
Toward Scientific Workflows in a Serverless World

Aakash Khochare and Yogesh Simmhan
Indian Institute of Science, Bangalore 560012 INDIA

Email: {aakhochare, simmhan}@IISc.ac.in

Sameep Mehta and Arvind Agarwal
IBM India Research Lab, Bangalore INDIA

Email: {sameepmehta, arvagarw}@in.ibm.com

Abstract—Serverless computing and FaaS have gained pop-
ularity due to their ease of design, deployment, scaling and
billing on clouds. However, when used to compose and orchestrate
scientific workflows, they pose limitations due to cold starts,
message indirection, vendor lock-in and lack of provenance
support. Here, we propose a design for a Serverless Scientific
Workflow Orchestrator that overcomes these challenges using
techniques like function fusion, pilot invocations and data fabrics.

I. INTRODUCTION

Serverless computing allows applications to be packaged,

deployed and managed within clouds, typically in containers,

without the developer having to configure the hosting environ-

ment or manually scaling the cloud resources at runtime [1].

Function as a Service (FaaS) has evolved from the micro-

services pattern of decomposing an application into stateless

building-block functions and executing them in an event-driven

manner. The functions themselves are deployed and managed

using a serverless design. FaaS has garnered popularity as it

out-sources the deployment, resilience and elastic auto-scaling

to the cloud service provider, allowing the developer to focus

on the logic. It also offers fine-grained billing, based only on

resources used during the function execution.

FaaS and serverless can democratize scientific research on

the cloud [2], with early efforts on using FaaS to design

and run eScience applications on clouds [3]. Workflows have

long been popular to compose scientific applications in a

modular and reusable manner, and be executed on distributed

resources by workflow systems [4]. While FaaS helps function

developers and cloud operators, it still poses challenges for the

application developer who assembles these functions together,

and on the execution model due to performance inefficiencies

for pipelines. In this short paper, we attempt to answer the

question: How can scientific workflows be intuitively composed
from FaaS functions, and efficiently orchestrated on the cloud?
We first identify some of the limitations of FaaS for scientific

workflows (§ II), and then propose the SerWO workflow
orchestrator design to address these deficiencies (§ III).

II. LIMITATIONS OF WORKFLOWS USING SERVERLESS

In FaaS, developers provide a stateless function logic in

one of a variety of languages. Each function is executed in

an exclusive container or micro-VM. Functions are invoked

through an API or triggered based on an event, with a cloud

gateway routing the request to an available container. The

cloud provider instantiates new containers and spins down

idle ones, based on the request load. The event-driven model

can be used to chain functions. Functions do not directly

communicate with each other, instead using cloud message

brokers or storage to trigger execution and transfer data.

There is limited support for composing functions into work-

flows or dataflows, e.g., using AWS Step Functions. Most

are tightly-coupled to specific cloud environments. Common

standards are still evolving, e.g., CNCF’s Serverless Workflow.

Scientific workflow platforms for serverless execution on

public clouds have been proposed [5]. But they suffer from

several of the limitations of serverless, as described below:

a) Cold Starts: In a serverless execution, a container is

provisioned on-demand when a function is invoked, with a

startup latency of 100s of ms. If the function is not called

often, none of its containers may be active to reduce costs. For

one-off or periodic scientific workflows, all function containers

will be incrementally instantiated as the workflow executes,

causing O(secs) cumulative startup latencies. Some [6] have

proposed to use IaaS VMs to host short functions to prevent

cold-starts, but this mitigates the benefits of serverless.

b) Message Indirection: Serverless functions are not IP-

addressable since their containers are transient. Hence, point-

to-point communication is not possible between adjacent func-

tions chained in a workflow. Functions use message brokers or

database triggers to coordinate a workflow, with cloud storage

for larger payloads. This indirection causes 2-rounds of I/O

or network communication, besides the monetary cost for

the operations. This is amplified in data-intensive scientific

workflows that pass large files between workflow tasks.

c) Hybrid Clouds: eScience functions may have data

or hardware dependencies that tie them to specific cloud

providers, or even to edge resources co-located with instru-

ments. Some functions may require longer execution times,

which exceed limits set by some FaaS providers, e.g., 900s
for AWS Lambda. So scientific workflows may reasonably

expect to execute functions in a multi-cloud environment.

However, current FaaS platforms are proprietary to individual

cloud providers, or limited to a single data center. Existing

solutions [7] end up switching between FaaS and local HPC

clusters, but fail to offer a purely serverless design.

d) Provenance Support: Data Provenance is essential for

reproducibility in scientific workflows [8]. While serverless of-

fer fine-grained billing and metrics, this needs to be annotated

and coupled with the workflow orchestration to translate into

meaningful provenance. This becomes even more challenging

in a hybrid cloud setup, with distributed data repositories.

399

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00057

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 e
-S

ci
en

ce
 (e

-S
ci

en
ce

) |
 9

78
-1

-6
65

4-
61

24
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
CI

EN
CE

55
77

7.
20

22
.0

00
57

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 16,2023 at 08:28:13 UTC from IEEE Xplore. Restrictions apply.

Cosmos DB

Get Put

Azure Data Center

Azure Funcs. AWS Lambda

S3

AWS Data Center
Minio

Get

OpenFaas

Edge/Private Cloud

Put

SerWO

Function
Fusion

Partition &
Placement

Orchestration

Prov. Repo.

Pilot
Invocations

Prov.
CollectionTrigger Pilot

Get Put
Fybrik

User DAG

Inter-Cloud
Coordination

P
F
Y
B

F
Y
B

Submit

Metrics, Audit
& Traces

Fig. 1: Architecture of SerWO on a Hybrid Cloud

III. SERVERLESS WORKFLOW ORCHESTRATOR DESIGN

The limitations that we have identified for scientific work-

flows executing serverless functions is not necessarily new [6],

[7]. However, we advocate a pure serverless FaaS approach to

addressing these limitations, thus retaining all the advantages

of serverless computing. We also propose a workflow orches-

trator that is agnostic to the cloud service provider – public,

private or even edge – and supports a hybrid cloud deployment.

Fig. 1 shows the architecture of our proposed Serverless sci-
entific Workflow Orchestrator (SerWO). It is described below

in detail. In summary, SerWO accepts a workflow as a Directed

Acyclic Graph (DAG), defined using an open format like

CNCF’s serverless workflow specification. It then performs

function fusion to group adjacent functions, and partitions
and deploys sub-DAGs onto one or more FaaS providers.

The placement is based on function dependencies, and on

performance and cost constraints specified for the workflow.

SerWO then orchestrates the execution of the DAG func-

tions, potentially across data centers. Data exchange between

functions happen through a multi-cloud data fabric such as

Fybrik [9]. Before the execution of a function, the orchestrator

preemptively makes pilot invocations to warmup downstream

function containers and avoid cold-starts. Lastly, we track the

execution of the task transitions, function metrics and data

audit trail as part of a provenance repository.

a) Function Fusion: Adjacent functions in a workflow

DAG can be “fused” together into a single function, and

executed as a single function in one container. This can be ben-

eficial if the function execution time is so short that the con-

tainer startup overheads dominate, and the fused function has a

longer execution time and hence better overhead-amortization.

Secondly, fusion avoids indirect message/data passing over-

heads between adjacent tasks, doing an in-memory/intra-

container transfer than through Fybrik.

b) Placement and Orchestration in a Hybrid Cloud:
Functions with dependencies on specific data centers, or

pricing arbitrage across cloud providers are considered during

scheduling. We partition the functions in the DAG into sub-

DAGs, based on these dependency and performance needs,

such that each runs within one cloud data center or edge.

Each sub-DAG is deployed to the native FaaS platform for that

cloud, e.g., Step functions on AWS or OpenFaaS on a private

cloud or edge. So SerWO only has to actively coordinate only

at sub-DAG boundaries, with the coordination within functions

of a sub-DAG managed natively. SerWO could also cache and

return results of commonly executed idempotent functions. We

also leverage Fybrik [9], an emerging data fabric platform

for data orchestration across hybrid clouds. It makes data

discovery and access transparent, both within the same cloud

data center and across cloud providers. We automatically wrap

functions with Fybrik to put and get messages/data between

workflow tasks.
c) Pilot Invocations: We mitigate cold-starts by leverag-

ing the “pilot jobs” concept, used as place-holders in HPC

clusters for multi-level scheduling [10]. Rather, we use a

pilot invocation, which is a warm-up NoOp execution of a

downstream function in the DAG that activates at least one

container for that function but does not execute its business

logic. When a function A in the DAG is nearing completion,

the orchestrator does a pilot invocation of its successor func-

tion B so that B’s container is instantiated. It can even pre-

fetch the output data of A from Fybrik to further hide the data

transfer overheads. The pilot logic is part of our automated

function wrapper. The cost of a pilot execution is negligible,

but it avoids a cold-start while retaining a serverless design.
d) Data Provenance: We propose to integrate the audit

logs of the data fabric, which tracks payload exchange between

tasks within and across clouds, with the function execution

traces provided by the FaaS platforms and store a lineage

graph in a provenance repository, leveraging W3C PROV. This

can also help assert if data compliance constraints were met.

The implementation of SerWO is a work in progress, and

as part of future work, we propose to evaluate it against native

FaaS platforms on cost and performance.

REFERENCES

[1] K. Owens et al., “Serverless whitepaper v1.0,” Cloud Native Computing
Foundation (CNCF), Tech. Rep., 2018.

[2] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
serverless computing and function-as-a-service (faas) in industry and
research,” Tech. Rep., 2017.

[3] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric for
science,” in International Symposium on High-performance Parallel and
Distributed Computing (HPDC), 2020, pp. 65–76.

[4] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems (FGCS), vol. 25, no. 5, 2009.

[5] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions,” Future Generation Computer
Systems (FGCS), vol. 110, 2020.

[6] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making
serverless computing useful for hpc workflows via hybrid execution,” in
ACM Symp. on Princ. and Practice of Parallel Prog. (PPoPP), 2022.

[7] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in International Conference on Service-Oriented
Computing (ICSOC). Springer, 2017.

[8] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, 2005.

[9] M. Factor and R. Kat, “Fybrik: A cloud-native platform to control data
usage,” IBM Research, Tech. Rep., 2021.

[10] M. Turilli, M. Santcroos, and S. Jha, “A comprehensive perspective on
pilot-job systems,” ACM Computing Surveys (CSUR), vol. 51, 2018.

400

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 16,2023 at 08:28:13 UTC from IEEE Xplore. Restrictions apply.

