Reddy, MP and Mukherjee, S and Ganguli, R (2020) Optimal design of damage tolerant composite using ply angle dispersion and enhanced bat algorithm. In: Neural Computing and Applications, 32 (8). pp. 3387-3406.
PDF
neu_com_app_32-8_3387-3406_2020.pdf - Published Version Restricted to Registered users only Download (1MB) | Request a copy |
Abstract
In this work, minimum weight optimization of laminated composite is performed using a newly developed enhanced bat algorithm (EBA).Bat algorithm (BA) is a recently developed swarm-based optimization technique which is inspired by the echolocation behavior of bats. The standard BA shows premature convergence and reduced convergence speeds under some conditions.So, the EBA is used to perform the design optimization of laminated composites. The laminate analysis based on classical laminate theory is utilized for the stress calculations. Tsai–Wu failure curve is considered as the constraint in this constrained optimization problem.Number of plies at each orientation angle are considered as the design variables. The design optimization has been carried out for both conventional and unconventional (dispersed plies) stacking sequences considering different loading configurations: uniaxial tension, biaxial tension with and without shear loadings. Ply angles dispersed in the range of 5 ∘–85 ∘, 25 ∘–65 ∘ and 0 ∘–90 ∘ at intervals of 5 ∘ are considered for the unconventional stacking sequence to increase damage tolerance. In addition, a new mathematical function is proposed to measure the dispersion of ply angles in the laminate called the dispersion function. Also, the performance of EBA is compared with standard BA in the optimum weight design of composite laminates
Item Type: | Journal Article |
---|---|
Publication: | Neural Computing and Applications |
Publisher: | Springer |
Additional Information: | The copyright for this article belongs to the springer. |
Keywords: | Constrained optimization; Curve fitting; Damage tolerance; Dispersions; Functions; Laminating, Bat algorithms; Classical laminate theory; Constrained optimi-zation problems; Failure curve; Minimum weight optimizations; Optimization techniques; Pre-mature convergences; Stacking sequence, Laminated composites |
Department/Centre: | Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering) |
Date Deposited: | 01 Feb 2023 09:04 |
Last Modified: | 01 Feb 2023 09:04 |
URI: | https://eprints.iisc.ac.in/id/eprint/79675 |
Actions (login required)
View Item |