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In view of Assumption 6.1, it follows that the right hand side tends to zero when x → z. Next,
rom the definition of the map T̂ , for any g1, g2 ∈ C(S), it follows that ∥T̂ (g1) − T̂ (g2)∥ ≤

e∥c∥
∥g1 − g2∥. Hence the map T̂ is Lipschitz continuous map from C(S) → C(S).

Now, using Assumption 6.1, we prove the following properties of T̂ .
Let g1 ≻ g2 i.e., g1 ⪰ g2, g1 ̸= g2. Let π∗1

∈ Π 1
SM be such that

sup
ν∈P(V (x))

inf
µ∈P(U (x))

[
ec(x,µ,ν)

∫
S

g1(y)P(dy|x, µ, ν)
]

= sup
ν∈P(V (x))

[
ec(x,π∗1(x),ν)

∫
S

g1(y)P(dy|x, π∗1(x), ν)
]

∀x ∈ S. (6.6)

lso, let π∗2
∈ Π 2

SM be such that

sup
ν∈P(V (x))

[
ec(x,π∗1(x),ν)

∫
S

g2(y)P(dy|x, π∗1(x), ν)
]

=

[
ec(x,π∗1(x),π∗2(x))

∫
S

g2(y)P(dy|x, π∗1(x), π∗2(x))
]

∀x ∈ S. (6.7)

hen

T̂ (g1)(x) − T̂ (g2)(x)

≥

[
ec(x,π∗1(x),π∗2(x))

∫
S
(g1(y) − g2(y))P(dy|x, π∗1(x), π∗2(x))

]
≥ eα1

∫
S
(g1(y) − g2(y))P(dy|x, π∗1(x), π∗2(x)) > 0,

ince g1 ≻ g2 and support(P(dy|x, π∗1(x), π∗2(x))) = S, ∀x ∈ S, where α1 > 0 is the greatest
ower bound of c on S. So, T̂ is strictly increasing.

By the definition of the map T̂ , it is easy to see that T̂ (λg) = λT̂ (g) for all λ > 0.
or M > e−α1 and g ∈ C+(S) defined by g(·) ≡ 1, MT̂ g > g. Using Assumption 6.1, in
iew of (6.5), by analogous arguments as in [1, p. 967–968], it is easy to say that the map

T̂ : C(S) → C(S) is a compact operator. Hence by Theorem 3.1, there exists a nontrivial
∗

∈ C+(S) and a constant eρ
∗

> 0 such that T̂ψ∗
= eρ

∗

ψ∗ i.e,

eρ
∗

ψ∗(x) = sup
ν∈P(V (x))

inf
µ∈P(U (x))

[
ec(x,µ,ν)

∫
S
ψ∗(y)P(dy|x, µ, ν)

]
∀x ∈ S.

hus, by Fan’s minimax theorem [22], we have

eρ
∗

ψ∗(x) = inf
µ∈P(U (x))

sup
ν∈P(V (x))

[
ec(x,µ,ν)

∫
S
ψ∗(y)P(dy|x, µ, ν)

]
∀x ∈ S.

his implies that the pair (ρ∗, ψ∗) satisfies (6.1) .
Now, we claim that ψ∗ > 0. If not, then on contrary there exists a point x̃ ∈ S for which

∗(x̃) = 0. Again by continuity-compactness assumptions, there exists a mini-max selector
π∗1, π∗2) such that (6.1) can be rewritten as

eρ
∗

ψ∗(x) =

[
ec(x,π∗1(x),π∗2(x))

∫
ψ∗(y)P(dy|x, π∗1(x), π∗2(x))

]
∀x ∈ S.
S
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So, we get

0 = eρ
∗

ψ∗(x̃) =

[
ec(x̃,π∗1(x̃),π∗2(x̃))

∫
S
ψ∗(y)P(dy|x̃, π∗1(x̃), π∗2(x̃))

]
. (6.8)

ince ψ∗ is nontrivial, there exists x̂ ∈ S such that ψ∗(x̂) > 0.
Now since support(P(dy|x, u, v)) = S ∀(x, u, v) ∈ K, it follows that[∫

S
ψ∗(y)P(dy|x̃, π∗1(x̃), π∗2(x̃))

]
> 0.

ence it contradicts (6.8). This establishes our claim.
In view of Assumption 6.1(iv), uniqueness of the eigenpair of Eqs. (6.1) can be proved

asily by the analogous arguments as in [Lemma 4.2, Eqs. (4.42)–(4.46)] . To see this, suppose
hat (ρ̃, ψ̃) ∈ R+ ×C+(S), ψ̃ > 0 is an another solution of (6.1) and if possible let ρ̃ < ρ∗. Let

k̂6 = minS
ψ̃

ψ∗ , thus we have (ψ̃− k̂6ψ
∗) ≥ 0 in S and for some x̂0 ∈ S, ψ̃(x̂0)− k̂6ψ

∗(x̂0) = 0.
et π̃∗1 and π∗2 are outer minimizing and maximizing selectors of (6.1), corresponding to the
igenpair (ρ̃, ψ̃) and (ρ,ψ), respectively. Thus we obtain

eρ
∗

(ψ̃ − k̂6ψ
∗)(x) ≥

[
ec(x,π̃∗1(x),π∗2(x))

∫
S
(ψ̃ − k̂6ψ

∗)(y)P(dy|x, π̃∗1(x), π∗2(x))
]
. (6.9)

his implies that

0 =

∫
S
(ψ̃ − k̂6ψ

∗)(y)P(dy|x̂0, π̃
∗1(x̂0), π∗2(x̂0)).

hen we claim that ψ̃ ≡ k̂6ψ
∗. If not, then since support(P(dy|x, u, v)) = S ∀(x, u, v) ∈ K,

t follows that∫
S
(ψ̃ − k̂6ψ

∗)(y)P(dy|x̂0, π̃
∗1(x̂0), π∗2(x̂0)) > 0. (6.10)

o, we arrive at a contradiction and thus, we have ψ̃ ≡ k̂6ψ
∗. Hence we obtain ρ∗

= ρ̃,
hich is a contradiction to the fact that ρ̃ < ρ∗. This implies that ρ∗

≤ ρ̃. Again, by similar
rguments one can derive the analogous contradiction to the fact that ρ∗ < ρ̃ . Therefore, we
educe that ρ∗

= ρ̃ and ψ̃ ≡ k̂7ψ
∗, for some k̂7 > 0. So, the eigenpair of Eq. (6.1) is unique

up to a scalar multiplication).
Let (π∗1, π∗2) ∈ Π 1

SM × Π 2
SM be a pair of outer mini-max selector of (6.1), satisfying

eρ
∗

ψ∗(x) = sup
ν∈P(V (x))

[
ec(x,π∗1(x),ν)

∫
S
ψ∗(y)P(dy|x, π∗1(x), ν)

]
= inf

µ∈P(U (x))

[
ec(x,µ,π∗2(x))

∫
S
ψ∗(y)P(dy|x, µ, π∗2(x))

]
. (6.11)

herefore, by Dynkin’s formula and (6.11) (as in [53, Lemma 3.1]), we obtain

ψ∗(x) ≤ Eπ1,π∗2

x

[
e
∑T −1

s=0 (c(Xs ,π
1
s ,π

∗2(Xs ))−ρ∗)ψ∗(XT )
]

≤ (sup
S
ψ∗)Eπ1,π∗2

x

[
e
∑T −1

s=0 (c(Xs ,π
1
s ,π

∗2(Xs ))−ρ∗)
]
. (6.12)

aking logarithm on both sides, dividing by T and letting T → ∞, we deduce that

ρ∗
≤ inf

π1∈Π 1
Jπ

1,π∗2
(x, c) ≤ sup

2 2
inf

π1∈Π 1
Jπ

1,π2
(x, c). (6.13)
ad π ∈Πad ad
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Similarly, by Dynkin’s formula and using (6.11), we get

ρ∗
≥ sup

π2∈Π 2
ad

Jπ
∗1,π2

(x, c) ≥ inf
π1∈Π 1

ad

sup
π2∈Π 2

ad

Jπ
1,π2

(x, c). (6.14)

sing (6.13) and (6.14), we have (6.2) and this gives us ρ∗
= Jπ

∗1,π∗2
(x, c). In particular, this

mplies that

Jπ
∗1,π2

(x, c) ≤ Jπ
∗1,π∗2

(x, c) ≤ Jπ
1,π∗2

(x, c).

That is, (π∗1, π∗2) ∈ Π 1
SM × Π 2

SM is a saddle point equilibrium. □

Next theorem shows that the converse statement of the above theorem is also true.

Theorem 6.2. Suppose Assumption 6.1 holds. Suppose there exists a saddle-point equilibrium
(π̂∗1, π̂∗2) ∈ Π 1

SM × Π 2
SM . Then (π̂∗1, π̂∗2) is a mini-max selector of (6.1).

Proof. By analogous arguments as in Theorem 4.3, in view of Theorem 6.1 and definition of
saddle-point, we have ρ∗

= Jπ̂
∗1,π̂∗2

(x, c) = supπ2∈Π 2
ad
Jπ̂

∗1,π2
(x, c) = infπ1∈Π 1

ad
Jπ

1,π̂∗2
(x, c) .

Now arguing as in Theorem 6.1, it is easy to see that for π̂∗2
∈ Π 2

SM there exists (ρπ̂
∗2
, ψ∗

π̂∗2 ) ∈

R+ × C+(S) with ψ∗

π̂∗2 > 0 such that

eρ
π̂∗2
ψ∗

π̂∗2 (x) = inf
µ∈P(U (x))

[
ec(x,µ,π̂∗2(x))

∫
S
ψ∗

π̂∗2 (y)P(dy|x, µ, π̂∗2(x))
]
, (6.15)

nd ρπ̂
∗2

= infπ1∈Π 1
ad
Jπ

1,π̂∗2
(x, c) = ρ∗. Thus for π∗1 as in (6.11), we have

eρ
π̂∗2
ψ∗

π̂∗2 (x) ≤

[
ec(x,π∗1(x),π̂∗2(x))

∫
S
ψ∗

π̂∗2 (y)P(dy|x, π∗1(x), π̂∗2(x))
]
. (6.16)

lso, from (6.11), we deduce that

eρ
∗

ψ∗(x) ≥

[
ec(x,π∗1(x),π̂∗2(x))

∫
S
ψ∗(y)P(dy|x, π∗1(x), π̂∗2(x))

]
. (6.17)

et k̂8 = minS
ψ∗

ψ∗

π̂∗2
, thus we have (ψ∗

− k̂8ψ
∗

π̂∗2 ) ≥ 0 in S and for some x̂0 ∈ S,
∗(x̂0) − k̂8ψ

∗

π̂∗2 (x̂0) = 0. Now, from (6.16) and (6.17), we deduce that

0 =

∫
S
(ψ∗

− k̂8ψ
∗

π̂∗2 )(y)P(dy|x̂0, π
∗1(x̂0), π̂∗2(x̂0)).

hen we claim that ψ∗
≡ k̂8ψ

∗

π̂∗2 . If not, then since support(P(dy|x, u, v)) = S ∀(x, u, v) ∈ K,
t follows that∫

S
(ψ∗

− k̂8ψ
∗

π̂∗2 )(y)P(dy|x̂0, π
∗1(x̂0), π̂∗2(x̂0)) > 0. (6.18)

o, we arrive at a contradiction and so, ψ∗
≡ k̂8ψ

∗

π̂∗2 . Hence from (6.1) and (6.15), it is easy
o see that π̂∗2 is an outer maximizing selector of (6.1). Similarly, one can show that π̂∗1 is
n outer minimizing selector of (6.1). This completes the proof. □

. Conclusion

We have studied a risk-sensitive zero-sum stochastic game with ergodic cost criterion on

ountable/compact state space where the admissible action spaces (U (x) and V (x)) are compact
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metric spaces. Under certain assumptions we have established the existence of a saddle-point
equilibrium and have completely characterized the same. Instead of employing the traditional
vanishing discount asymptotics, we have pursued a direct approach involving the principal
eigenpair of the corresponding Shapley equation.

It will be interesting to study the problem for locally compact state space. The major issues
n extending our results from compact state space to locally compact state space is to prove the
xistence of a principal eigenpair to the associated Shapley equation. Following the arguments
f this article (also from [1]), it is easy to see that the principal eigenpair exists for Dirichlet
igenvalue problems (in bounded domains). But the main difficulty here is to take limit from
ounded domain to the unbounded domain . In countable state space, we use diagonalization
rgument to get the limit. This argument does not work in the general state space case. As
t is pointed out in [1], that it will be a very challenging work to extend our results from
ompact state space to a locally compact state space. One possible way to overcome these
ifficulties is by imposing stronger equicontinuity condition on the transition kernels (as in
ssumption 6.1(iii)), which will enable us to use Arzela–Ascoli theorem to pass to the limit .
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