Heat Transfer Past a Rotationally Oscillating Circular Cylinder in Linear Shear Flow

This study investigates the unsteady, two-dimensional flow and heat transfer past a rotationally oscillating circular cylinder in linear shear flow. A higher order compact (HOC) finite difference scheme is used to solve the governing Navier–Stokes equations coupled with the energy equation on a nonuniform grid in polar coordinates. The hydrodynamic and thermal features of the flow are mainly influenced by the shear rate (K), Reynolds number (Re), Prandtl number (Pr), and the cylinder oscillation parameters, i.e., oscillation amplitude (ω_0), the frequency ratio (f_r). The simulations are performed for $Re = 100$, $Pr = 0.5 - 1.0$, $0.0 \leq K \leq 0.15$, and $0.5 \leq \omega_0 \leq 2.0$. The numerical scheme is validated with the existing literature studies. Partial and full vortex suppression is observed for certain values of shear parameter K. The connection between heat transfer and vortex shedding phenomenon is examined where a pronounced increase in the heat transfer is observed for certain values of oscillation parameter, relative to the nonshear flow case. [DOI: 10.1115/1.4054350]

Keywords: circular cylinder, rotational oscillation, heat transfer, shear flow, finite difference, Navier–Stokes equations

1 Introduction

Fluid flow and heat transfer around bluff bodies like circular cylinders have been a subject of great importance. Consequently, this subject is well-studied due to its practical applications and theoretical considerations [1–7]. Major applications encompass several industrial processes like tube-tank heat exchangers [8], eolian tones [9], flow control [10,11], mooring lines [12], offshore oil platforms [13,14], etc. Further applications are in the chips of various shapes and cooling of electronic components [15,16].

Most of the literature studies consider nonshear flows around circular cylinders for their experiments [13,17–24] and references therein. However, in reality, the nature of these flows is not exactly nonshear. Thus, they can be better demonstrated by considering their shear nature. An efficient way of simulating such flows is by considering a linear velocity profile with a constant shear at the inlet. For instance, a typical structure in the atmospheric boundary layer where a velocity gradient exists in the freestream. In fact, when the inflow freestream is a shear flow, it causes a troublesome interaction of the free shear layer with the boundary layer of the cylinder. This is due to the background vorticity in the freestream which further alters the wake structure, vortex shedding pattern, and the aerodynamic forces in a significant way. It is known that in the case of shear flows, vortex shedding is suppressed beyond a critical shear parameter value. This causes a significant reduction in the drag force [25]. Such flows also furnish details of new observations which help to understand the heat transfer mechanism in the case of heatged cylinders. It is well established that there is a strong coupling between the vortex shedding and heat transfer. A significant enhancement of heat transfer has been observed under certain forcing conditions, in the case of oscillating cylinders in nonshear flows. Saxena and Laird [26] reported that the forced oscillation of the cylinder results in a significant enhancement of heat transfer as the oscillation frequency of the cylinder approaches the vortex shedding frequency.

Leung et al. [27] reported heat transfer enhancement with increasing either amplitude of oscillation or frequency at higher Reynolds numbers 3000 to 50000. Childs and Mayle [28] carried out a theoretical investigation on the effect of rotational oscillations on heat transfer for very small amplitudes of oscillations. The results showed no enhancements in heat transfer which was attributed to the boundary layer assumptions. Chin Hsiang et al. [29] reported that the coefficient of heat transfer can be significantly increased by the oscillation of the cylinder for $0 \leq Re \leq 4000$. Moreover, they noted that the lock-on and turbulence effects also play important roles in the heat transfer mechanism. Mahfouz and Badr [19] studied the forced convection from a heated cylinder with rotational oscillation placed in a nonshear stream. Their results show the occurrence of the lock-on phenomenon within a band of frequencies close to the natural frequency. Further, a significant enhancement in the heat transfer is observed within the lock-on frequency range. Fu and Tong [30] numerically studied the flow structures and heat transfer characteristics of a heated cylinder oscillating transversely. They concluded that the interaction of oscillating cylinder and vortex shedding dominates the wake leading to the periodicity of thermal fields in the lock-on regime. As a result, the heat transfer is enhanced remarkably. Ghazanfarian and Nobari [23,24] analyzed the mechanism of heat transfer from a rotating circular cylinder performing cross and inline oscillations. The results showed that the heat transfer is increased significantly in the lock-on regime and vortex shedding is suppressed beyond a critical rotation speed. Also, the average Nusselt number and the drag coefficient decrease rapidly with an increase in the rotational speed of the cylinder. Heat transfer improvement in a channel over a rotationally oscillating cylinder was analyzed by Beskok et al. [31]. They reported that the maximum heat transfer was acquired when the oscillating frequency is 80% of the vortex shedding frequency of the fixed cylinder. Meanwhile, the analysis of the heat transfer phenomenon from a fixed heated cylinder with the circular motion in a nonshear stream was done by ALMdallal and Mahfouz [32]. He observes a significant increase in heat transfer rate with increasing amplitude of circular motion.

However, very few studies exist in the literature for flows past circular cylinders subject to shear flows. For instance, fixed circular cylinders by Jordan and Fromm [33], Cao et al. [34–36], Wu and Chen [37], Lei et al. [38], Sumner and Akosile [39], Kappler

Contributed by the Heat Transfer Division of ASME for publication in the Journal of Heat Transfer. Manuscript received September 27, 2021; final manuscript received April 8, 2022; published online May 11, 2022. Assoc. Editor: Ranga Narayan.
The conservation equations that govern the two-dimensional flow motion are the continuity and momentum equations. The analysis of heat transfer is based on the two-dimensional unsteady thermal energy conservation principle. The dimensionless form of these governing equations in cylindrical polar coordinates \((r, \theta)\) can be written as (Ref. [20])

\[
\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} = \frac{Re}{2} \left(\frac{\partial \omega}{\partial r} + \nu \frac{\partial \omega}{\partial \theta} + \frac{\partial \omega}{\partial \theta} \right)
\]

(3)

\[
\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = -\omega
\]

(4)

\[
\frac{\partial^2 \Theta}{\partial r^2} + \frac{1}{r} \frac{\partial \Theta}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Theta}{\partial \theta^2} = \frac{RePr}{2} \left(\frac{\partial \Theta}{\partial r} + \nu \frac{\partial \Theta}{\partial \theta} + \frac{\partial \Theta}{\partial \theta} \right)
\]

(5)

Here \(\omega\) represents vorticity and \(\psi\) for stream function, \(u\) and \(v\) represents the radial and transverse components of velocity, respectively. The velocity components \(u, v\) in terms of stream function \(\psi\) can be written as

\[
u = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v = -\frac{\partial \psi}{\partial r}
\]

(6)

and vorticity \(\omega\) is

\[
\omega = \frac{1}{r} \left(\frac{\partial}{\partial r} (vr) - \frac{\partial u}{\partial \theta} \right)
\]

(7)

Now, the boundary conditions correlated with Eqs. (3)–(5) are explained. On the surface of the cylinder, the boundary conditions for velocity components are those of no-slip, impermeability and isothermal conditions, i.e.,

\[
u = 0, \quad v = 0, \quad \psi = 0, \quad \frac{\partial \psi}{\partial r} = -x \quad \text{and} \quad \Theta = 1 \quad \text{when} \quad r = 1
\]

(8)

The surface vorticity condition can be approximated by using Eq. (4) together with the condition (8) is given as

\[
\omega = \frac{\psi}{r - \frac{\partial^2 \psi}{\partial r^2}} \quad \text{when} \quad r = 1
\]

(9)

The far-field circular boundary is divided into inlet and outlet boundaries, i.e., \(x \leq 0\) and \(x > 0\), respectively. The origin is at the center of the cylinder. At the inlet, a linear shear flow condition

\[
u = (U_o + Kr \sin \theta) \cos \theta, \quad v = -(U_o + Kr \sin \theta) \sin \theta
\]

is applied whereas the convective boundary condition

\[
\frac{\partial \phi}{\partial t} + U_o \frac{\partial \phi}{\partial r} = 0
\]

(11)

for all variables, i.e., \(\phi = u, v, \psi, \) or \(\omega\) in the radial direction is applied at outlet. The inlet boundary condition for stream function is approximated by using Eq. (6) given below

\[
\psi = \left(r - \frac{1}{r} \right) \sin \theta + \frac{K}{4} \left(\frac{1}{r} - 1 \right) \frac{K}{2} \left(r^2 - \frac{1}{r^2} \right) \sin^2 \theta
\]

(12)

while the vorticity at the inlet is obtained by the kinematic definition of vorticity given in Eq. (4) as (Milne-Thomson [57])

\[
\omega = -K
\]

(13)

and

\[
\Theta = 0
\]

(14)
Since the fully developed flow is independent of initial conditions, all the simulations may be started with arbitrary initial conditions. Also, the periodic characteristic of the solution requires that
\[x_j \theta = 0 \equiv x_j \theta = 2\pi; \]
\[w_j \theta = 0 \equiv w_j \theta = 2\pi; \]
\[H_j \theta = 0 \equiv H_j \theta = 2\pi \]
(15)

2.1 Heat Transfer Parameters. Initially, constant temperature cylinder surface conducts heat to the adjacent layer of fluid followed by its convection with the fluid motion in the wake. The heat conduction from the surface occurs only in the radial direction which affects the radial temperature gradient at the surface followed by its effect on the local radial heat flux. The

![Diagram](image1)

Fig. 1 (a) Schematic diagram of the flow domain, here \(\phi = u, v, \psi, \) or \(\alpha \), (b) non-uniform polar mesh around the cylinder, and (c) close up view of the cylinder

![Diagram](image2)

Fig. 2 Variation of local Nusselt number distribution, \(Nu \), over surface of the cylinder computed by present scheme for three different grid sizes 151 \(\times \) 151, 181 \(\times \) 181 and 221 \(\times \) 221 for \(Re = 100, \alpha = 0.5, \) and \(K = 0.1 \)

![Diagram](image3)

Fig. 3 Distribution of surface averaged Nusselt number with time at \(Re = 100, \alpha = 0.25, \) and \(K = 0.1 \)
The values of \overline{Nu} for $Re=100$, $x_m=0.5$ and $K=0.1$ by using three different time steps, Δt

<table>
<thead>
<tr>
<th>Δt</th>
<th>\overline{Nu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0025</td>
<td>4.0318</td>
</tr>
<tr>
<td>0.0050</td>
<td>4.0176</td>
</tr>
<tr>
<td>0.0100</td>
<td>4.0019</td>
</tr>
</tbody>
</table>

dimensionless local heat flux in the radial direction is estimated in terms of the local Nusselt number, Nu, defined as

$$Nu = \frac{2hR_0}{k} = \frac{\gamma(2R_0)}{k(T_s - T_{\infty})}$$

(16)

where h is the local heat transfer coefficient, k represents the thermal conductivity of the fluid and γ represents the surface local radial heat flux defined as $\gamma = -k \frac{dT}{dr}$.

Average Nusselt number, Nu, represents the dimensionless heat transfer from the surface of the cylinder, defined as

Fig. 4 Isotherm contours superimposed with vorticity contours at times (left) $t = 380$ and (right) $t = 395$ for $Re = 100$, $x_m = 0.5$, $K = 0.1$, and $f_r = 1.0$. Colored contours represent isotherm contours while black lines represent vorticity contours.

Fig. 5 The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours over one period of cylinder oscillation, T, for $Re = 100$, $x_m = 0.5$, and $f_r = 1.0$, at $K = 0.05$
Here, h is the average heat transfer coefficient defined as

$$h = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{Nu d\theta}{h}$$

(17)

and the grid resolution adjusts by varying the value of the stretching parameter (λ). The HOC discretization of Eqs. (3)–(4) is the same as given in Kumar and Ray [7] and is not repeated here for the sake of conciseness. So, it is sufficient to discuss the numerical discretization of the energy Eq. (5). At any grid point (r, θ), the HOC discretization of Eq. (5) can be given as

$$[C_{11} \delta_{r}^{2} + C_{12} \delta_{\theta}^{2} + C_{13} \delta_{r} + C_{14} \delta_{\theta} + C_{15} \delta_{r} \delta_{\theta} + C_{16} \delta_{r} \delta_{\theta} + C_{17} \delta_{r}^{2} \delta_{\theta} + C_{18} \delta_{r} \delta_{\theta}^{2}] \Theta_{n+1}$$

$$+ [C_{21} \delta_{r}^{2} + C_{22} \delta_{\theta}^{2} + C_{23} \delta_{r} + C_{24} \delta_{\theta} + C_{25} \delta_{r} \delta_{\theta} + C_{26} \delta_{r} \delta_{\theta} + C_{27} \delta_{r}^{2} \delta_{\theta} + C_{28} \delta_{r} \delta_{\theta}^{2}] \Theta_{n}$$

(19)

where the time period between $t_1 = 200$ and $t_2 = 400$ is taken after the flow reaches the periodic state and covers more than one cycle.

3 Numerical Scheme

The numerical scheme relies on the higher order compact (HOC) finite difference discretization of the governing equations of motion and energy on nonuniform polar grids, similar to the one employed in the work of [7,20]. To discretize the governing Eqs. (3)–(5), uniform grid spacing is used along the θ–direction and nonuniform grid spacing in the r–direction. To get nonuniform grid spacing along the r–direction, we have used the following stretching functions

$$r_j = \exp\left(\frac{2\pi j}{r_{max}}\right)$$

and

$$\theta_i = \frac{2\pi i}{\theta_{max}}$$

The detailed expression of the coefficients $C_{11}, C_{12}, \ldots, C_{18}$ and $C_{21}, C_{22}, \ldots, C_{28}$ are presented in the Appendix 1. The detailed expressions of $r_j, r_0, \theta_i, \theta_0$ and the nonuniform difference operators $\delta_r, \delta\theta, \delta_r \delta\theta$ are given in Appendix 2. The discretization and numerical implementation of the boundary conditions for ψ, u, v, ω and Θ are discussed in [5,7,20]. The heat transfer characteristics and flow physics is determined from the distributions of evolution of dimensionless stream function, vorticity and isotherm contours.

4 Validation

The accuracy and reliability of the scheme on the present model have already been ascertained in the previous works of authors.

![Fig. 6](image-url)
Investigation is done to determine the optimal choice of grid size, time-step size, and far-field boundary by doing the computation of Nusselt number on three different grid sizes 151×151, 181×181, and 221×221 as shown in Fig. 2. No significant variation in the \bar{Nu} distribution curves is noticed by varying the grid size. Further the time average value of Nusselt number (\bar{Nu}) is shown for three different time steps Δt as 0.0025, 0.005, 0.01 (see Table 1). It is found that the maximum relative deviation in \bar{Nu} is about 0.9\% by varying the time-step from 0.0025 to 0.01. Following the same far-field distance \[7\], we found that the optimal choice of parameters as grid size 181×181, time-step $\Delta t = 0.01$ and far-field $R_\infty = 25R$ are sufficient to capture the flow phenomenon accurately.

Further, comparisons have been made with analytical and numerical data available in the literature. Figure 3 shows the comparison between the present result of steadily rotating circular cylinder in shear flow and the corresponding results of Abdella and Nalitolela \[52\] for the time variation of average Nusselt number, \bar{Nu} at $Re = 100$, $\alpha = 0.5$ and $K = 0.1$. The present results agree well with the numerical and analytical results.

5 Results and Discussion

The results are presented for different parameter values such as Prandtl number, $Pr = 0.7$; shear rate, $K = 0.0 - 0.15$; oscillation amplitude, $x_m = 0.5 - 2.0$ and frequency ratio $f_r = 1.0$ for a fixed value of Reynolds number, $Re = 100$. Figure 4 exhibits the isotherm contours superimposed with vorticity contours at two different time steps for $x_m = 0.5$, $K = 0.1$, $f_r = 1.0$, and $Re = 100$. It can be seen that the contour of isotherms almost overlaps with the vorticity contours. This indicates that the thermal energy and vorticity generation mechanism experience similar convection and diffusion phenomenon in the flow. The heat is advected from the cylinder wall in the near wake, which is similar to the way vorticity is advected from the cylinder wall. The frequency of vortex shedding and the size of vortices significantly affects the heat convection process because every vortex carries a certain amount of heat \[19,20\].

Figure 5 displays the isotherm contours and local Nusselt number distribution plots along surface of the cylinder over one period of cylinder oscillation for $K = 0.05$, $x_m = 0.5$, and $Re = 100$. Here the vortex shedding modes are locked-on over one period of cylinder oscillation and the vortex shedding mode is identified as $1S(T)$. Initial investigation of these isotherm contours show developing vortices like chunks of heated fluid being convected downstream, asymmetrically about $x-$axis. The phenomenon of heat transfer is clear from high concentrations of isotherms close to the cylinder surface and low concentrations away from it. This indicates a very thin thermal boundary layer and hence large temperature gradients near the cylinder surface. Interestingly, the vortices are shed only from the upper surface of the cylinder with one

![Fig. 7 The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours over one period of cylinder oscillation, T, for $Re = 100$, $x_m = 0.5$, and $f_r = 1.0$, at $K = 0.15$](https://example.com/figure7.png)
vortex shed per one period of cylinder oscillation which is significantly different from the nonshear case (Ref. [20]). The size of the vortices shed is bigger than the nonshear case. This phenomenon is due to the combined effect of the shear rate and oscillations of the cylinder. Further, the wake flow is deflected upwards because of the addition of vorticity generated by rotational oscillations of a cylinder and background negative vorticity due to inlet shear ($\alpha = -K$). Figure 5 shows that local Nusselt number distribution at the cylinder surface have the maximum values near the front stagnation point ($\theta \approx 180\,\text{deg}$). The locations of maximum values in Nusselt number distribution also change during cylinder oscillation period in the range $175\,\text{deg} < \theta < 198\,\text{deg}$. This is due to the combined effect of the oscillation amplitude and shear rate. However, the location of maximum peaks in Nusselt number distribution does not show a substantial change in the case of nonshear flow (Ref. [20]). The Nusselt number distribution becomes asymmetric around the front stagnation point because of the asymmetric wall shear gradient. This reveals that the heat transfer mechanism at the upper surface of the cylinder is different from the heat transfer mechanism at the lower surface of the cylinder. Indeed, similar observations were quoted by Nemati et al. [53] for the case of shear flow past a rotating cylinder. An additional local maximum peak in the local Nusselt number distribution curve in the range $20\,\text{deg} < \theta < 50\,\text{deg}$ is observed in Fig. 5. This means the vortex shedding phenomenon causes some enhancement in the heat transfer process in the vicinity of the rear stagnation point similar to the nonshear case.

When the shear rate, K, increases to 0.1, as shown in Fig. 6, the vortex shedding is locked-on over two periods of cylinder oscillation. Here, the vortex shedding mode is identified as $2S(2T)$. The size of the vortices shed is bigger than the size at $K = 0.05$. The value of the maximum peak in the Nusselt number distribution decreases as compared to the case when $K = 0.05$. There is no vortex shedding at the front stagnation point. A lower peak value of the Nusselt number at the front stagnation indicates that more and more heat is being transferred through conduction. The location of

Fig. 8 The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours over: (a) one period of cylinder oscillation, T, for $K = 0.05$, (b) two periods of oscillation, $2T$ for $K = 0.1$, and (c) one period of oscillation, T, for $K = 0.15$; at $Re = 100$, $x_m = 1.0$ and $f_r = 1.0$
this maximum peak shifts to $\theta \approx 204 \deg$ as compared to $\theta \approx 180 \deg$ (corresponding to $K = 0.05$). The distribution of the Nusselt number curve at the lower half surface of the cylinder $(180 \deg < \theta < 180 \deg)$ is significantly different from the distribution of the Nusselt number curve at the upper half $(0 \deg < \theta < 180 \deg)$. It is observed that the lower half generates more heat than the upper half which can be attributed to relatively lesser fluid velocity near the lower half than the upper half. Therefore shear rate can significantly alter the dynamics of the heat transfer mechanism.

Further increase in K to 0.15 in Fig. 7 leads to a full vortex shedding suppression. The isotherm contours are elongated in the stream-wise direction showing nil development of vortex. Vortex shedding suppression is also been observed for the case of rotating cylinder by [21–24,49,58,59]. The value of maximum peaks in the Nusselt number distribution plot is observed to oscillate in the range $180 \deg < \theta < 270 \deg$. The value of this maximum peak is the highest amongst $K = 0.05$ and $K = 0.1$ cases. The distribution of Nu curves in the lower half is different from that in the upper half, similar to the case when $K = 0.1$. However, the elongation of the wake causes some increment in the heat transfer at the surface of the cylinder in $40 \deg < \theta < 70 \deg$, which is apparent from the additional local maximum peak there. No such vortex shedding suppression is observed for the case of nonshear flow (Ref. [20]) corresponding to the same set of numerical parameter values.

In Fig. 8, when the oscillation amplitude, z_m, increases to 1.0, the vortex shedding modes are identified as 1S(T), 2S(2T) corresponding to $K = 0.05$, 0.1, respectively. In this case also, the size of the vortices increases with an increase in K value up to 0.1. Interestingly, it is observed from the isotherm contours corresponding to $K = 0.05$ that the vortex that begins to develop from the lower surface of the cylinder eventually merges into the wake without getting detached. The development of vortices from the lower surface $(180 \deg < \theta < 360 \deg)$ of the cylinder tend to cease with increasing K till $K = 0.1$ leading to nil generation of vortices from both sides when $K = 0.15$. Similar partial vortex shedding suppression is observed by Chew et al. [49] for the case

![Fig. 9](https://example.com/fig9.png)

Fig. 9 The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours over: (a) one period of cylinder oscillation, T, for $K = 0.05$, (b) two periods of oscillation, $2T$ for $K = 0.1$, and (c) one period of oscillation, T, for $K = 0.15$; at $Re = 100, z_m = 2.0$ and $f_r = 1.0$.
rotating circular cylinder. The phenomenon of heat transfer has a similar description to that obtained at \(\alpha_m = 0.5 \). However, the value of the maximum peak in the Nusselt number distribution plot increases for \(\alpha_m = 1.0 \) relative to \(\alpha_m = 0.5 \) case, corresponding to all considered \(K \) values.

With further increase in \(\alpha_m \) to 2.0 (Fig. 9), the vortex shedding modes are identified as 1S(T), 2S(2T), 2S(T) corresponding to \(K = 0.05, 0.1, 0.15 \), respectively. A first inspection of the isotherm contours reveals that vortices are shed only from the upper surface of the cylinder, for all \(K \) values. It is observed that the size of the vortices decreases with increasing \(K \) continuously as opposite to the previous values of \(\alpha_m \), where the size first increases up to \(K = 0.1 \) and then decreases. As \(K \) increases, the vortex development length in the stream-wise direction shortens where more number of vortices are seen in the wake. This is due to the combined effect of large \(K \) value and high rotation rates leading to complex flow structure. Similar shortening of the vortex development length is observed by Mittal and Al-Mdallal [20] for non-shear flow case with increasing the frequency ratio \(f_r \). The values of maximum peaks in \(Nu \) plots for \(\alpha_m = 2.0 \) are minimum amongst \(\alpha_m = 0.5 \) and 1.0 cases corresponding to all considered \(K \) values. Significant fluctuations in the maximum-minimum peaks in \(Nu \) plots are seen during the cylinder oscillation period at a high shear rate \(K = 0.15 \). The locations and values of the maximum peaks show a substantial change during the cylinder oscillation period for \(K = 0.15 \). Maximum peak is observed at \(\theta \approx 324^\circ \) when the cylinder completes half of its oscillation period. This observation is attributed to both the high shear rate and large oscillation amplitude of the cylinder oscillation which will definitely affect the structure of the fluid attached to the cylinder.

Figure 10 summarizes the locked-on vortex shedding modes for \(f_r = 1.0, K \in [0.0, 0.15] \) and \(\alpha_m \in [0.5, 2.0] \) at \(Re = 100 \). When the inflow freestream is a shear flow, the vortex shedding from the surface of the cylinder over one period of cylinder oscillation gets delayed relative to the non-shear case. For instance, two vortices are shed from the surface of the cylinder over one oscillation period for non-shear case \((K = 0.0) \) while one vortex is shed during one oscillation period for shear flow. The number of vortices that are being shed during one oscillation period does not change with \(\alpha_m \) for the fixed value of \(K \). Full vortex shedding suppression is observed for \(K = 0.15 \) and \(\alpha_m < 2.0 \). The vortex shedding mode for \(K = 0.15, \alpha_m = 2.0 \) is similar to the non-shear case \((0.5 \leq \alpha_m \leq 2.0) \).

Figure 11(a) shows the effect of \(K \) on the variation of local Nusselt number over cylinder surface for \(\alpha_m = 0.5, f_r = 1.0 \) at \(Re = 100 \). For non-shear flow, the variation of local Nusselt number shows the maximum peak at \(\theta \approx 180^\circ \). For shear flow, the value of the maximum peak decreases with increasing \(K \) up to \(K \leq 0.1 \) and increases again for \(K = 0.15 \), where it attains the maximum value. The location of the maximum peak for \(K = 0.0, 0.05 \) and 0.1 is nearly the same but a significant shift in the location of the maximum peak along the cylinder surface is observed for \(K = 0.15 \). Similar observations are documented by Yan and Zu [60] for the cylinder rotating in a non-shear flow and by Nemati et al. [53] for the cylinder rotating in a shear flow. The effect of rotational parameter \(\alpha_m \) on the average heat transfer rate can be observed from Fig. 11(b) for different values of \(K \). \(\alpha_m \) plays a significant role in the heat transfer phenomenon for the higher shear rate \(K = 0.15 \). When \(K = 0.15 \), heat transfer rate increases significantly from 6.5071 (\(\alpha_m = 0.5 \)) to 7.3052 (\(\alpha_m = 1.0 \)) followed by a sudden drop to 5.5650 (\(\alpha_m = 2.0 \)). Extraordinary fluctuating behavior is attributed to a very high shear rate and the oscillation of the cylinder surface. This may be due to the fact that the background vorticity in the freestream dominates the vorticity generated from the cylinder surface which is unlikely for the lower shear rate.

In order to describe the effect of Prandtl number, \(Pr \), on heat transfer, the variation of local Nusselt number on the surface of cylinder for different values of \(Pr \) and \(\alpha_m = 2.0, f_r = 1.0 \) at \(K = 0.1 \) in Fig. 12(a). With an increase in \(Pr \), \(Nu \) plots show a translation toward positive \(y \)-axis, similar to the non-shear flow case (Refs. [20, 24]) and the locations of maximum peaks are also the same. The effect of \(Pr \) on the overall heat transfer can be seen from Fig. 12(b) for both shear and non-shear flows. The time-averaged values of heat transfer rate for \(\alpha_m = 1.0, f_r = 1.0 \), and
Heat transfer rate is reported at certain values of rotational speed uncovered at high shear rates where a pronounced increase in the of the cylinder for a fixed rotational speed. New findings are numerical results reveal that shearing of the inlet freestream can shedding and heat transfer mechanism in a significant way. The inlet causes a troublesome interaction of the free shear layer with the boundary layer of the cylinder due to background vorticity in the freestream. This phenomenon alters the wake structure, vortex shedding and heat transfer mechanism in a significant way. The numerical results reveal that shearing of the inlet freestream can lead to partial or full vortex shedding suppression from the surface of the cylinder for a fixed rotational speed. New findings are uncovered at high shear rates where a pronounced increase in the heat transfer rate is reported at certain values of rotational speed \((x_m = 0.5, 1.0)\), relative to the nonshear flow. A reduction in the heat transfer rate is reported at a low shear rate \((K = 0.05)\) for all considered values of \(x_m\), relative to the nonshear flow case. However, the heat transfer rate increases with an increase in the values of \(K (K > 0)\) for all considered values of \(x_m\). For high shear rate \((K = 0.15)\), a significant increase in the heat transfer rate is observed when \(x_m\) increases \((0.5 \leq x_m \leq 1.0)\) followed by a sudden drop to minimum \((1.0 \leq x_m \leq 2.0)\).

Future work encompasses a comprehensive study of the heat transfer mechanisms for a wide range of frequency ratios \((f_t)\), Reynolds numbers \((Re)\) to draw more general conclusions.

6 Conclusion

This study numerically investigates the heat transfer from a two-dimensional isothermal circular cylinder rotational oscillations in a linear shear flow. The coupled governing equations of flow and heat transfer are solved by using higher order compact finite difference scheme. The simulations are performed for \(Re = 100, Pr = 0.5 - 1.0, x_m \in [0.5, 2.0], f_t = 1.0,\) and \(K \in [0.0, 0.15]\) to address an increase or decrease in the heat transfer rate relative to nonshear flow. The introduction of shear at the inlet causes a troublesome interaction of the free shear layer with the boundary layer of the cylinder due to background vorticity in the freestream. This phenomenon alters the wake structure, vortex shedding and heat transfer mechanism in a significant way. The numerical results reveal that shearing of the inlet freestream can lead to partial or full vortex shedding suppression from the surface of the cylinder for a fixed rotational speed. New findings are uncovered at high shear rates where a pronounced increase in the heat transfer rate is reported at certain values of rotational speed \((x_m = 0.5, 1.0)\), relative to the nonshear flow. A reduction in the heat transfer rate is reported at a low shear rate \((K = 0.05)\) for all considered values of \(x_m\), relative to the nonshear flow case. However, the heat transfer rate increases with an increase in the values of \(K (K > 0)\) for all considered values of \(x_m\). For high shear rate \((K = 0.15)\), a significant increase in the heat transfer rate is observed when \(x_m\) increases \((0.5 \leq x_m \leq 1.0)\) followed by a sudden drop to minimum \((1.0 \leq x_m \leq 2.0)\).

Future work encompasses a comprehensive study of the heat transfer mechanisms for a wide range of frequency ratios \((f_t)\), Reynolds numbers \((Re)\) to draw more general conclusions.

Funding Data

- University Grants Commission (Grant No. No.F.4-2/2006 (BSR)/MA/18-19/0095; Funder ID: 10.13039/501100001501).

Nomenclature

- \(K\): Prandtl number
- \(R_\infty\): radius of the circular cylinder
- \(R_{re}\): radius of the circular far-field boundary
- \(Re\): Reynolds number \((= 2\rho U_\infty/\nu)\)
- \(r, \theta\): Polar coordinates
- \(t\): dimensionless time \((= T/\Omega)\)
- \(T_s\): surface temperature of the cylinder
- \(U_\infty\): space-averaged centerline velocity at inlet
- \(U_f\): free stream velocity
- \(V\): dimensionless tangential velocity
- \(X, Y\): Cartesian coordinates
- \(Z\): dimensionless oscillatory velocity \((= R_0 \tilde{Z}/U_\infty)\)
- \(\tilde{Z}\): dimensionless oscillatory velocity
- \(\tilde{X}\): dimensionless oscillation amplitude
- \(\tilde{x}_m\): dimensionless oscillation amplitude \((= R_0 \tilde{x}_m/U_\infty)\)
- \(\Delta t\): time step
- \(\psi\): dimensionless stream function
- \(\omega\): dimensionless vorticity

Appendix 1

\[
\begin{align*}
C_{11,ij} &= H_{11}Re - 0.5\Delta \alpha A_{1j},
C_{21,ij} &= H_{12}Re + 0.5\Delta \alpha C_{1j},
C_{12,ij} &= r^2 K_{12}Re - 0.5\Delta \alpha A_{2j},
C_{22,ij} &= r^2 K_{12}Re + 0.5\Delta \alpha C_{2j},
C_{13,ij} &= R(H_{11} - c_1 H_{12}) - 0.5\Delta \alpha C_{3j},
C_{23,ij} &= R(H_{11} - c_1 H_{12}) + 0.5\Delta \alpha C_{3j},
C_{14,ij} &= r^2 R(K_{11} + r_3 R_{vis} K_{12}) - 0.5\Delta \alpha C_{4j},
C_{24,ij} &= r^2 R(K_{11} + r_3 R_{vis} K_{12}) + 0.5\Delta \alpha C_{4j},
C_{15,ij} &= -0.5\Delta \alpha C_{5j},
C_{25,ij} &= 0.5\Delta \alpha C_{5j},
C_{16,ij} &= -0.5\Delta \alpha C_{6j},
C_{26,ij} &= 0.5\Delta \alpha C_{6j},
C_{17,ij} &= -0.5\Delta \alpha C_{7j},
C_{27,ij} &= 0.5\Delta \alpha C_{7j},
C_{18,ij} &= -0.5\Delta \alpha C_{8j},
C_{28,ij} &= 0.5\Delta \alpha C_{8j},
\end{align*}
\]

\(f_0\): natural frequency of vortex shedding i.e. vortex shedding frequency for fixed circular cylinder \((x_m = 0)\) in nonshear flow \((K = 0)\)

\(f_t\): frequency ratio \((= f/f_0)\)

\(f\): dimensional oscillation frequency

\(h, h\): local and average heat transfer coefficient

\(K\): shear rate

\(k\): thermal conductivity

\(Nu, Nu_t\): local and average Nusselt number

\(Pr\): Prandtl number

\(Re\): Reynolds number

\(t\): time

\(x, y\): Cartesian coordinates

\(\alpha\): oscillatory velocity \((= R_0 \tilde{Z}/U_\infty)\)

\(\tilde{Z}\): oscillatory velocity

\(\tilde{x}_m\): oscillation amplitude

\(\tilde{x}_m\): oscillation amplitude \((= R_0 \tilde{x}_m/U_\infty)\)

\(\Delta t\): time step

\(\nu\): kinematic viscosity of the fluid

\(\psi\): dimensionless stream function

\(\omega\): dimensionless vorticity
where,

\[C_{1ij} = 1 - 0.5c_1(r_f - r_b) - (H_{12} c_i^2 - c_i H_{11}) - 2H_{12} \left(Re(u_{ij}) \frac{1}{r_i^2} \right), \]

\[C_{2ij} = \frac{1}{r_i^2} + 0.5d_1(\theta_j - \theta_b) - \frac{2}{r_i^2}(H_{11} - H_{12} C_i) + \frac{6H_{12}}{r_i^2} - Re(v_{ij})(K_{11} + Re(v_{ij})K_{12}) - 2K_{12} Re(v_{ij}) r_i, \]

\[C_{3ij} = c_i - (H_{11} - c_i H_{12}) \left(Re(u_{ij}) \frac{1}{r_i^2} + \frac{1}{r_i^2} \right) - H_{12} \left(Re(u_{ij}) \frac{1}{r_i^2} - \frac{2}{r_i^2} \right) - Re(u_{ij}) \frac{1}{r_i^2}(K_{11} + Re(v_{ij})K_{12}) - K_{12} Re(v_{ij}) r_i^2, \]

\[C_{4ij} = -d_i - (H_{11} - c_i H_{12})(v_{ij} r_i - v_{ij}) \frac{Re}{r_i^2} - H_{12}(v_{ij} r_i^2 - 2v_{ij} r_i + 2v_{ij}) \frac{Re}{r_i^2} - Re(v_{ij}) r_i(K_{11} + Re(v_{ij})K_{12}) - K_{12} Re(v_{ij}) r_i^2, \]

\[C_{5ij} = -d_i (H_{11} - c_i H_{12}) - 2H_{12}(v_{ij} r_i - v_{ij}) \frac{Re}{r_i^2} + c_i r_i^2(K_{11} + Re(v_{ij})K_{12}) - 2K_{12} Re(v_{ij}) r_i^2, \]

\[C_{6ij} = (H_{11} - c_i H_{12}) \frac{1}{r_i^2} - \frac{4H_{12}}{r_i^2} + c_i K_{12} r_i^2, \]

\[C_{7ij} = -d_i H_{12} + r_i^2(K_{11} + Re(v_{ij})K_{12}), \]

\[C_{8ij} = \frac{H_{12}}{r_i^2} + K_{12} r_i^2, \]

\[H_{11} = \frac{1}{6} \{ 2(r_f - r_b) + c_r r_b \}, \]

\[H_{12} = \frac{1}{24} \{ 2(r_f^2 + r_b^2 - r_f r_b) + c_r r_b (r_f - r_b) \}, \]

\[K_{11} = \frac{1}{6} \{ \frac{2}{r_i^2} (\theta_f - \theta_b) - \theta_f \theta_b \}. \]

Appendix 2

The expressions for the finite difference operators appearing in the above equations are as follows:

\[\delta_r \phi_{ij} = \frac{\phi_{i+1,j} - \phi_{i-1,j}}{2\Delta r}, \]

\[\delta_\theta \phi_{ij} = \frac{\phi_{i,j+1} - \phi_{i,j-1}}{2\Delta \theta}, \]

\[\delta_r^2 \phi_{ij} = \frac{1}{\Delta r} \left\{ \phi_{i+1,j} - \frac{1}{r_f} \phi_{i,j} - \frac{1}{r_b} \phi_{i,j} + \phi_{i-1,j} \right\}, \]

\[\delta_\theta^2 \phi_{ij} = \frac{1}{\Delta \theta} \left\{ \phi_{i,j+1} - \frac{1}{\theta_f} \phi_{i,j} - \frac{1}{\theta_b} \phi_{i,j} + \phi_{i,j-1} \right\}, \]

\[\delta_r^2 \delta_\theta \phi_{ij} = \frac{1}{2\Delta r \Delta \theta} \left\{ \frac{1}{r_f} (\phi_{i+1,j+1} - \phi_{i+1,j-1}) - \frac{1}{r_b} (\phi_{i+1,j+1} - \phi_{i+1,j-1}) - \frac{1}{\theta_f} (\phi_{i,j+1} - \phi_{i,j-1}) + \frac{1}{\theta_b} (\phi_{i,j+1} - \phi_{i,j-1}) \right\}, \]

\[\delta_\theta^2 \delta_r \phi_{ij} = \frac{1}{2\Delta r \Delta \theta} \left\{ \frac{1}{\theta_f} (\phi_{i+1,j+1} - \phi_{i+1,j-1}) - \frac{1}{\theta_b} (\phi_{i+1,j+1} - \phi_{i+1,j-1}) - \frac{1}{r_f} (\phi_{i,j+1} - \phi_{i,j-1}) + \frac{1}{r_b} (\phi_{i,j+1} - \phi_{i,j-1}) \right\}, \]

\[\delta_r^2 \delta_\theta^2 \phi_{ij} = \frac{1}{4\Delta r \Delta \theta} \left\{ \phi_{i+1,j+1} - \phi_{i+1,j-1} - \phi_{i+1,j-1} + \phi_{i+1,j+1} \right\}, \]

where, \(r_f = (r_i+1 - r_i), r_b = (r_i - r_i-1), \theta_f = (\theta_{i+1} - \theta_i), \theta_b = (\theta_i - \theta_{i-1}), \Delta r = \frac{r_i+1 - r_i}{2} \) and \(\Delta \theta = \frac{\theta_{i+1} - \theta_i}{2}. \)