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Nash Welfare Guarantees for Fair and Efficient Coverage

Siddharth Barman* Anand Krishna† Y. Narahari‡ Soumyarup Sadhukhan§

Abstract

We study coverage problems in which, for a set of agents and a given threshold T , the goal
is to select T subsets (of the agents) that, while satisfying combinatorial constraints, achieve fair
and efficient coverage among the agents. In this setting, the valuation of each agent is equated
to the number of selected subsets that contain it, plus one. The current work utilizes the Nash
social welfare function to quantify the extent of fairness and collective efficiency. We develop a
polynomial-time (18 + o(1))-approximation algorithm for maximizing Nash social welfare in
coverage instances. Our algorithm applies to all instances wherein, for the underlying com-
binatorial constraints, there exists an FPTAS for weight maximization. We complement the
algorithmic result by proving that Nash social welfare maximization is APX-hard in coverage
instances.

1 Introduction

Coverage problems, with a multitude of variants, are fundamental in theoretical computer science,
combinatorics, and operations research. These problems capture numerous resource-allocation
applications, such as electricity division [BLSH22; OMZR20], sensor allocation [MW08], program
testing [KGTB07], and plant location [CFN77].

Coverage problems entail identifying—for a given threshold T ∈ Z+ and a set of elements
[n]—a collection of subsets, F1, F2, . . . , FT ⊆ [n], that respect particular combinatorial constraints.
Here, the problem objective is specified by considering, for each element i ∈ [n], the number
of selected subsets, Ft-s, that contain i. For instance, in the classic maximum coverage problem
[Hoc96], the subsets, F1, . . . , FT , are constrained to be from a given set family and the objective
is to maximize the number of elements i ∈ [n] that are contained in at least one of the Ft-s, i.e.,
maximize | ∪t Ft|.

We study coverage problems where the ground set corresponds to a population of n agents and
the cardinal valuation of each agent i ∈ [n] depends on the number of selected subsets that contain
i, i.e., the valuation of i depends on the coverage that i receives across the Ft-s. Our overarching
goal is to select subsets that, while satisfying combinatorial constraints, achieve fair and efficient
coverage among the n agents.

Before detailing the model, we describe a stylized example that illustrates the applicability of
the coverage framework. Consider an electricity grid operator tasked with apportioning electric-
ity for T time periods among a set of n agents (consumers with varying electricity requirements).
In a time period t ∈ [T ], the total demand of the n agents can exceed the available supply and,
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hence, the grid operator must select a subset of agents, Ft ⊆ [n], whose electricity consumption
can be fulfilled–agents in the subset Ft receive electricity during the tth time period and the re-
maining agents do not. An important desideratum in such load shedding scenarios is to achieve
fairness along with economic efficiency; see the motivating work of Baghel et al. [BLSH22] for a
thorough treatment of load shedding and its connections with the fair division literature. Indeed,
the coverage framework provides an abstraction for this load shedding environment: for each
t ∈ T , the selected subset Ft must satisfy a knapsack constraint1 and the cardinal preference of
each agent i ∈ [n] is captured by the number of subsets that contain i, i.e., the number of time
periods that i receives electricity.

Combinatorial Constraints. We study a coverage framework wherein, for each t ∈ [T ], the tth
selected subset, Ft ⊆ [n], must belong to a set family It, i.e., each It ⊆ 2[n] specifies the possible
choices for the tth selection. Our results do not require the families It-s to be given explicitly as
input. Our results hold for any It-s that admit a fully polynomial-time approximation scheme
(FPTAS) for the weight maximization problem: given weights w1, . . . , wn ∈ R+, for the n agents,
find argmaxX∈It

∑
i∈X wi.

For instance, if each It contains the subsets that satisfy a knapsack constraint, then an FPTAS
for weight maximization is known to exist [Vaz01]; in such a case weight maximization corre-
sponds to the standard knapsack problem.2 Furthermore, if the families It-s are independent
sets of matroids, then one can exactly solve the weight maximization problem in polynomial time
[Sch03]. It is relevant to note that matroids provide an expressive construct for numerous com-
binatorial constraints, e.g., cardinality and partition constraints. Hence, the coverage framework
with matroids provides, by itself, an encompassing class of instances. In addition, our result ap-
plies to settings in which It-s enforce matching constraints: say, for each t ∈ [T ], we have kt ≤ n
slots that have to be integrally assigned. Here, each agent prefers a subset of the slots and requires
at most one slot for every t. Our result holds under such matching constraints, since here weight
maximization can be optimally solved in polynomial time via a maximum-weight matching al-
gorithm.3 Also, in instances wherein the sizes of the families It-s are polynomially large, weight
maximization can be efficiently solved by direct enumeration.

Agents’ Valuations. As mentioned previously, we address settings in which each agent’s valu-
ation depends on the number of times it is covered among the selected subsets Ft-s. Specifically,
for a solution F = (F1, . . . , FT ) ∈ I1 × . . . × IT , agent i’s valuation is defined as vi(F) := |{t ∈
[T ] : i ∈ Ft}|+ 1. Note that the valuation of each agent is smoothed by adding 1. This smoothing
enables us to achieve meaningful (multiplicative) approximation guarantees by shifting the valu-
ations and, hence, the collective welfare away from zero. We also note that valuation smoothing
has been considered in prior works in fair division; see, e.g., [FMS18], [FSTW19], and [KS21].

Nash Social Welfare. With the overarching aim of achieving fairness along with economic effi-
ciency in coverage instances, we address the problem of maximizing Nash social welfare (NSW).
This welfare function is defined as the geometric mean of agents’ valuations and it achieves a bal-
ance between the extremes of social welfare (a well-studied objective for economic efficiency) and
egalitarian welfare (a prominent fairness notion). NSW stands as a fundamental metric for quanti-
fying the extent of fairness in numerous resource-allocation contexts; indeed, in recent years, NSW

1In particular, the total demand of the agents in Ft should be at most the supply at time period t.
2Recall that in the electricity division example, the subsets Ft-s had to satisfy knapsack constraints.
3One can alternatively consider this matching setting as a transversal matroid.
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has been extensively studied in the fair division literature; see, e.g., [CKM+19; BKV18a; HPPS20;
RT21; LV22] and many references therein.

Nash social welfare satisfies key fairness axioms, including scale freeness, symmetry, and the
Pigou-Dalton transfer principle [Mou03]. The Pigou-Dalton principle requires that the collective
welfare should increase under a bounded transfer of value from a well-off agent i to a worse-off
agent j. NSW satisfies this principle, since the geometric mean of a more balanced valuation pro-
file (of the n agents) is higher than that of a skewed one. At the same time, if the increase in agent
j’s value is significantly less than the drop experienced by i, then NSW does not increase. That
is, NSW prefers solutions4 that have reduced inequality and, simultaneously, it accommodates for
economic efficiency.

Furthermore, in various fair division contexts, prior works have shown that a solution that
maximizes NSW satisfies additional fairness properties, e.g., [CKM+19], [FMS18], [HPPS20], [BEF21],
and [GKM21]. Critically, the fact that Nash optimal solutions bear additional guarantees does not
undermine the relevance of finding solutions with as high a Nash social welfare as possible. NSW
cardinally ranks the solutions and, conforming to a welfarist perspective, one prefers solutions
with higher NSW. Therefore, developing approximation guarantees for NSW maximization is a
well-justified objective in and of itself.

1.1 Our Results and Techniques

We develop a constant-factor approximation algorithm for maximizing Nash social welfare in fair
coverage instances. Given a set of n agents and threshold T ∈ Z+, our algorithm (Algorithm
1) computes in polynomial time a solution F = (F1, . . . , FT ) ∈ I1 × . . . × IT whose Nash social

welfare, NSW(F) = (
∏n

i=1 vi(F))
1

n , is at least 1
18+o(1) times the optimal (Theorem 1). As mentioned

previously, the algorithm only requires blackbox access to an FPTAS for weight maximization over
the set families I1, . . . ,IT ⊆ 2[n].

The algorithm starts with an arbitrary solution and iteratively performs updates till it essen-
tially reaches a local maximum of the log social welfare ϕ(F) :=

∑n
i=1 log (vi(F)). Here, for any

solution F = (F1, . . . , FT ), a local update corresponds to replacing—for some τ ∈ [T ]—the subset
Fτ with some other subset Aτ ∈ Iτ . The algorithm performs the local updates by invoking, as a
subroutine, the FPTAS for weight maximization.

It is relevant to note that while the algorithm is simple in design, its analysis entails novel
insights. In particular, the domain of solutions, I1 × . . . × IT , is combinatorial and, hence, it is
not obvious if a local maximum solution of ϕ upholds any global approximation guarantees for
ϕ, let alone for NSW. Furthermore, a multiplicative approximation bound for ϕ does not translate
into a multiplicative guarantee for NSW: for any solution F , we have 1

nϕ (F) = log (NSW(F)).
Therefore, even though a solution that (globally) maximizes ϕ also maximizes NSW, multiplicative
approximation guarantees get exponentially worse when one moves from ϕ to NSW.5

Interestingly, in lieu of developing local-to-global approximation guarantees, we rely on count-
ing arguments to establish the approximation ratio. We prove that, at a local maximum solution
F (of the function ϕ) and for any integer α ≥ 4, the number of α-suboptimal agents is at most n/α;
here, an agent i is said to be α-suboptimal iff i’s current valuation vi(F) is (about) 1/α times less
than her optimal valuation. We complete the analysis by proving that these Markov-like bounds

4In the current context, a solution is a collection of T subsets F1, . . . , FT that are contained in the underlying set
families I1, . . . , IT , respectively.

5This observation also implies that one cannot directly utilize the approximation guarantee known for the so-called
concave coverage problem [BFF21] to obtain a commensurate approximation ratio for NSW maximization.
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ensure that the computed solution F achieves an (18 + o(1))-approximation guarantee for NSW
maximization.

In addition, we complement the algorithmic result by proving that, in fair coverage instances,
NSW maximization is APX-hard (Theorem 8). This inapproximability result rules out a polynomial-
time approximation scheme (PTAS) for NSW maximization in fair coverage instances.

1.2 Additional Related Work and Applications

The coverage framework generalizes the well-motivated setup of public decision making [CFS17],
albeit for agents that have binary additive valuations. The public decision making setup captures
settings wherein decisions have to be made on T social issues, that can impact many of the n
agents simultaneously. Specifically, each issue t ∈ [T ] is associated with a set of alternatives At =
{a1t , a

2
t , . . . , a

ℓt
t } and every agent i ∈ [n] has an additive valuation over the issues. That is, for any

outcome A = (a1, a2, . . . , aT ) ∈ A1 × A2 × . . . × AT , agent i’s utility is ui(A) =
∑T

t=1 u
t
i(at); here

uti(at) ∈ R+ is the utility that i gains from the alternative at ∈ At.
Indeed, for agents i ∈ [n] with binary additive valuations (i.e., uti(a) ∈ {0, 1} for all t and

a ∈ At) the coverage framework generalizes public decision making: for every t ∈ [T ], define the
set family It by including in it the set Fa := {i ∈ [n] : uti(a) = 1} for each a ∈ At. In particular, It
contains a set Fa, for each alternative a ∈ At, where Fa is the set of agents that value alternative
a. This reduction gives us set families of polynomial size (|It| = |At|) and, hence, our results
specialize to this case.

In the public decision making context, Conitzer et al. [CFS17] obtain fairness guarantees in
terms of relaxations of proportionality. They also show that Nash optimal solutions bear particu-
lar fairness properties. Complementing these results and for agents with (smoothed) binary ad-
ditive valuations, the current work obtains approximation guarantees for NSW in public decision
making.

The coverage framework also encompasses the standard fair division setting that entails al-
location of m indivisible goods among n agents that have binary additive valuations. Multi-
ple prior works have studied NSW in this discrete fair division setting; see, e.g., [BKV18b] and
[HPPS20]. Here, each agent i ∈ [n] prefers a subset of the goods Vi ⊆ [m] and agent i’s valuation
ui(S) = |S ∩ Vi|, for any S ⊆ [m]. One can express this setting as a coverage instance by consider-
ing T = m set families each comprised of singleton subsets. Specifically, for each good g ∈ [m], we
have a set family Ig that includes all singletons {i} with the property that g ∈ Vi, i.e., subset {i} is
included in Ig iff agent i values good g. As in the public decision making setting, here we obtain
a coverage instance with polynomially large It-s.

With Nash welfare as a notion of fairness, Fluschnik et al. [FSTW19] study fair selection of indi-
visible goods under a knapsack constraint.6 By contrast, the current work addresses combinatorial
constraints over subsets of agents.

2 Notation and Preliminaries

An instance of a fair coverage problem is specified as a tuple 〈[n], T, {It}
T
t=1〉, where [n] = {1, 2, . . . , n}

denotes the set of agents and T ∈ Z+ denotes the number of subsets (of the agents) to be selected.
Here, for each t ∈ [T ], the tth selected subset (say Ft ⊆ [n]) is constrained to be from the family
It, i.e., each It ⊆ 2[n] specifies the possible choices for the tth selection. It is not necessary that the

6Fluschnik et al. [FSTW19] also highlight connections between NSW and proportional approval voting.
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set families It-s are given explicitly; our algorithmic result only requires a blackbox access to an
FPTAS for weight maximization over It-s.

For a fair coverage instance 〈[n], T, {It}
T
t=1〉, a solution F = (F1, F2, . . . , FT ) is a tuple with

the property that Ft ∈ It for all t ∈ [T ]. We address settings wherein the valuation of each
agent depends on the number of times it is covered among the selected subsets. Specifically,
for a solution F = (F1, F2, . . . , FT ), the coverage value vi(F), of agent i ∈ [n], is defined as
vi(F) := |{t ∈ [T ] : i ∈ Ft}| + 1. Note the coverage value of each agent is smoothed by adding 1.
This smoothing ensures that the Nash social welfare of any solution is nonzero. We, in fact, show
that if each agent’s value is equated to exactly the number of times it is covered among the sub-
sets, then one cannot achieve any multiplicative approximation guarantee for Nash social welfare
maximization (Appendix C).

The Nash social welfare (NSW) of a solution F is defined as the geometric mean of the agents’

coverage values, NSW (F) :=

(
n∏

i=1
vi(F)

) 1

n

. We will write F∗ = (F ∗
1 , F

∗
2 , . . . , F

∗
T ) to denote a so-

lution that maximizes the Nash social welfare in a given fair coverage instance. Furthermore, a so-

lution F̂ is said to achieve a γ-approximation guarantee for the Nash social welfare maximization

problem iff NSW(F̂) ≥ 1
γ NSW (F∗). The current work develops a constant-factor approximation

algorithm for NSW maximization in fair coverage instances.
As mentioned previously, the algorithm works with a blackbox access to an FPTAS for weight

maximization over It-s. Specifically, with parameter β := 1
64nT 2 , we will write APXMAXWT to

denote a subroutine (blackbox) that takes as input weights w1, . . . , wn ∈ R+, along with index
an t ∈ [T ], and finds a (1 − β)-approximation to max

X∈It

∑
i∈X

wi. The assumption that weight maxi-

mization over It-s admits an FPTAS implies that a (1− β)-approximation (with β = 1
64nT 2 ) can be

computed in polynomial time.
For any solution F = (F1, . . . , FT ), index t ∈ [T ], and subset X ∈ It, write (X,F−t) to denote

the solution obtained by replacing Ft with X, i.e., (X,F−t) := (F1, , . . . , Ft−1,X, Ft+1, . . . , FT ).
Finally, we will write ϕ(F) to denote the log social welfare of the agents under solution F , i.e.,

ϕ(F) :=
n∑

i=1
log (vi(F)).

3 Approximation Algorithm for Nash Social Welfare

This section develops an (18+ o(1))-approximation algorithm for maximizing Nash social welfare
in fair coverage instances. Given any instance 〈[n], T, {It}

T
t=1〉, our algorithm ALG (Algorithm 1)

starts with an arbitrary solution F = (F1, . . . , FT ) ∈ I1 × . . . × IT and iteratively performs local
updates as long as it experiences a sufficient (additive) increase in the log social welfare ϕ. Here,
for any solution F = (F1, . . . , FT ), a local update corresponds to replacing—for some τ ∈ [T ]—the
subset Fτ with some other subset Aτ ∈ Iτ . For updating a solution F and with ϕ as a guiding
objective, the algorithm addresses the problem of finding, for every t ∈ [T ], a subset At ∈ It that
achieves max

X∈It
ϕ(X,F−t)−ϕ(F). Notably, we reduce this problem to that of weight maximization

over It-s, by setting appropriate weights wt
i , for each agent i ∈ [n] and each index t ∈ [T ]. In

particular, for a current solution F = (F1, . . . , FT ), the algorithm sets the weights as follows

wt
i =

{
log (vi(F)) − log (vi(F) − 1) if i ∈ Ft

log (vi(F) + 1) − log (vi(F)) otherwise, if i ∈ [n] \ Ft.
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We note that for each agent i ∈ Ft, the coverage value vi(F) ≥ 2; this follows from the in-
clusion of ‘+1’ in the definition of coverage value. Hence, the weights (specifically, the terms
log (vi(F)− 1) for i ∈ Ft) are well defined. This is a relevant implication of smoothing the cover-
age values.

Moreover, this weight assignment ensures that, for every subset X ⊆ [n], its weight
∑

i∈X wt
i =

(ϕ(X,F−t)− ϕ(F)) +
∑

j∈Ft
wt
j (see Claim 5). Since the weight of the current subset Ft (i.e.,∑

j∈Ft
wt
j) is fixed, finding a subset X ∈ It with maximum possible weight is equivalent to find-

ing a subset that maximizes ϕ(X,F−t) − ϕ(F). In fact, we show that an FPTAS for this weight
maximization suffices. As mentioned previously, we denote by APXMAXWT(t, wt

1, . . . , w
t
n) a sub-

routine (blackbox) that takes as input weights wt
1, . . . , w

t
n ∈ R+ and finds a (1− β)-approximation

to max
X∈It

∑
i∈X

wt
i ; where the parameter β = 1

64nT 2 .

Hence, for updating solution F = (F1, . . . , FT ), the algorithm invokes APXMAXWT to obtain
candidate subsetsA1, A2, . . . , AT . If, for some index τ ∈ [T ], replacing Fτ by Aτ leads to a sufficient
additive increase ϕ, then ALG updates the solution to (Aτ ,F−τ ). Specifically, the algorithm sets
parameter ε := 1

16nT and if ϕ (Aτ ,F−τ )− ϕ(F) ≥ εn
8T , then it updates the solution (see Lines 4 and

5 in Algorithm 1). Otherwise, if for all the candidate subsets the increase in ϕ is less than εn
8T , the

algorithm terminates.

Note that, for any solution F̂ , the log social welfare ϕ(F̂) is at most n log(T + 1).7 This obser-
vation, and the fact that in every iteration of ALG the log social welfare of the maintained solution
increases by at least εn

8T , imply that the algorithm terminates in polynomial time (Lemma 7). Over-
all, the algorithm efficiently finds a local maximum of ϕ.

Algorithm 1 ALG

Input: Instance 〈[n], T, {It}
T
t=1〉.

Output: A solution F = (F1, . . . , FT ).

1: Initialize F = (F1, F2, . . . , FT ) ∈ I1×I2× . . .×IT to be an arbitrary solution and, for all agents
i ∈ [n], set coverage value vi = vi(F). Set parameter ε := 1

16nT .
2: For each t ∈ [T ] and all agents i ∈ [n], set weight

wt
i =

{
log vi − log(vi − 1) if i ∈ Ft

log(vi + 1)− log vi if i ∈ [n] \ Ft.

3: For each t ∈ [T ], set At = APXMAXWT(t, wt
1, w

t
2, . . . , w

t
n).

4: while there exists τ ∈ [T ] such that ϕ (Aτ ,F−τ )− ϕ(F) ≥ εn
8T do

5: Update F ← (Aτ ,F−τ ), i.e., update Fτ ← Aτ .
6: For all agents i ∈ [n], update coverage value vi = vi(F).
7: For each t ∈ [T ] and all agents i ∈ [n], set weights wt

i as in Line 2.
8: Set At = APXMAXWT(t, wt

1, w
t
2, . . . , w

t
n) for all t ∈ [T ].

9: end while

10: return solution F

We establish the approximation ratio via counting arguments. In the analysis, for each main-
tained solution F , we consider the agents i whose current coverage value, vi(F), is sufficiently
smaller than their optimal coverage value, vi(F

∗); recall that F∗ denotes a Nash optimal solution.
In particular, for a solution F and any integer α ∈ Z+, we will write SF

α to denote the subset

7Indeed, for any solution F̂ , we have vi(F̂) ≤ T + 1, for all agents i ∈ [n].
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of agents whose coverage value is α(2.25 + ε) times less than their optimal, where, ε = 1
16nT .

Formally, for any α ∈ Z+, the set of α-suboptimal agents is defined as8

SF
α :=

{
i ∈ [n] : vi(F) <

1

α(2.25 + ε)
vi(F

∗)

}
(1)

First, we prove that, for any solution F and any integer α ≥ 4, if the number of α-suboptimal
agents is more than n

α , then there necessarily exists a local update that increases ϕ by a sufficient
amount (Lemma 4). Contrapositively, we obtain that, for the solution finally obtained by ALG and
for any α ≥ 4, the number of α-suboptimal agents is at most n/α. We complete the analysis by
proving that this guarantee ensures that ALG achieves a constant-factor approximation ratio for
NSW maximization; more formally, we will establish the following theorem (in Section 3.2).

Theorem 1 (Main Result). Given any fair coverage instance 〈[n], T, {It}
T
t=1〉, with blackbox access to

an FPTAS for weight maximization over It-s, ALG (Algorithm 1) computes—in polynomial time—an(
18 + 1

2nT

)
-approximate solution for the Nash social welfare maximization problem.

3.1 Algorithm’s Analysis

The following claim bounds the change in log social welfare ϕ when a solution is updated.

Claim 2. For a solution F = (F1, . . . , FT ), let value vi := vi(F) for all agents i ∈ [n]. Then, for any
subset X ⊆ [n] and any index t ∈ [T ], we have

ϕ(X,F−t)− ϕ(F) ≥
∑

i∈X

1

vi + 1
−
∑

j∈Ft

1

vj − 1
.

The proof of Claim 2 is deferred to Appendix A. Note that here, for each agent j ∈ Ft, the
coverage value vj(F) ≥ 2 and, hence, the subtracted terms, 1

vj−1 , in the claim are well defined.

Next, we bound the expected change in ϕ when—for any solution F = (F1, . . . , FT )—we
replace Ft by F ∗

t , for a t ∈ [T ] chosen uniformly at random.

Lemma 3. For any solutionF = (F1, . . . , FT ) and a Nash optimal solution F∗ = (F ∗
1 , . . . , F

∗
T ), let values

vi := vi(F) and v∗i := vi(F
∗), for all agents i ∈ [n]. Then, uniformly sampling index t from the set [T ], we

obtain

Et∈R[T ]

[
ϕ(F ∗

t ,F−t)− ϕ(F)
]
≥

1

T

n∑

i=1

(
v∗i − 1

vi + 1

)
−

n

T
.

Proof. Invoking Claim 2, with X = F ∗
t for each t ∈ [T ], we obtain

Et∈R[T ]

[
ϕ(F ∗

t ,F−t)− ϕ(F)
]
≥ Et∈R[T ]


∑

i∈F ∗
t

1

vi + 1
−
∑

j∈Ft

1

vj − 1




= Et∈R[T ]



∑

i∈[n]

1{i ∈ F ∗
t }

1

vi + 1
−

∑

j∈[n]:vj≥2

1{j ∈ Ft}
1

vj − 1




(since vj ≥ 2, for all j ∈ Ft)

8Here, the constant 2.25 is selected to achieve the desired approximation ratio.
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=
∑

i∈[n]

P{i ∈ F ∗
t }

1

vi + 1
−

∑

j∈[n]:vj≥2

P{j ∈ Ft}
1

vj − 1
(2)

Index t is selected uniformly at random from the set [T ]. Also, by definition, v∗i is equal to 1 plus
the number of subsets that contain i in the Nash optimal solution F∗ = (F ∗

1 , . . . , F
∗
T ). Hence, the

probability P{i ∈ F ∗
t } =

v∗i −1
T , for all agents i ∈ [n]. Similarly, for the solution F = (F1, . . . , FT ),

we have P{j ∈ Ft} =
vj−1
T , for all j ∈ [n]. These equations and inequality (2) give us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t)− ϕ(F)
]
≥
∑

i∈[n]

v∗i − 1

T
·

1

vi + 1
−

∑

j∈[n]:vj≥2

vj − 1

T
·

1

vj − 1

≥
1

T

∑

i∈[n]

(
v∗i − 1

vi + 1

)
−

n

T
.

The lemma stands proved. ⊓⊔

Next, we show that if, under a solutionF , the number of α-suboptimal agents is large, then the
log social welfare can be sufficiently increased by replacing Fτ with F ∗

τ , for some τ ∈ [T ]. Recall
that F∗ = (F ∗

1 , . . . , F
∗
T ) denotes a Nash optimal allocation and SF

α denotes the set of α-suboptimal
agents under solution F ; see equation (1).

Lemma 4. For any solution F = (F1, . . . , FT ) and any α ≥ 4, if the number of α-suboptimal agents is at
least n

α (i.e., |SF
α | >

n
α ), then there exists an index τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ )− ϕ(F) ≥

εn

2T
.

Proof. Consider any solution F and integer α ≥ 4 such that |SF
α | >

n
α . For each agent i ∈ [n],

write vi := vi(F) and v∗i = vi(F
∗). Now, Lemma 3 gives us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t)− ϕ(F)
]
≥

1

T

n∑

i=1

(
v∗i − 1

vi + 1

)
−

n

T

≥
1

T

∑

i∈SF
α

(
v∗i − 1

vi + 1

)
−

n

T

≥
1

T

∑

i∈SF
α

(
α(2.25 + ε)vi − 1

vi + 1

)
−

n

T
(by definition of SF

α )

Claim 9 (stated and proved in Appendix A) shows that α(2.25+ε)v−1
v+1 ≥

(
1 + ε

2

)
α, for all integers

α ≥ 4 and v ≥ 1. Therefore, the above-mentioned inequality simplifies to

Et∈R[T ]

[
ϕ(F ∗

t ,F−t)− ϕ(F)
]
≥

1

T

∑

i∈SF
α

(
1 +

ε

2

)
α −

n

T

>
1

T

n

α

(
1 +

ε

2

)
α −

n

T
(since |SF

α | >
n
α )

=
εn

2T
.

Therefore, there exists a τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ )− ϕ(F) ≥

εn

2T
.
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This completes the proof of the lemma. ⊓⊔

Using Lemma 4, we will establish in Corollary 6, below, that the algorithm continues to iterate
as long as the number of α-suboptimal agents is more than n/α. The proof of the corollary also
utilizes the following claim.

Claim 5. Let F = (F1, . . . , FT ) be any solution considered in ALG (Algorithm 1) and, for all indices
t ∈ [T ] and agents i ∈ [n], let wt

i-s be the corresponding weights set in Lines 2 or 7. Then, the weight of
any subset X ⊆ [n] satisfies

∑

i∈X

wt
i = (ϕ(X,F−t)− ϕ(F)) +

∑

j∈Ft

wt
j.

The proof of this claim appears in Appendix A.

Corollary 6. For any solution F = (F1, . . . , FT ) considered in ALG (Algorithm 1) and any α ≥ 4, if the
number of α-suboptimal agents is at least n

α (i.e., |SF
α | >

n
α ), then the execution condition in the while-loop

(Line 4) of ALG holds.

Proof. Consider any solution F in ALG and integer α ≥ 4 such that |SF
α | >

n
α . In such a case, we

will show that there exists an index τ ∈ [T ] for which the subset Aτ returned by the subroutine
APXMAXWT(τ, wτ

1 , . . . , w
τ
n) (in Line 8) satisfies ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn

8T . Hence, the while-loop
continues to iterate.

The desired index is in fact the one identified in Lemma 4. In particular, Lemma 4 ensures that
for an index τ ∈ [T ] we have

ϕ(F ∗
τ ,F−τ )− ϕ(F) ≥

εn

2T
(3)

Now, Claim 5 (with X = F ∗
τ ) gives us

∑

i∈F ∗
τ

wτ
i = (ϕ(F ∗

τ ,F−τ )− ϕ(F)) +
∑

i∈Fτ

wτ
i

≥
εn

2T
+
∑

i∈Fτ

wτ
i (via inequality (3))

Therefore,

max
X∈Iτ

{
∑

i∈X

wτ
i

}
≥
∑

i∈Fτ

wτ
i +

εn

2T
(4)

Recall that APXMAXWT(τ, wτ
1 , . . . , w

τ
n) returns a set Aτ ∈ Iτ with the property that

∑

i∈Aτ

wτ
i ≥ (1− β)

(
max
X∈Iτ

∑

i∈X

wτ
i

)
(5)

Here, parameter β = 1
64nT 2 . Since ε = 1

16nT , we have β = ε
4T . Inequalities (4) and (5) give us

∑

i∈Aτ

wτ
i ≥ (1− β)

(
∑

i∈Fτ

wτ
i +

εn

2T

)

9



=
∑

i∈Fτ

wτ
i +

εn

2T
− β

∑

i∈Fτ

wτ
i −

βεn

2T

≥
∑

i∈Fτ

wτ
i +

εn

2T
− βn−

βεn

2T
(since

∑
i∈Fτ

wτ
i ≤ n)

=
∑

i∈Fτ

wτ
i +

εn

2T
−

εn

4T
−

βεn

2T
(since β = ε

4T )

≥
∑

i∈Fτ

wτ
i +

εn

2T
−

εn

4T
−

εn

8T
(since β ≤ 1

4 )

=
∑

i∈Fτ

wτ
i +

εn

8T
.

Applying Claim 5, with X = Aτ , we get ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn
8T . Therefore, the execution

condition in the while-loop of ALG holds. This establishes the corollary. ⊓⊔

We conclude the section by showing that the algorithm runs in polynomial time.

Lemma 7 (Runtime Analysis). Given any fair coverage instance 〈[n], T, {It}
T
t=1〉 with blackbox access

to an FPTAS for weight maximization over It-s, ALG (Algorithm 1) terminates in time that is polynomial
in n and T .

Proof. For any solution F , the coverage values vi(F) ≥ 1, for agents i ∈ [n]. Hence, for the

initial solution (arbitrarily) selected by the algorithm, we have ϕ(F) =
n∑

i=1
log(vi(F)) ≥ 0. In

addition, since the coverage values of the agents under any solution are at most T + 1, the log
social welfare ϕ across all solutions is upper bounded by n log(T + 1). Furthermore, note that in
every iteration of ALG the log social welfare of the maintained solution increases additively by
at least εn

8T . These observations imply that the algorithm terminates after O
(
nT 2 log T

)
iterations;

recall that ε = 1
16nT . Since each iteration executes in polynomial time, the time complexity of the

algorithm is polynomial in n and T . The lemma stands proved. ⊓⊔

3.2 Proof of Theorem 1

This section establishes the approximation ratio of ALG. For the given fair coverage instance, let
F = (F1, . . . , FT ) be the solution returned by ALG and F∗ = (F ∗

1 , . . . , F
∗
T ) be a Nash optimal

allocation. Note that vi(F) ≥ 1 and vi(F
∗) ≤ T + 1, for all agents i ∈ [n]. Hence, for each agent

i ∈ [n], the following bound holds: vi(F) ≥
1

T+1vi(F
∗).

We partition the set of agents [n] considering the multiplicative gap between the coverage
values under F and F∗. Specifically, for each integer d ∈ {2, 3, . . . , ⌈log(T + 1)⌉}, define the set

X2d :=

{
i ∈ [n] :

1

2d+1

vi(F
∗)

(2.25 + ε)
≤ vi(F) <

1

2d
vi(F

∗)

(2.25 + ε)

}
.

Furthermore, write X ′ := [n] \

(
⌈log (T+1)⌉⋃

d=2

X2d

)
. Since all agents i satisfy vi(F) ≥

1
T+1vi(F

∗), the

subset X ′ only contains agents j ∈ [n] with the property that vj(F) ≥
1
4

vj(F∗)
(2.25+ε) . Also, note that the

subsets X2d-s and X ′ form a partition of the set of agents [n]; in particular, |X ′|+
∑

d≥2 |X2d | = n.
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Recall that SF
α denotes the set of α-suboptimal agents (see equation (1)). Also, note that, with

α = 2d, we have Xα ⊆ SF
α . Moreover, by the contrapositive of Lemma 6, for the solution F =

(F1, . . . , FT ), returned by ALG, we have

|X2d | ≤
∣∣SF

2d

∣∣ ≤ n

2d
for all 2 ≤ d ≤ ⌈log (T + 1)⌉ (6)

For any subset of agents Y ⊆ [n], write ρ(Y ) :=
∏

i∈Y
vi(F)
vi(F∗) , if subset Y 6= ∅. Otherwise, if

Y = ∅, define ρ(Y ) := 1. To bound the approximation ratio of the algorithm, we consider

NSW(F)

NSW(F∗)
=


ρ(X ′)

⌈log(T+1)⌉∏

d=2

ρ(X2d)




1

n

≥



(

1

9 + 4ε

)|X′|∏

d≥2

ρ(X2d)




1

n

(vj(F) ≥
1

4(2.25+ε)vj(F
∗) for all j ∈ X ′)

≥



(

1

9 + 4ε

)|X′|∏

d≥2

(
1

2d+1(2.25 + ε)

)|X
2d

|



1

n

(vi(F) ≥
1

2d+1(2.25+ε)
for all i ∈ X2d)

=
1

9 + 4ε



∏

d≥2

(
1

2d−1

) |X
2d

|

n


 (since |X ′|+

∑
d≥2 |X2d | = n)

≥
1

9 + 4ε


∏

d≥2

(
1

2d−1

) 1

2d


 (via inequality (6))

Claim 10 (proved in Appendix A) shows that the product
∏

d≥2

(
1

2d−1

) 1

2d ≥ 1
2 . Hence, the stated

approximation ratio follows

NSW(F)

NSW(F∗)
≥

1

9 + 4ε




⌈log(T+1)⌉∏

d=2

(
1

2d−1

) 1

2d


 ≥ 1

9 + 4ε
·
1

2
=

1

18 + 8ε
.

4 APX-Hardness of Fair Coverage

This section shows that NSW maximization in fair coverage instances is APX-hard. In particular,
we prove that there exists an absolute constant γ > 1 such that it is NP-hard to approximate the
problem within factor γ. Hence, a constant-factor approximation is the best one can hope for NSW
maximization in fair coverage instances, unless P = NP. The hardness result is obtained via an
approximation preserving reduction from the following gap version of the maximum coverage
problem.

Maximum k-Coverage [Fei98]: Given a universe of elements U = {1, 2, . . . , n}, a threshold k ∈ Z+,

and a set family S =
{
Sℓ ⊆ [n]

}N
ℓ=1

, it is NP-hard to distinguish between

• YES Instances: There exists a collection of k subsets in S that covers all the elements, i.e., the
union of the k subsets is equal to [n].
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• NO Instances: Any collection of k subsets from S covers at most
(
1− 1

e

)
n elements, i.e., the

union of any k subsets from S has cardinality at most
(
1− 1

e

)
n.

This hardness result of Feige [Fei98] holds even for instances that satisfy the following prop-
erties: (i) all the subsets in S have the same size τ , i.e., |Sℓ| = τ for all subsets Sℓ ∈ S , and (ii)
the threshold k = n/τ . Properties (i) and (ii) will be utilized in our approximation preserving
reduction.9

The APX-hardness result is established next. Notably, this negative result is applicable even
for fair coverage instances in which the set families It-s are explicitly given as input.

Theorem 8. In fair coverage instances, it is NP-hard to approximate the maximum Nash social welfare
within a factor of 1.092.

Proof. Given an instance of the maximum k-coverage problem with universe U = {1, 2, . . . , n}
and set family S = {S1, S2, . . . , SN} of τ -sized subsets of [n], we construct a fair coverage instance
with n agents and T = k. Since threshold k = n

τ , we have T = n
τ . To complete the construction

and obtain an instance 〈[n], T, {It}
T
t=1〉, we set the families It = S , for all t ∈ [T ].

First, we show that if the underlying maximum coverage instance is a YES instance, then the
optimal NSW in the constructed fair coverage instance is at least 2. Note that in the YES case there
exists a size-k collection S ′ = {S′

1, S
′
2, . . . , S

′
k} ⊆ S that covers all of [n]. Also, by construction,

T = k and It = S for all 1 ≤ t ≤ k. Hence, for each t ∈ [T ], we have S′
t ∈ It. Therefore, the tuple

F ′ = (S′
1, S

′
2, . . . , S

′
k) is a solution under which vi(F

′) ≥ 2, for all agents i ∈ [n].10 This bound on
the coverage value of the agents implies that in the current case, the optimal Nash social welfare
is at least 2.

Now, we show that in the NO case the optimal NSW is at most c, for an absolute constant
c < 2. Here, consider any solution F = (F1, . . . , FT ) in the constructed fair coverage instance. We
have T = k = n

τ and, by construction, Ft ∈ S . Furthermore, given that we are in the NO case, the
collection of subsets {F1, F2, . . . , FT } ⊆ S covers at most (1 − 1

e )n elements. Let L denote the set
of agents not covered by the subsets Ft-s and write ℓ := |L| ≥ n

e . Since each agent i ∈ L is not
covered under F , we have vi(F) = 1 for all i ∈ L. Furthermore, note that the agents in the set
Lc := [n] \ L are covered by the T = k = n

τ subsets F1, . . . , FT , and each of these subsets is of size
τ . Therefore,

∑

j∈Lc

vj(F) =

n/τ∑

t=1

|Ft| + |L
c|

=
n

τ
τ + |Lc| (since |Ft| = τ for each t)

= n+ (n− ℓ) (ℓ = |L|)

Hence, the average social welfare among agents in Lc satisfies 1
|Lc|

∑
j∈Lc vj(F) = 2n−ℓ

n−ℓ . This

bound and the AM-GM inequality give us
∏

j∈Lc

vi(F) ≤
(
2n−ℓ
n−ℓ

)|Lc|
. Therefore, we can bound the

Nash social welfare of F as follows

NSW(F) =



∏

i∈L

vi(F)
∏

j∈Lc

vj(F)




1

n

≤ 1
ℓ
n

(
2n− ℓ

n− ℓ

)n−ℓ
n

=

(
2− ℓ/n

1− ℓ/n

)(1− ℓ
n)

(7)

9The properties also ensure that in the YES case there is a collection of k = n
τ

subsets that are pairwise disjoint and
they cover all of [n]. That is, in the YES case there exists a perfect cover.

10In fact, for each agent i the coverage value vi(F
′) = 2, since i is contained in exactly one of the subsets S′

t-s. Recall
that properties (i) and (ii) ensure that S ′ is a perfect cover.
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Note that the function f(x) :=
(
2−x
1−x

)(1−x)
is decreasing in the interval x ∈

[
1
e , 1
)

(see Claim 11 in

Appendix B). Hence, using the fact that ℓ ≥ n
e and inequality (7), we get

NSW(F) ≤

(
2− 1/e

1− 1/e

)1− 1

e

≤ 1.83 (8)

Since, in the NO case, inequality (8) holds for all solutions F , we get that the optimal NSW is at
most 1.83.

Overall, we get that in the YES case the optimal NSW is at least 2 and in the NO case it is at
most 1.83. This multiplicative gap of 2

1.83 > 1.092 implies that a 1.092-approximation algorithm
for NSW maximization can be used to distinguish between the two cases. Since this differentiation
is NP-hard, a 1.092-approximation is NP-hard as well. The theorem stands proved. ⊓⊔

5 Conclusion and Future Work

The current paper extends the scope of coverage problems from combinatorial optimization to fair
division. In this setting, we develop algorithmic and hardness results for maximizing the Nash
social welfare. The coverage framework considered in this work accommodates expressive combi-
natorial constraints and, hence, it models a range of applications. The framework also generalizes
public decision making among agents that have binary additive valuations.

It would be interesting to extend the coverage framework to settings in which each agent i has
value vti for getting covered by the tth selected subset and her valuation is additive across the T
selections. Online version of fair coverage is another interesting direction for future work.
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A Missing Proofs from Section 3.1

Here, we restate and prove the claims used in Section 3.1.

Claim 2. For a solution F = (F1, . . . , FT ), let value vi := vi(F) for all agents i ∈ [n]. Then, for any
subset X ⊆ [n] and any index t ∈ [T ], we have

ϕ(X,F−t)− ϕ(F) ≥
∑

i∈X

1

vi + 1
−
∑

j∈Ft

1

vj − 1
.

Proof. For each agent ℓ ∈ [n] \ (X ∪ Ft), the coverage value remains unchanged between
the solutions (X,F−t) and F , i.e., vℓ(X,F−t) = vℓ(F). Similarly, for all ℓ ∈ X ∩ Ft, we have
vℓ(X,F−t) = vℓ(F). Now, considering the change in coverage values for agents in subsets X \ Ft

and Ft \X, respectively, we obtain

ϕ(X,F−t)− ϕ(F) =
∑

i∈X\Ft

(log(vi + 1)− log(vi))−
∑

j∈Ft\X

(log(vj)− log(vj − 1)) (9)

Note that, for any integer a ≥ 2, we have log(a+ 1)− log(a) ≤ log(a)− log(a− 1). We instantiate
this inequality with a = vk, for all agents k ∈ X ∩ Ft, and extend equation (9) as follows

ϕ(X,F−t)− ϕ(F) ≥
∑

i∈X\Ft

(log(vi + 1)− log(vi))−
∑

i∈Ft\X

(log(vi)− log(vi − 1))

+
∑

k∈X∩Ft

(log(vk + 1)− log(vk))− (log(vk)− log(vk − 1)) (10)

Furthermore, recall that the natural logarithm satisfies the following bounds: log(v + 1)− log v ≥
1

v+1 , for all integers v ≥ 1, and log v − log(v − 1) ≤ 1
v−1 , for all integers v ≥ 2.

With these bounds, inequality (10) reduces to

ϕ(X,F−t)− ϕ(F) ≥
∑

i∈X

(log(vi + 1)− log(vi)) −
∑

j∈Ft

(log(vj)− log(vj − 1))

≥
∑

i∈X

1

vi + 1
−
∑

j∈Ft

1

vj − 1
.

The claim stands proved. ⊓⊔

Next, we state and prove Claim 9.

Claim 9. For parameter ε ∈ (0, 1) along with any integers α ≥ 4 and v ≥ 1, we have

α(2.25 + ε)v − 1

v + 1
≥
(
1 +

ε

2

)
α.

Proof. The left-hand-side of the desired inequality simplifies to

α(2.25 + ε)v − 1

v + 1
=

α(2.25 + ε)v

v + 1
−

1

v + 1

= α

(
2 +

1

4
+ ε

)
v

v + 1
−

1

v + 1
(11)
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Since v ≥ 1, we have v
v+1 ≥

1
2 and 1

v+1 ≤
1
2 . Hence, equation (11) reduces to

α(2.25 + ε)v − 1

v + 1
≥ α

(
2 +

1

4
+ ε

)
1

2
−

1

2

= α
(
1 +

ε

2

)
+

α

8
−

1

2

≥ α
(
1 +

ε

2

)
(since α ≥ 4)

This completes the proof. ⊓⊔

Claim 5 is restated and proved next.

Claim 5. Let F = (F1, . . . , FT ) be any solution considered in ALG (Algorithm 1) and, for all indices
t ∈ [T ] and agents i ∈ [n], let wt

i-s be the corresponding weights set in Lines 2 or 7. Then, the weight of
any subset X ⊆ [n] satisfies

∑

i∈X

wt
i = (ϕ(X,F−t)− ϕ(F)) +

∑

j∈Ft

wt
j.

Proof. Write vi := vi(F) for all agents i ∈ [n] and note that

ϕ(X,F−t)− ϕ(F) =
∑

i∈X\Ft

(log(vi + 1)− log(vi))−
∑

i∈Ft\X

(log(vi)− log(vi − 1)) .

Adding and subtracting
∑

i∈X∩Ft

(log(vi)− log(vi − 1)) we get

ϕ(X,F−t)− ϕ(F) =
∑

i∈X\Ft

log(vi + 1)− log(vi) +
∑

i∈X∩Ft

log(vi)− log(vi − 1)

−
∑

i∈X∩Ft

log(vi)− log(vi − 1)−
∑

i∈Ft\X

log(vi)− log(vi − 1) (12)

Now, considering the definition of the weights wt
i (in Lines 2 and 7) and equation (12), we obtain

ϕ(X,F−t)− ϕ(F) =
∑

i∈X

wt
i −

∑

i∈Ft

wt
i .

This equality establishes the claim. ⊓⊔

The numeric inequality used in the proof of Theorem 1 is established next.

Claim 10. For any integer ℓ ≥ 2, we have
ℓ∏

d=2

(
1

2d−1

) 1

2d ≥ 1
2 .

Proof. Taking the logarithm (to the base 2) of the left-hand-side of the desired inequality, we get

ℓ∑

d=2

1

2d
log

(
1

2d−1

)
=

ℓ∑

d=2

−(d− 1)

2d
.
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Hence, to prove the claim it suffices to show that

ℓ∑

d=2

−(d− 1)

2d
≥ log

(
1

2

)
= −1 (13)

Towards this, define S :=
∞∑
d=2

−(d−1)
2d

and note that
∑ℓ

d=2
−(d−1)

2d
≥ S. We will next show that

S = −1. This will establish inequality (13) and, hence, also the claim.
Multiplying S by 2 gives us

2S =

∞∑

d=2

−(d− 1)

2d−1
=

∞∑

d=1

−d

2d
= −

∞∑

d=1

d

2d
= −2.

Therefore, S = −1 and the claim follows. ⊓⊔

B Missing Proof from Section 4

Here, we establish the proposition used in the proof of Theorem 8.

Claim 11. The function f(x) =
(
2−x
1−x

)(1−x)
is decreasing in the interval x ∈ [1e , 1).

Proof. The function can be expressed as f(x) =
(
2−x
1−x

)(1−x)
=
(
1 + 1

1−x

)(1−x)
. We substitute

z = 1 − x and note that
(
1 + 1

z

)z
is an increasing function of z > 0. Therefore, f(x) is decreasing

when x < 1. ⊓⊔

C Inapproximability in the Absence of Smoothing

This section shows that that if each agent’s value is equated to exactly the number of times it is
covered among the subsets, then one cannot achieve any multiplicative approximation guarantee
for Nash social welfare maximization. Recall that, for any solution F = (F1, . . . , FT ), the coverage
value of agent i ∈ [n] is defined as vi(F) := |{t ∈ [T ] : i ∈ Ft}|+1. In this section, we write ci(F) :=
(vi(F)− 1), for all agents i ∈ [n], i.e., ci(F) is equal to the number of times agent i is covered
under solution F . In addition, let NSWc denote the Nash social welfare without the smoothing,

NSWc(F) := (
∏n

i=1 ci(F))
1

n . The theorem below shows that, in the absence of smoothing, the
problem of maximizing NSW cannot be multiplicatively approximated. The result is obtained via
a simple reduction from the vertex cover problem and it holds for coverage instances in which the
set families It-s are polynomially large.

Theorem 12. Maximizing NSWc does not admit any nontrivial multiplicative approximation guarantee,
unless P = NP.

Proof. We will establish the theorem via a reduction from the vertex cover problem. In particular,
we will show that if there exists a polynomial-time γ-approximation algorithm for maximizing
NSWc, for any γ <∞, then one can solve the NP-complete problem of vertex cover in polynomial
time.
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Recall that an instance of the vertex cover problem consists of a graph G = (V,E) along with a
threshold k ∈ Z+ and the objective is to determine whether G admits a vertex cover of size at most
k. Given G = (V,E) and k, we construct a coverage instance 〈[n], T, {It}

T
t=1〉 with n = |E| and

T = k. That is, we associate an agent with each edge in E. Furthermore, for each vertex v ∈ V ,
we define Ev ⊆ E as the subset of edges that are incident on v, i.e., all edges in Ev are covered by
vertex v. For each t ∈ [T ], the family It ⊆ 2[n] is constructed as follows It = {Ev}v∈V . We will
show that

(I) If the given graph G admits a vertex cover of size at most k, then in the fair coverage instance
there exists a solution F with NSWc(F) ≥ 1.

(II) Otherwise, if all the vertex covers in G are of size more than k, then NSWc(F) = 0, for all
solutions F .

Here, the optimal value of NSWc is either at least 1 or it is 0. Therefore, any γ-approximation
algorithm (with γ < ∞) can be used to distinguish between these two cases. That is, using a γ-
approximation algorithm, one can decide whether there is a vertex cover of size at most k or not.
This overall shows that it is NP-hard to approximate the optimal NSWc within any multiplicative
factor. To complete the proof we will next establish properties (I) and (II).

For (I), consider a size-k vertex cover U ⊆ V and populate the size-k tuple F = (Eu)u∈U , i.e.,
for each vertex u ∈ U we include the set of covered edges Eu in the tuple F . By construction,
for each vertex v and every t ∈ [T ], we have Ev ∈ It. Hence, F is a legitimate solution in the
constructed coverage instance. Moreover, the fact that U is a vertex cover implies that every edge
e ∈ E is contained in at least one of the subsets in F . Therefore, for all the agents e (associated
with the edges), we have ce(F) ≥ 1 and NSWc(F) ≥ 1.

For (II), assume, towards a contradiction, that there exists a solution F = (F1, F2, . . . , Fk) with
the property that NSWc(F) > 0; recall that T = k. This bound implies that ce(F) ≥ 1 for every
agent e ∈ [n]. Also, note that for each Ft ∈ It there exists a vertex ut ∈ V such that Ft = Eut .
Write U to denote the subset of vertices whose incident edge sets appear in F , i.e., U := {ut}

k
t=1.

Since ce(F) ≥ 1 for all agents e ∈ [n], we get that U is a vertex cover of cardinality at most k. This,
however, contradicts the fact that, in the underlying graph G, all vertex covers are of size more
than k. Hence, property (II) holds.

The theorem stands proved. ⊓⊔
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