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Abstract—In this work, we address the question of the largest
rate of linear subcodes of Reed-Muller (RM) codes, all of whose
codewords respect a runlength-limited (RLL) constraint. Our
interest is in the (3,∞)-RLL constraint, which mandates that
every pair of successive 1s be separated by at least 3 0s. Consider
any sequence {C<}<≥1 of RM codes with increasing blocklength,
whose rates approach ', in the limit as the blocklength goes to
infinity. We show that for any linear (3,∞)-RLL subcode, Ĉ<,
of the code C<, it holds that the rate of Ĉ< is at most '

3+1 ,
in the limit as the blocklength goes to infinity. We also consider
scenarios where the coordinates of the RM codes are not ordered
according to the standard lexicographic ordering, and derive rate
upper bounds for linear (3,∞)-RLL subcodes, in those cases as
well. Next, for the setting of a (3,∞)-RLL input-constrained
binary memoryless symmetric (BMS) channel, we devise a new
coding scheme, based on cosets of RM codes. Again, in the limit
of blocklength going to infinity, this code outperforms any linear
subcode of an RM code, in terms of rate, for low noise regimes
of the channel.

I. INTRODUCTION

Constrained coding is a method of eliminating error-prone
sequences, in magnetic recording and communication systems,
by encoding arbitrary user data sequences into sequences that
respect a constraint (see, for example, [1] or [2]). In this work,
we investigate the sizes of linear subcodes of binary Reed-
Muller (RM) codes, all of whose codewords obey a certain
runlength-limited (RLL) constraint.

The specific RLL constraint of interest to us is the (3,∞)-
RLL constraint, which admits only binary sequences with at
least 3 0s between every pair of successive 1s (see Figure 1).
This constraint is a special case of the (3, :)-RLL constraint,
which admits only binary sequences with at least 3 and at
most : 0s between successive 1s.
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Fig. 1: The state transition graph for the (3,∞)-RLL con-
straint.

One of the motivations for studying this problem is the
design of explicit coding schemes that achieve good rates over
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Fig. 2: System model of an input-constrained binary memo-
ryless symmetric (BMS) channel without feedback.

input-constrained discrete memoryless channels (DMCs). Fig-
ure 2 shows a generic binary memoryless symmetric (BMS)
channel with input constraints. Input-constrained DMCs in
general fall under the broad class of discrete finite-state
channels (DFSCs, or FSCs).

While explicit codes achieving the capacities or whose
rates are very close to the capacities of unconstrained DMCs
have been derived in works such as [3]–[7], the problem of
designing coding schemes for input-constrained DMCs has
not received much attention in the literature. Moreover, an
explicit expression for the capacity of an FSC is unknown,
unlike the case of the unconstrained DMC, whose capacity is
characterized by Shannon’s formula, �DMC = sup% (G) � (-;. ).

With the recent result of Reeves and Pfister [8] that Reed-
Muller (RM) codes achieve the capacity of the unconstrained
BMS channel under bit-MAP decoding, there opens the pos-
sibility of using such algebraic codes over input-constrained
BMS channels as well. Suppose that � is the capacity of the
unconstrained channel. In this paper, we prove that any linear
RM subcode that respects the (3,∞)-RLL constraint, must
have a rate of at most �

3+1 , in the limit as the blocklength
goes to infinity. In doing so, we show that one cannot do
better, asymptotically, than the simple coding scheme using
subcodes, in [9], if one requires that the subcodes be linear.
We also consider the rates achieved using linear (3,∞)-RLL
subcodes of permuted RM codes, and show that for codes
of large enough blocklength, almost all permutations must
respect an upper bound of �

3+1 + X, for X being as small as is
required.

As an improvement over the rates achievable using linear
(3,∞)-RLL subcodes of RM codes, we propose a new coding
scheme that uses cosets of RM codes. The rate achieved by
this scheme is �0 ·�2 ·2− dlog2 (3+1) e

�2 ·2− dlog2 (3+1) e+1−�+n
, where �0 is the noiseless

capacity of the input constraint, and n > 0 can be taken to
be as small as is required. For example, when 3 = 1, the
rates achieved using this cosets-based scheme are better than
those achieved by any scheme that uses linear (1,∞)-RLL
subcodes of RM codes, when � ' 0.7613. Moreover, as the
capacity of the channel approaches 1, i.e., as the channel noise
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approaches 0, the rate achieved by our cosets-based scheme
approaches a value arbitrarily close to �0, which is the largest
rate achievable, at zero noise, given the constraint.

Our results supplement the analysis in [10], on rates achiev-
able by (3, :)-RLL subcodes of cosets of a linear block code.
Specifically, Corollary 1 of [10] provides an existence result
on cosets of capacity-achieving (over the unconstrained BMS
channel) codes, whose constrained subcodes have rate at least
�0 + � − 1. The coding scheme in this paper achieves rates
close to the lower bound in [10], for values of � close to 1.

The remainder of the paper is organized as follows: Sec-
tion II introduces the notation and provides the necessary
background. Section III states our main results. Section IV
discusses upper bounds on the rate achievable over the BMS
channel, using linear (3,∞)-RLL subcodes. Section V then
discusses a construction that uses cosets of RM codes to
achieve good rates. Finally, Section VI contains concluding
remarks and a discussion on possible future work.

II. NOTATION AND PRELIMINARIES

A. Notation

Random variables will be denoted by capital letters, and
their realizations by lower-case letters, e.g., - and G, respec-
tively. Calligraphic letters, e.g., �, denote sets. The notation
[=] denotes the set, {1, 2, . . . , =}, of integers, and the notation
[0 : 1], for 0 < 1, denotes the set of integers {0, 0+1, . . . , 1}.
Moreover, for a real number G, we use bGc to denote the largest
integer smaller than or equal to G. For vectors w and v of
length = and <, respectively, we denote their concatenation
by the (<+=)-length vector, wv. The notation G# denotes the
vector (G1, . . . , G# ).

Throughout, we use the convenient notation
( <
≤A

)
to denote

the summation
A∑
8=0

(<
8

)
, and the notation

( <
≥A

)
to denote

<∑
8=A

(<
8

)
.

B. Reed-Muller Codes

We recall the definition of the binary Reed-Muller (RM)
family of codes. Codewords of binary RM codes consist of the
evaluation vectors of multivariate polynomials over the binary
field F2. Consider the polynomial ring F2 [G1, G2, . . . , G<] in
< variables. Note that in the specification of a polynomial
5 ∈ F2 [G1, G2, . . . , G<], only monomials of the form

∏
9∈( G 9 ,

for some ( ⊆ [<], need to be considered, since G2 = G over
the field F2, for an indeterminate G. For a polynomial 5 ∈
F2 [G1, G2, . . . , G<] and a binary vector z = (I1, . . . , I<) ∈ F<2 ,
let Evalz ( 5 ) := 5 (I1, . . . , I<). We let the evaluation points
be ordered according to the standard lexicographic order on
strings in F<2 , i.e., if z = (I1, . . . , I<) and z′ = (I′1, . . . , I

′
<) are

two distinct evaluation points, then, z occurs before z′ in our
ordering if and only if, for some 8 ≥ 1, it holds that I 9 = I′9 for
all 9 < 8, and I8 < I′8 . Now, let Eval( 5 ) :=

(
Evalz ( 5 ) : z ∈ F<2

)
be the evaluation vector of 5 , where the coordinates z are
ordered according to the standard lexicographic order.

Definition II.1 (see [11], Chap. 13, or [12]). The A th order
binary Reed-Muller code RM(<, A) is defined as the set of
binary vectors:

RM(<, A) :=
{
Eval( 5 ) : 5 ∈ F2 [G1, G2, . . . , G<], deg( 5 ) ≤ A

}
,

where deg( 5 ) is the degree of the largest monomial in 5 , and
the degree of a monomial

∏
9∈( G 9 is simply |( |.

It is well-known that RM(<, A) has dimension
( <
≤A

)
and

minimum Hamming distance 2<−A . The weight of a codeword
c = Eval( 5 ) is the number of 1s in its evaluation vector, i.e,

wt (Eval( 5 )) :=
��{z ∈ F<2 : 5 (z) = 1}

�� .
In what follows, we let �Lex (<, A) be the generator matrix
of RM(<, A) consisting of rows that are the evaluations, in
the lexicographic order, of monomials of degree less than or
equal to A. The columns of �Lex (<, A) will be indexed by
<-tuples b = (11, . . . , 1<) in the lexicographic order. We
also interchangeably index the coordinates of any codeword
in RM(<, A), by <-tuples in the lexicographic order, and by
integers in [0 : 2< − 1].

C. Codes for BMS Channels

The communication setting of an input-constrained binary
memoryless symmetric (BMS) channel without feedback is
shown in Figure 2. A message " is drawn uniformly from the
set {1, 2, . . . , 2='}, and is made available to the constrained
encoder. The encoder produces a binary input sequence G= ∈
{0, 1}= = �

=, which is constrained to obey the (3,∞)-RLL
input constraint, a state transition graph for which is shown
in Figure 1.

The channel output alphabet is the extended real line, i.e.,
� = R. The channel is memoryless in that %(H8 |G8 , H8−1) =
%(H8 |G8), for all 8. Further, the channel is symmetric, in that
%(H |1) = %(−H |0), for all H ∈�. Common examples of BMS
channels include the binary erasure channel (BEC(n)), the
binary symmetric channel (BSC) (see Figures 3a and 3b), and
the binary additive white Gaussian noise (BI-AWGN) channel.

n

n

1 − n

1 − n

0

1

1

0

−1

(a)

?

?

1 − ?

1 − ?

0

1

1

−1

(b)

Fig. 3: (a) The BEC(n) with erasure probability n and output
alphabet � = {−1, 0, 1}, with the output symbol 0 denoting
an erasure. (b) The BSC(?) with crossover probability ? and
output alphabet � = {−1, 1}.

Definition II.2. An (=, 2=', (3,∞)) code for an input-
constrained channel without feedback is defined by the
encoding function: 5 : {1, . . . , 2='} → �

=, such that
(G8+1, . . . , Gmin{8+3,=}) = (0, . . . , 0), if G8 = 1.

Given an output sequence H=, the bit-MAP decoder Ψ :
�
= → �

= outputs x̂ := (Ĝ1, . . . , Ĝ=), where, for each
8 ∈ [=], the estimate Ĝ8 := argmaxG∈{0,1}%(-8 = G |H=).
The error under bit-MAP decoding is defined as %

(=)
1

:=
1 − 1

=

∑=
8=1 E[max{%(-8 = 0|.=), %(-8 = 1|.=)}] .

A rate ' is said to be (3,∞)-achievable under bit-MAP
decoding, if there exists a sequence of (=, 2='= , (3,∞)) codes,
{C (=) (')}=≥1, such that lim=→∞ %

(=)
1

= 0 and lim=→∞ '= =
'. We then say that the sequence of codes {C (=) (')}=≥1
achieves a rate ' over the (3,∞)-RLL input-constrained
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channel. The capacity, �(3,∞) , is defined to be the supremum
over the respective (3,∞)-achievable rates, and is a function
of the parameters of the noise process. Note that the definitions
also hold when 3 = 0, which represents the unconstrained
channel.

III. MAIN RESULTS

Before we state our upper bound on the rates of lin-
ear RLL subcodes of RM codes, we recall the following
result of Reeves and Pfister, in [8]. For a given ' ∈
(0, 1), consider any sequence of RM codes {C< (') =

RM(<, A<)}<≥1, under the lexicographic ordering of coor-
dinates, with rate(C< ('))

<→∞−−−−−→ '. The following theorem
then holds true:

Theorem III.1 (Theorem 1 of [8]). Consider an uncon-
strained BMS channel with capacity � ∈ (0, 1). Then, any rate
' ∈ (0, �) is achieved by the sequence of codes {C< (')}<≥1,
under bit-MAP decoding.

We now discuss upper bounds on the largest rate achievable,
using linear subcodes of RM codes, over a (3,∞)-RLL
input-constrained BMS channel. Fix any sequence of codes
{C< (') = RM(<, A<)}<≥1, which achieves a rate ' over
the unconstrained BMS channel. Let C (<)3 denote the largest
linear subcode of C< ('), all of whose codewords respect
the (3,∞)-RLL constraint. We then define R(3,∞)C,Lin (') :=

lim sup<→∞
log2

���C (<)3

���
2< , to be the largest rate achieved by linear

(3,∞)-RLL subcodes of {�< (')}<≥1, assuming that the
ordering of the coordinates of the code is according to the
lexicographic ordering. Then,

Theorem III.2. For any sequence of codes {C< (') =

RM(<, A<)}<≥1, with rate(C< ('))
<→∞−−−−−→ ', it holds that

R(3,∞)C,Lin (') ≤
'
3+1 .

Hence, from Theorem III.1, the largest rate achievable over
a (3,∞)-RLL input-constrained BMS channel, under bit-MAP
decoding, using linear (3,∞)-RLL subcodes of RM codes, is
bounded above by �

3+1 . Theorem III.2 is proved in Section IV.
Now, consider the sequence of RM codes {Ĉ< (') =

RM(<, E<)}<≥1, with E< = max
{⌊
<
2 +

√
<

2 &
−1 (1 − ')

⌋
, 0

}
,

where &(·) is the complementary cumulative distribution
function (c.c.d.f.) of the standard normal distribution. Then,

Theorem III.3 (Theorem III.2 in [9]). For any ' ∈ (0, �),
there exists a sequence of linear codes, {C (3,∞)< (')}<≥1,
where C (3,∞)< (') ⊂ Ĉ< ('), which achieve a rate of '

2 dlog2 (3+1) e ,
over a (3,∞)-RLL input-constrained BMS channel, under bit-
MAP decoding.

Thus, Theorem III.2 shows that the sequence of linear
subcodes {C (3,∞)< (')}<≥1, in Theorem III.3, achieves the rate
upper bound of '/(3 + 1), when 3 + 1 is a power of 2. We
remark here that the results in [13] show that the largest linear
code within the set of (3,∞)-RLL constrained sequences of
length <, has rate no larger than 1

3+1 , as < → ∞. However,
such a result offers no insight into rates achievable over BMS
channels.

We then consider situations where the coordinates of the
RM codes follow orderings different from the standard lex-
icographic ordering. We consider arbitrary orderings of co-
ordinates, defined by the sequence of permutations (c<)<≥1,
with c< : [0 : 2< − 1] → [0 : 2< − 1]. We define the se-
quence of c-ordered RM codes {C c< (')}<≥1, with C c< (') :={
(2c< (0) , 2c< (2) , . . . , 2c< (#<−1) ) : (20, 21, . . . , 2#<−1) ∈
C< (')

}
. We also define C (<)3,c be the largest linear (3,∞)-

RLL subcode of C c< ('). The theorem below is then shown to
hold:

Theorem III.4. For large < and for all but a vanishing
fraction of coordinate permutations, c< : [0 : 2< − 1] →

[0 : 2< − 1], the rate upper bound,
log2

���C (<)3,c

���
2< ≤ '

3+1 + X<,
holds, where X<

<→∞−−−−−→ 0.

We refer the reader to the full version of the paper [14] for
the proof of Theorem III.4.

Next, we turn our attention to the design of non-linear
(3,∞)-RLL codes, whose rates improve on those in Theorem
III.3. Our next theorem, stated below informally, uses cosets of
RM codes, for this purpose. We denote by � (3)0 , the noiseless
capacity of the (3,∞)-RLL constraint.

Theorem III.5 (Informal). For any BMS channel of capacity
�, there exists a sequence of (3,∞)-RLL constrained codes
{Ccos
< }<≥1, using cosets of RM codes, such that

lim inf
<→∞

rate(Ccos
< ) ≥

�
(3)
0 · �2 · 2−dlog2 (3+1)e

�2 · 2−dlog2 (3+1)e + 1 − � + 2−g
,

with the above bound being achievable over any (3,∞)-
RLL input-constrained BMS channel. Here, g is an arbitrarily
large, but fixed, positive integer.

It can be checked that the rates achieved using Theorem
III.5 are better than those achieved using any sequence of
linear (3,∞)-RLL subcodes of RM codes (see Theorem III.2),
for low noise regimes of the BMS channel. For example, when
3 = 1, the rates achieved using the codes in Theorem III.5 are
better than those achieved using linear subcodes, for certain
values of � ' 0.7613. Figures 4a and 4b show comparisons
between the lower bounds (achievable rates) in Theorems III.3
and III.5, with the coset-averaging bound of [10], for 3 = 1
and 3 = 2, respectively. Our construction is more explicit than
that in [10], although the rates calculated in [10] are better than
those in Theorem III.5 in the low noise regimes of the BMS
channel. A sketch of the construction leading to Theorem III.5
is provided in Section V.

IV. UPPER BOUNDS FOR LINEAR SUBCODES

In this section, we derive upper bounds on the rates achieved
by linear (3,∞)-RLL subcodes of any sequence of RM
codes of rate '. We fix a sequence of codes {C< (') =
RM(<, A<)}<≥1 that achieves a rate ' over the unconstrained
BMS channel.

We first state a fairly general proposition, whose proof can
be found in [14], on the rates of linear (3,∞)-RLL subcodes
of linear codes. Recall that for a linear code C over F2,
of blocklength # and dimension  , an information set is a
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(a) (b)

Fig. 4: Plots (a) and (b) compare, for 3 = 1 and 3 = 2, respectively, the rate lower bound achieved using subcodes, from
Theorem III.3, the rate lower bound achieved using Theorem III.5, with g = 50, and the lower bound of max(0, � (3)0 +� − 1),
of [10].

collection of  coordinates in which all possible  -tuples over
F2 can appear. Equivalently, if � is any generator matrix for
C, an information set is a set of  column indices such that
� restricted to those columns is a full-rank matrix.

Proposition IV.1. Let C be an [#,  ] binary linear code. If
I is an information set of C that contains C disjoint (3 + 1)-
tuples of consecutive coordinates (81, 81+1, . . . , 81+3), (82, 82+
1, . . . , 82+3), ..., (8C , 8C +1, . . . , 8C +3), with 81 ≥ 1, 8 9 > 8 9−1+3,
for all 9 ∈ [2 : C], and 8C ≤ = − 3, then the dimension of any
linear (3,∞)-RLL subcode of C is at most  − 3C.

In order to obtain an upper bound, as in Theorem III.2, on
the rate of linear (3,∞)-RLL subcodes of the sequence of
codes {C< (')}<≥1, we shall first identify an information set
I<,A< of C< (') = RM(<, A<). We then compute the number
of disjoint (3 + 1)-tuples of consecutive coordinates in I<,A< ,
and then apply Proposition IV.1.

We introduce some notation for ease of reading: given a
matrix "?×@ , we use the notation " [U,V] to denote the
submatrix of " consisting of the rows in U ⊆ [?] and the
columns in V ⊆ [@]. We also recall the definition of the
generator matrix �Lex (<, A), of RM(<, A), and the indexing
of columns of the matrix, from Section II-B. Further, the
notation e(2

<)
b denotes the standard basis vector with a 1 in the

coordinate indexed by b = (11, . . . , 1<), in the lexicographic
order. The superscript ‘(2<)’ will be dropped henceforth.

Now, given the code RM(<, A), consider the
binary linear code (a subspace of F2<

2 ), C̃(<, A),
spanned by the codewords in the set B<,A :=
{Eval (∏8∈( G8) : ( ⊆ [<] with |( | ≥ A + 1} . It can be
checked that B<,A forms a basis for C̃(<, A), with
dim

(
C̃(<, A)

)
=

( <
≥A+1

)
.

The following lemma, whose proof is provided in [14],
identifies an alternative basis for C̃(<, A).

Lemma IV.1. Consider the code C̃(<, A) = span
(
B<,A

)
. It

holds that C̃(<, A) = span ({eb : wt(b) ≥ A + 1}).

The following result then holds true:

Lemma IV.2. An information set of RM(<, A) is the set of
coordinates I<,A := {b = (11, . . . , 1<) ∈ F<2 : wt(b) ≤ A}.

Proof. We wish to show that �Lex (<, A) restricted to the
columns in I<,A is of full rank.

Now, consider the generator matrix �̃ (<, A), of C̃(<, A),
consisting of rows that are vectors in B<,A . We build the 2<×
2< matrix

H :=


�̃ (<, A)

�Lex (<, A)

 ,
with H being full rank. Note that, from Lemma IV.1,
any standard basis vector eb, with b ∈ I2<,A , belongs to
rowspace(�̃ (<, A)). From Lemma IV.1 and from the fact that
H is full rank, it holds that H

[ [ ( <
≥A+1

)
+ 1 : 2<

]
,I<,A

]
is full

rank, or, �Lex (<, A), restricted to columns in I<,A , is full
rank. �

Now that we have identified an information set I<,A< of
C< ('), we need only calculate the number of disjoint (3+1)-
tuples of consecutive coordinates in I<,A< . We introduce the
notation B(8) to denote the length-< binary representation of
8, for 0 ≤ 8 ≤ 2< − 1.

We shall first compute the number of runs of consecutive
coordinates, in the lexicographic ordering, which belong to
the information set I<,A< . Formally, if we define

Γ<,A< := {B : B(B + 1) ∉ I<,A< , and B(B − ?), . . . ,B(B) ∈ I<,A< ,
for some ? ≥ 0}, (1)

to be the set of starting coordinates of runs that belong to
I<,A< , then the required number of runs is

��Γ<,A< ��.
Lemma IV.3. Under the lexicographic ordering, it holds that��Γ<,A �� = (<−1

A

)
, for 0 ≤ A ≤ < − 1.

We refer the reader to [14] for the proof of Lemma IV.3.
With the ingredients in place, we are now in a position to
prove Theorem III.2.

Proof of Theorem III.2. We work with the sequence of codes
{C< (')}<≥1, with A< ≤ <−1, for all <. We use the notation
 < :=

( <
≤A<

)
to denote the dimension of C< (').

For a given <, we know from Lemma IV.3 that the
number of runs under the lexicographic ordering,

��Γ<,A< ��, of
coordinates that lie in the information set I<,A< , is exactly(<−1
A<

)
. Now, note that the 8th run (B8 , . . . , B8 + ℓ8), of length ℓ8 ,

2022 IEEE Information Theory Workshop (ITW)

627
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 13,2023 at 10:33:18 UTC from IEEE Xplore.  Restrictions apply. 



with B8 ∈ Γ<,A< and 8 ∈
[��Γ<,A< ��] , contributes

⌊
ℓ8
3+1

⌋
disjoint

(3+1)-tuples of consecutive coordinates in I<,A . It then holds
that the overall number of disjoint (3+1)-tuples of consecutive
coordinates in I<,A is C<, where

C< ≥
|Γ<,A< |∑
8=1

(
ℓ8

3 + 1
− 1

)
=

 <

3 + 1
−

��Γ<,A< �� =  <

3 + 1
−

(
< − 1
A<

)
,

where the last equality follows from Lemma IV.3.
Now, from Proposition IV.1, it holds that

R(3,∞)C,Lin (') ≤ lim sup
<→∞

 < − 3 <

3+1 + 3 ·
(<−1
A<

)
2<

≤ lim
<→∞

 <

3+1 + 3 ·
( <−1
b <−1

2 c
)

2<
=

'

3 + 1
,

where the last equality holds from the fact that
( <−1
b <−1

2 c
)
∼

2 · 2<√
<−1

(see. for example, equation (5.28) in [15], where ‘∼’

is used to mean “grows as"), and lim<→∞
 <

2< = '. �

V. ACHIEVABLE RATES USING COSETS OF RM CODES

The results of the previous sections provide bounds on
achievable rates by using subcodes of RM codes. In this sec-
tion, we provide a sketch of another construction, which uses
cosets of RM codes. The rates achieved by this construction,
under bit-MAP decoding, are better than those in Theorem
III.3, for low noise regimes of the BMS channel.

Fix a rate ' ∈ (0, �) and any sequence {C< (') =

RM(<, A<)}<≥1 that achieves a rate ' over the unconstrained
BMS channel, under bit-MAP decoding. Recall, from Lemma
IV.2, that the set I<,A< := {b = (11, . . . , 1<) ∈ F<2 : wt(b) ≤
A<} is an information set of C< ('). For the remainder of this
section, we let < be a large positive integer.

We set  < = dim(C< (')) =
( <
≤A<

)
. Also, let ' (3,∞)< be the

rate of the code C (3,∞)< (see Theorem III.3, which is Theorem
III.2 of [9]).

Consider any permutation c< : [0 : #<−1] → [0 : #<−1]
with the property that c< ( [0 :  < − 1]) = I<,E< , where,
for a permutation f, and a set A ⊆ [0 : #< − 1], we
define the notation f(A) := {f(8) : 8 ∈ A}. As in
Section III, we define the permuted code C c< (') as C c< (') ={
(2c< (0) , 2c< (1) , . . . , 2c< (#<−1) ) : (20, 21, . . . , 2#<−1) ∈
C< (')

}
.

Thus, C c< (') is the code obtained by permuting the coordi-
nates of codewords in C< ('), such that the coordinates in the
information set I<,A< occur in the first block of  < positions.
Note that the permuted code C c< (') is systematic, and hence
all  <-tuples that respect that (3,∞)-RLL constraint, occur in
the first  < coordinates. We let � c

< be a systematic generator
matrix for C c< ('). For the lemma that follows, whose proof
can be found in [14], we shall use the notation C̃ c< :={
(2̃c< (0) , 2̃c< (1) , . . . , 2̃c< (#<−1) : (2̃0, 2̃1, . . . , 2̃#<−1) ∈
C̃(<, A<)

}
, where C̃(<, A<) = span

(
B<,A<

)
(see Section IV).

Lemma V.1. For every codeword w ∈ C c< ('), there exists
a vector v ∈ C̃ c< , such that w + v (over F2) equals the
concatenation F <

1 0.

Remark. Note that words v ∈ C̃ c< , which are of the form v =
0 <E

#<

 <+1, for some E <+1, . . . , E#<
∈ {0, 1}, are in one-to-

one correspondence with the cosets of C c< ('). In other words,
each word in C̃ c< uniquely identifies a coset of C c< ('). In what
follows, we consider C̃ c< to be the collection of coset leaders
for the code C c< (').

We now describe a simple coding scheme to transmit
(3,∞)-RLL input-constrained words over the BMS channel:

1) Pick a (3,∞)-RLL constrained  <-tuple, F <

1 . Encode
F
 <

1 into a codeword c ∈ C c< ('), using the systematic
generator matrix, � c

<, with c = F <

1 � c
<. Note that 2 <

1 =

F
 <

1 .
2) Choose a coset leader v ∈ C̃ c< such that the word, c+v =

F
 <

1 0, is also (3,∞)-RLL constrained.
3) Transmit the first  < bits, F <

1 , of c + v.
4) Transmit the identity of the coset leader as follows:

a) Divide 2#<

 <+1 into ! equal parts, c1, . . . , c! , where !
is a suitably chosen, large positive integer.

b) Encode each part c8 , for 8 ∈ [!], into a codeword of
the code C (3,∞)= ('), of a carefully chosen blocklength
#part ≥ #<− <

! ·' (3,∞)<

, where = = log2 #part.

Choosing an RLL constrained word in Step 1 above can be
accomplished using well-known constrained encoders (see,
for example, [16] and Chapters 4 and 5 of [1]), of rates
arbitrarily close to the noiseless capacity, � (3)0 , of the (3,∞)-
RLL constraint. Further, Lemma V.1 shows that Step 2 can
also be achieved. We refer the reader to [14] for a detailed
explanation of Step 4, and, in particular, the choice of the
integers ! and #part. At the decoder end, the coset leader v
is recovered first, and this information is used to decode the
original codeword, c ∈ Cc< (').

The coding scheme described above obeys the rate lower
bound given in Theorem III.5, in the limit as < → ∞. We
refer the reader to [14] for the proof of the theorem.

VI. CONCLUSION

In this paper, we derived upper bounds on the rates of
linear (3,∞)-RLL subcodes of Reed-Muller (RM) codes. We
showed that if � is the capacity of an unconstrained BMS
channel, then the rate of any linear (3,∞)-RLL subcode of
an RM code, is bounded above by �

3+1 , in the limit as the
blocklength of the code goes to infinity. Besides, we showed
that for large enough blocklength, for nearly all coordinate
orderings, a rate upper bound of �

3+1 + X holds, where X can
be taken to be as small as required. Further, we devised a
constrained coding scheme based on cosets of RM codes that,
for low noise regimes, outperforms any linear coding scheme,
in terms of rate.

For future work, as regards the cosets-based coding scheme
proposed in this paper, other sequential decoding algorithms
(such as those in [17]), adapted to RM codes, can be explored
to check if the extra channel uses in our coding scheme can
be eliminated altogether.
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