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Abstract—This paper deals with embedded index coding prob-
lem (EICP), introduced by A. Porter and M. Wootters, which is
a decentralized communication problem among users with side
information. An alternate definition of the parameter minrank of
an EICP, which has reduced computational complexity compared
to the existing definition, is presented. A graphical representation
for an EICP is given using directed bipartite graphs, called bipar-
tite problem graph, and the side information alone is represented
using an undirected bipartite graph called the side information
bipartite graph. Inspired by the well-studied single unicast index
coding problem, graphical structures, similar to cycles and
cliques, are identified in the side information bipartite graph
of a single unicast embedded index coding problem (SUEICP).
Transmission schemes based on these graphical structures, called
tree cover scheme and bi-clique cover scheme are also presented.
For a class of SUEICPs, scalar linear optimal solution is given
using bi-clique cover. A relation between connectedness of the
side information bipartite graph and the number of transmissions
required in a scalar linear solution of an EICP is established.

Index Terms—Embedded index coding, graphical representa-
tion, minrank, covering schemes.

I. INTRODUCTION

Motivated by applications in device to device multicast
and distributed computing, embedded index coding problem
(EICP) was introduced by Potter and Wootters in [1], which
is a decentralized version of the well-studied index coding
problem (ICP) [2]. In an EICP, the user nodes themselves act
as both senders and receivers and hence the only messages
which can be requested by a user are those that are present
with at least one other user. The solution to an EICP is called
an embedded index code.

Minrank of an EICP was defined in [3] using a matrix
representation of the EICP, called the side information matrix,
and was shown to be equal to the length of an optimal scalar
linear embedded index code. In this paper, we give an alternate
definition of minrank of an EICP, consistent with the definition
in [3] but along the lines of the definition of minrank of a
general ICP given in [4], which has a reduced computational
complexity than that required by the approach in [3].

A graphical representation for an EICP was given in [1]
using a directed graph called problem graph which is merely
an alternate representation of the general ICP. In this paper,
we represent an EICP using directed bipartite graphs, as in
[5], called the bipartite problem graph, which is a more
intuitive and insightful representation as explained in [6]. With
a given side information at the user nodes, there exist multiple
EICPs corresponding to different demand vectors. The side

information at the users is represented using an undirected
bipartite graph called the side information bipartite graph.

For an SUICP [7], graphical structures like cycles and
cliques were identified to give advantage in reducing the num-
ber of transmissions required and hence simple transmission
schemes which makes use of these graphical structures [2],
[8], [9] were also presented. We identify similar graphical
structures in the side information bipartite graph of single
unicast EICPs which will help in reducing the number of
transmissions required and also propose transmission schemes
utilizing these graph structures. For a class of SUEICPs, we
construct optimal scalar linear embedded index codes using
one such graph structure.

We also establish a relation between the connectedness of a
side-information bipartite graph and the minrank of the EICPs
with the same side information as that represented by the
graph. This has been motivated by the application of EIC in the
V2V phase of collaborative message dissemination protocol
of Vehicular Adhoc Networks (VANETs) [10], [11]. VANETs
are formed by vehicles that are within hundred meters of
each other moving at low speeds in the same direction. The
side information at these vehicles is obtained from an earlier
R2V communication phase where a road-side unit transmits
to vehicles in its range. Since the vehicles are close-by and
moving very slowly, the possibility of them receiving a lot
of packets in common is quite high and hence the side
information bipartite graph will be heavily connected.

The technical contributions in this paper are as follows.
• We give an alternate definition for minrank of an EICP

which is computationally more efficient and prove that
the length of an optimal linear solution to an EICP is
equal to the minrank.

• A graphical representation of an EICP is given using
directed bipartite graphs which we call as the bipartite
problem graph. The side information alone is represented
using an undirected bipartite graph, called the side infor-
mation bipartite graph.

• Two transmissions schemes, called tree cover scheme and
bi-clique cover scheme, are introduced for an SUEICP,
which make use of certain graphical structures called
regular trees and bi-cliques.

• For a class of SUEICPs, optimal scalar linear embedded
index codes are constructed based on bi-clique covers.

• A theorem which establishes a relation between the
connectedness of the side information bipartite graph and
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the minrank of the corresponding EICPs is presented.
The rest of this paper is organized as follows. Embedded

index coding problem is formally set up in section II. This is
followed by a definition of minrank of an EICP and a relation
between minrank of an EICP and the length of an optimal
linear solution to the EICP in section III. A graphical represen-
tation for an EICP is given, and graph structures called regular
trees and bi-cliques identified in the side information bipartite
graph for an SUEICP and transmission schemes utilizing these
graph structures are presented in section IV. A theorem which
establishes a relation between the connectedness of a side
information bipartite graph and the minrank of the EICPS
which have their side information as that represented by the
side information bipartite graph is given in section VI. Finally
the paper is concluded in section VII by identifying directions
for future research.

Notations: For a prime power q, Fq denotes the finite field
with q elements. For a positive integer n, [n] denotes the set
{1, 2, · · · , n}. A t-subset of [n] is a subset of [n] of size t.
The n-length vector ei is the ith standard basis vector for Fn

q .
For an n-length vector x and a set S ⊂ [n], x/S indicates that
the vector x has its support in S. The transpose of a vector v
is denoted as vT and that of a matrix A is denoted as AT .

II. PROBLEM SETUP

Consider an EICP with N users, U = {u1, u2, · · · , uN}
and a set of M messages X = {x1, x2, · · ·xM}, xi ∈ Fq ,
with user ui demanding a subset of messages Wi ⊂ X
and possessing a non-intersecting subset of messages, indexed
by an ordered set Ki, as side-information. The goal of the
EICP is to satisfy the message requests of all the users with
minimum number of transmissions by the users themselves.
There is no central server which possesses all the messages
in X and hence the side-information possessed by the users

is such that
K⋃
i=1

XKi
= X , i.e., every message is present with

at least one user. No user possesses all the messages, i.e.,
XKi ( X , ∀i, since then that user can act as a central server
and the EICP reduces to the centralized ICP and any solution
of the centralized ICP can be transmitted by this user which
possesses all the messages. Further, it is also assumed that no
message is available at all users as then that message won’t
be demanded by any user and can as well be removed from
the system.

Since a user demanding k messages can be split into k
users each demanding a single message and all the k users
having the same side information as the original user, in the
rest of this paper, we consider that each user demands a single
message in an EICP. Let the message demanded by a user
ui be denoted as xdi , where di ∈ [M ] and let the vector
d denote the vector of indices of messages demanded by
all the N users, i.e., d = (d1, d2, · · · , dN ). Further, let the
side information possessed by all the users be denoted by
the set K = {K1,K2, · · · ,KN}. An EICP with N users, M
messages, M ≤ N , side information set K and demand vector
d is denoted as E(N,M,K,d).

A solution to an EICP, called an embedded index code, is
a set of transmissions made by all or a subset of the users
such that the demands of all the users are met. An embedded
index code is called linear if all the transmissions involved are
linear combinations of the messages. An optimal embedded
index code is one with minimum number of transmissions.

III. MINRANK OF AN EICP

In [3], a matrix representation of an EICP was given and
a parameter called minrank was derived from this matrix
representation which characterized the length of an optimal
scalar linear embedded index code. In this section, an alternate
definition of minrank is proposed and a proof that the minrank
characterizes the length of an optimal embedded index code
is given along the lines of the proof in [4].

Definition 1 (Minrank of an EICP). For an EICP
E(N,M,K,d), the minrank of E over Fq is defined as

κq(E) , min
{

rankFq

(
{edi

+ vi}i∈[N ]

)
: vi ∈ FM

q ,vi /Ki

s.t. ∀i ∈ [N ], ∃j ∈ [N ], j 6= i, s.t (edi
+ vi) /Kj

}
(1)

Remark 1. The definition of minrank is similar to that in
[4] except for the extra condition that for each of the vectors
in the set {edi

+ vi}i∈[N ], there should be a user who has
all the messages in the support set of that vector in its side
information set. So, the minimization of rank is only over those
sets {edi

+ vi}i∈[N ] where for each of the vectors edi
+ vi

in the set, there exists at least one user which could transmit
the corresponding coded message.

Theorem 1. For a given EICP E(K,N,K,d), the length of an
optimal linear embedded index code is equal to the minrank
κq(E).

Proof. The proof follows along the lines of the proof in [4].
Consider the message vector x = (x1, x2, · · · , xM ). From a
transmission of the form Ti = x(edi

+ vi)
T , vi /Ki, user ui

can decode its demanded message xdi
as Ti − xvi

T . Thus ,
if there are N transmissions {Ti}Ni=1, all the users in U can
decode their demanded messages. It is, in fact, sufficient to
have rankFq

(
{edi

+vi}i∈[N ]

)
transmissions. However, for each

i ∈ [N ], there should be a user uj , j 6= i which can transmit Ti,
i.e., uj should have all the messages involved in Ti in its side
information. If we only consider sets {edi

+ vi}i∈[N ] where
each of the elements (edi

+vi) satisfies the condition that there
exists some user which could transmit Ti = x(edi

+vi)
T , and

perform minimization of the rank over Fq of these sets, the
minimum rank obtained will be equal to κq(E). Since any
linear embedded index code consists of a set of transmissions
of the form Ti, the optimal length of a linear embedded index
code for the given EICP E is equal to κq(E).

A comparative analysis of the number of rank computations
required in using the definition of minrank in [3] and the
definition in this paper is given in [6] and the same is
illustrated using the following numerical example.
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Example 1. Consider an EICP with N = 4 users, M = 4
messages over F2, the side information at the users given by
K1 = {2, 3}, K2 = {1, 3}, K3 = {4},K4 = {1, 2} and the
demand vector given by d = {1, 2, 3, 4}. Consider user u1
which demands the message x1. The contribution of u1 to the
set {edi

+vi}i∈[N ] are of the form e1+v1, where v1 can take
values from the set {e2, e3,0} since x1+x2 can be transmitted
by u4, x1+x3 by u2 and x1 independently by either u2 or u4.
Similarly v2 can take values from {e1, e3,0} whereas v3 and
v4 can only take the value 0. Thus, the rank minimization is
performed only over 9 matrices. However, if we followed the
approach in [3], it would be required to compute the ranks
over F2 of 2

∑N
i=1 |Ki|2 = 213 = 8192 matrices of size 4 × 7

and 2
∑N

i=1 |Ki|2 × 2
∑N

i=1 |Ki| = 220 = 1048576 matrices of
size 4× 11.

IV. A GRAPHICAL REPRESENTATION OF AN EICP

In this section, we propose a graphical representation of an
EICP using directed bipartite graphs and present transmission
schemes for SUEICPs based on coverings using special graph
structures. An explanation of why the representation in this
paper is better than that in [1] as well as the proofs of all the
results in the rest of this paper are given in [6].

A. Bipartite Problem Graph and Side Information Bipartite
Graph

Definition 2 (Bipartite Problem Graph). Let E(N,M,K,d) be
an instance of the EICP. Its graphical representation called the
bipartite problem graph is given by a directed bipartite graph
G on the vertex set V = (U ,X ) and the directed edge set
E = {(ui, xj) : j ∈ Ki} ∪ {(xi, uj) : dj = i}.

The edges directed from the vertex set U to the vertex
set X represent side information and the edges in the op-
posite direction represent the demanded messages. We use
the notation E(G) to refer to the EICP corresponding to a
given bipartite problem graph G. For a system with N users
U = {u1, u2, · · · , uN}, M messages X = {x1, x2, · · ·xM}
and side information set K at the users, there could be
N∏
i=1

(M − |Ki|) possible demand vectors and corresponding to

each of these demands, there is an EICP. Let the set of this
N∏
i=1

(M−|Ki|) arising from a side information set K be denoted

as EK. The side information set K which is common to of all
these EICPs is represented using an undirected bipartite graph
as explained below.

Definition 3 (Side Information Bipartite Graph). A graphical
representation of the side information set K is given by an
undirected bipartite graph GS on the vertex set V = (U ,X )
and the edge set E = {(ui, xj) : j ∈ Ki}.

Given a side information bipartite graph GS , the set of
possible demand vectors is denoted as DGS . Since a side
information set K is analogous to the side information bipartite
graph GS , the set of EICPs EK is also denoted as EGS . The
EICP corresponding to a demand vector d ∈ DGS is denoted

as E(GS ,d). The bipartite problem graph of the EICP in
Example 1 is given in Fig. 1(a) and the corresponding side
information bipartite graph is given in Fig. 1(b).

u1

u2

u3

u4

x1

x2

x3

x4

u1

u2

u3

u4

x1

x2

x3

x4

(a) (b)

Fig. 1: Bipartite Problem Graph and Side information Bipartite
Graph of the EICP in Example 1.

In the following subsection, we identify certain graph struc-
tures which, if present in the side information bipartite graph,
can result in savings in the number of transmissions required
to solve the corresponding EICPs and present a couple of
transmission schemes utilizing these structures.

B. Graphical Structures in Single Unicast EICP

A single unicast EICP (SUEICP) is defined as follows.

Definition 4 (Single Unicast EICP). An EICP E(N,M,K,d)
is said to be single unicast if

1) M = N , and
2) di 6= dj , for i 6= j.

Since in a SUEICP, the number of messages is equal to
the number of users and each of the users demand a distinct
message, without loss of generality, let us consider that user ui
demands the message xi, i.e., di = i. Let an SUEICP with N
users and N messages and demand vector d such that di = i
be represented using its side information bipartite graph GS
and denoted as E(N,GS).

(a) (b)

x1

x1

x2

x2

x3

x3

x4

x4

u1

u1

u2

u3

u4

u2

u3

u4

uj

Fig. 2: Regular Tree and Bi-clique structures in SUEICP

Definition 5 (Regular Tree). Consider a bipartite graph on the
partite sets A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn},
n ≥ 3, with the edge set, E = {(ai, bi+1), i ∈ [n]} ∪
{(ai, bi+2), i ∈ [n − 1]}, where bn+1 = b1. Such a bipartite
graph on 2n vertices, denoted as Tn,n, is called a regular tree.

Remark 2. In the bipartite graph Tn,n, every node in A except
an has degree two and similarly every node in B except b2
has degree two. The nodes an and b2 have degree one each.
Thus, the bipartite graph Tn,n on 2n vertices has a total of
2n− 1 edges and hence is a tree.
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Fig. 2(a) shows a regular tree T4,4. Suppose T4,4 represents
the side information bipartite graph of an SUEICP with N =
M = 4 and the demand vector d = (1, 2, 3, 4). If u1 transmits
x2 + x3, u2 transmits x3 + x4, and u3 transmits x4 + x1, the
demands of all the four users are met. Further, it can be verified
that any set of two transmissions are not sufficient to satisfy the
demands of all the 4 users and hence the transmission scheme
with 3 transmissions is scalar linear optimal. We generalize
this transmission scheme for an SUEICP on 4 users to a
scheme for an SUEICP on N users in the following lemma.

Lemma 1. If the side information bipartite graph GS of
an SUEICP with N users and N messages, N ≥ 3, is a
regular tree TN,N , then N − 1 transmissions are necessary
and sufficient to satisfy the demands of all the users.

Definition 6 (Bi-clique). Consider a bipartite graph on the
partite sets A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn}
where each of the node ai ∈ A is connected to all the nodes
in B \ {bi} which implies that each node bi ∈ B is connected
to all the nodes A \ {ai}. This n− 1 regular bipartite graph
is called a “bi-clique” and is denoted as Bn,n.

Definition 7 (Covered Bi-clique). For a bi-clique Bn,n on the
partite sets A and B, which is a subgraph of a bipartite graph
G on the partite sets AG ⊃ A and BG ⊇ B, if there exists a
node a ∈ AG \A such that a is connected to all nodes in B,
then the bi-clique is called a “covered” bi-clique, denoted as
Bc

n,n and the node a is called the covering node.

Fig. 2(b) shows a bi-clique B4,4. Suppose it is a sub-graph
on 4 user nodes and 4 message nodes of the side information
bipartite graph GS of an SUEICP. Assume that the user vertex
uj and the edges coming from it shown in dotted lines are ab-
sent. Then, for the demand vector d such that di = i, i ∈ [4],
with two transmissions given by T1 = x2+x3+x4 transmitted
by u1 and T2 = x1 transmitted by u2, the demands of all
four users can be satisfied. However, if the user uj and the
dotted edges incident on it are present in GS , then for the
demand vector d = {1, 2, 3, 4} corresponding to the users
{u1, u2, u3, u4}, a single transmission T1 = x1+x2+x3+x4
by user uj is sufficient to satisfy the demands of all the 4 users.
In this scenario, the user uj is called the “covering user”.

Lemma 2. Consider a bi-clique Bn,n ⊆ GS formed by the
user nodes UB = {ui1 , ui2 , · · · , uin} and message nodes
XB = {xi1 , xi2 , · · · , xin}. For the SUEICP E(GS ,d) cor-
responding to the demand vector d such that di = i, to
satisfy the demands of the users in UB we need 2− I(Bc

n,n)
transmissions, where,

I(Bc
n,n) =

{
1 if Bn,n is covered,
0 otherwise

, is the indicator func-

tion on whether the bi-clique Bn,n is covered or not.

Remark 3. A cycle on n ≥ 3 vertices in the side information
graph of an SUICP is equivalent to a regular tree on n user
vertices and n message vertices, Tn,n ⊆ GS w.r.t number of
transmissions required and a clique on n ≥ 3 vertices in the
side information graph of an SUICP is equivalent to a covered

bi-clique Bc
n,n on n user vertices and n message vertices.

To describe covering schemes based on the above graph
structures, we identify graph structures equivalent to regular
trees and bi-cliques for n = 1 and n = 2. For n = 1,
both regular tree as well as a covered bi-clique is a single
edge as shown in Fig. 3(a) where the message is transmitted
independently. For n = 2, a tree T2,2, will not represent an
SUEICP as for the graph T2,2 to be connected, one of the two
user nodes must know both the messages. The graph structure
in an SUEICP which requires one transmission to satisfy the
demands of two users is a minimally connected graph on 3
user nodes and 2 message nodes as shown in Fig. 3(b) which
is also the covered bi-clique Bc

2,2.

u1

u2

uj

x1

x2
xjui

(b)(a)

Fig. 3: Graph structures in GS corresponding to both regular
trees and covered bi-cliques for n = 1 and n = 2.

Lemma 3 (Tree Cover Scheme). The tree-cover scheme for
the SUEICP E(N,GS) identifies a maximal set of message-
disjoint regular trees, say {Tni,ni}Ki=1, in GS such that the
union of these trees covers the message vertices of GS . The
total number of transmissions required to satisfy the demands
of all the N users in the SUEICP E(N,GS) using the tree
cover scheme with K regular trees, is N − K + Ke, where
Ke is the number of single edge trees.

Lemma 4 (Bi-Clique Cover Scheme). For an SUEICP
E(N,GS), a bi-clique cover scheme identifies a minimal set
of message-disjoint bi-cliques such that the union of these bi-
cliques covers the message vertex set of GS . The total number
of transmissions to solve the SUEICP E(N,GS) using the
bi-clique cover scheme with K message-disjoint bi-cliques

{Bni,ni}Ki=1 is equal to
K∑
i=1

(2−I(Bc
ni,ni

)) which is bounded

between K and 2K.

Remark 4. If all the bi-cliques identified in the bi-clique
covering scheme are covered bi-cliques, then it is the same as
the covering scheme given by Algorithm 2 in [1]. A bi-clique
which is not covered will be identified as two cliques in the
problem graph by Algorithm 2 in [1] and hence requires two
transmissions same as that required by the bi-clique covering
scheme in this paper.

Remark 5. While the solution obtained by the bi-clique
covering scheme is a task-based solution as defined in [1],
the solution given by the tree covering scheme is not task-
based, in general. Each bi-clique represents a co-operative
data exchange problem [12] and hence is of practical interest.
Further, since [13] showed that the length of a task based
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solution is at most equal to the square of the minrank of the
corresponding centralized ICP, the gap between the length of
an optimal solution of the EICP and that of the clique cover
is at most quadratic.

V. OPTIMAL SOLUTION FOR A CLASS OF SUEICP

The class of SUEICPs with symmetric neighboring consec-
utive side information, abbreviated as SNCS-SUEICP, has a
user ui requesting the message xi and knowing U consecutive
messages before xi and D consecutive messages after xi, i.e.,
Ki = {i−U, i−U +1, · · · , i−1}

⋃
{i+1, i+2, · · · , i+D},

where the calculations are performed modulo N .

Theorem 2. For the class of SNCS- SUEICPs with D = U +

1, U ≥ 1, minrank κ is equal to
⌈
N−1
U+1

⌉
.

Proof. Converse : Consider the class of SNCS SUICPs which
is the centralized version of SNCS SUEICP. It was shown
in [14] that the length of an optimal scalar linear index code
for such problems is given by

⌈
N−max (U,D)+min (U,D)

min (U,D)+1

⌉
which

when restricted to the class of SNCS-SUICPs with D = U+1,
U ≥ 1, gives the minrank to be

⌈
N−1
U+1

⌉
. Since we know that

the minrank of an EICP is at least as much as the minrank of
the corresponding ICP, κ ≥

⌈
N−1
U+1

⌉
.

Achievability Scheme : Let p ,
⌈
N−1
U+1

⌉
. Consider the

following set of p transmissions,

Ti =
∑
j∈[D]

x(i−1)D+j , i ∈ {1, 2, · · · , p− 1}, and

Tp = x(p−1)D+1 + x(p−1)D+2 + · · ·+ xN .

Ti, 1 < i ≤ p is transmitted by user u(i−1)D and T1 is
transmitted by uN . This is a feasible scheme as user u(i−1)D,
1 < i ≤ p has the messages {x(i−1)D+1, x(i−1)D+2, · · · , xiD}
in its side information which are summed up to form the
transmission Ti and user uN has x1, x2, · · ·xD which are
added to form the transmission T1. Consider a user uj . The
transmission containing its requested message xj is formed by
xj added to messages with indices in the set {j−(D−1), j−
(D − 2), · · · , j − 1, j + 1, · · · , j + (D − 1)}, each of which
is present with user uj and hence it can decode the message
xj . Thus, from the above set of p transmissions, each of the
N users can decode their requested message and hence is a
valid embedded index code.

The set of transmissions in the achievability scheme above
can be obtained as a bi-clique cover with all the p bi-cliques
being covered bi-cliques. In the following section, we present
a relation between the connectedness of the side information
bipartite graph and the minrank of an EICP.

VI. CONNECTEDNESS OF THE BIPARTITE GRAPH AND
MINRANK

The motivation to look for a relation between the connect-
edness of the side information bipartite graph and the minrank
of the corresponding EICPs has been applications where the
users have a lot of common messages in their side information.

Further, for EICPs with N = M = 3, the minrank is strictly
less than the number of unique messages demanded only for
problems with connected side information graphs and when
all three messages are demanded. In this section, we prove a
theorem connecting minrank κq(G) and connectedness of GS .

For a given side information bipartite graph GS with the
partite sets U and X , let X ′ denote the subset of X obtained
by removing vertices of degree 1 in X , i.e., X ′ = X \ {xj :
deg(xj) = 1} and the induced sub-graph on the vertex set
(U ,X ′) be denoted by G′S . The set X ′ is the set of messages
which could be possibly coded in the embedded index code as
message nodes with degree 1 are present at only one user and
cannot be coded and there are no degree zero message nodes
as each message is assumed to be present at least at one user.
For a demand vector d, the unique messages demanded in d
from the message set in G is denoted by uniq(dG).

Theorem 3. For a side-information bipartite graph GS , for
every demand vector d ∈ DGS such that uniq(dG′

S
) = X ′

, the
minrank of the EICP E(GS ,d) is strictly less than the number
of distinct messages demanded, i.e., κq(E) ≤ |uniq(dGS )|−1,
if GS is connected.

Corollary 1. For a connected side information graph GS , for
EICPs where all the M messages are demanded, the number of
transmissions required is strictly less than M , i.e., ∀d ∈ DGS
such that |uniq(dGS )| =M , κq(E(GS ,d)) < M .

Remark 6. While Lemma 1 showed that for an SUEICP whose
side information bipartite graph is a regular tree TN,N , the
number of transmissions required is N − 1, by applying the
corollary above, it can be seen that for any tree on N user
nodes and N message nodes, the number of transmissions
required for an SUEICP is less than or equal to N − 1.

VII. CONCLUSION

This paper looked at embedded index coding problems for
which an alternate definition of minrank, which is computa-
tionally more efficient, and a graphical representation using
directed bipartite graphs were given. The side information
alone was represented using an undirected bipartite graph,
which was called the side information bipartite graph. For
the single unicast class of EICPs, a couple of transmission
schemes were presented, one of which was shown to give
scalar linear optimal solutions to a sub-class of single unicast
EICPs. Further, connectedness of the side information bipartite
graph was shown to be a sufficient condition for reducing the
minrank below the number of distinct messages demanded. It
will be interesting to explore whether stricter requirements on
the connectivity of the side information bipartite graph will
give better savings in transmission.
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