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Abstract. We prove an analogue of Chernoff’s theorem for the Laplacian�H

on the Heisenberg groupHn. As an application, we prove Ingham type theorems for
the group Fourier transform on H

n and also for the spectral projections associated
to the sublaplacian.

1 Introduction

Uncertainty principles in harmonic analysis have thrilled mathematicians for a long
time. One of the several avatars of the uncertainty principle, dealing with the best
possible decay admissible for the Fourier transform of a nontrivial function which
vanishes on an open set, was studied by Ingham in 1934. Proving analogues of
this result in various settings has received considerable attention in recent years. In
some of the works, a theorem of Chernoff on quasi analytic functions has played an
important role in proving Ingham type theorems. In this paper our aim is two-fold.
We first prove an analogue of Chernoff’s theorem for the full Laplacian�H on the
Heisenberg group H

n and then use it prove Ingham type theorems for the (operator
valued) Fourier transform on Hn and also for the spectral projections associated to
the sublaplacian L.

Chernoff’s theorem on Rn is to be viewed as a higher dimensional analogue
of the Denjoy–Carleman theorem which characterizes quasi-analytic functions. In
1950, instead of using partial derivatives, Bochner used iterates of Laplacian� to
study quasi-analytic functions on R

n. Later in 1972, by using operator theoretic
arguments, Chernoff [8] improved the result of Bochner and proved the following
result.

Theorem 1.1 ([8, Chernoff]). Let f be a smooth function on Rn. Assume that

�mf ∈ L2(Rn) for all m ∈ N and
∑∞

m=1 ‖�mf‖− 1
2m

2 = ∞. If f and all its partial
derivatives vanish at a point a ∈ Rn, then f is identically zero.
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As Chernoff’s theorem is a useful tool in establishing uncertainty principles of
Ingham’s type, proving analogues of Theorem 1.1 in contexts other than Euclidean
spaces have received considerable attention in recent years. For noncompact Rie-
mannian symmetric spaces X=G/K, without any restriction on the rank, the follow-
ing weaker version of Theorem 1.2 has been proved in Bhowmik–Pusti–Ray [3].

Theorem 1.2 (Bhowmik–Pusti–Ray). Let X = G/K be a noncompact

Riemannian symmetric space and let �X be the associated Laplace–Beltrami

operator. Suppose f ∈ C∞(X) satisfies �m
X f ∈ L2(X) for all m ≥ 0 and

∞∑
m=1

‖�m
X f‖− 1

2m
2 = ∞.

If f vanishes on a non empty open set, then f is identically zero.

Observe that in the above result, the function f is assumed to vanish on an open
set. Proving an exact analogue of Chernoff’s theorem is still open though there are
some partial results. Recently in [4] the authors have proved an exact analogue
of Chernoff’s theorem for K-biinvariant functions on the group G. Under the
assumption that X is of rank one, we have proved an exact analogue of Chernoff’s
theorem in a joint work with R. Manna [12]:

Theorem 1.3 (Ganguly–Manna–Thangavelu). Let X = G/K be a rank one
Riemannian symmetric space of noncompact type. Suppose f ∈ C∞(X) satisfies

�m
X f ∈ L2(X) for all m ≥ 0 and

∑∞
m=1 ‖�m

X f‖− 1
2m

2 = ∞. If Hlf (eK) = 0 for all l ≥ 0
then f is identically zero.

In the above, H is any nonzero element of the one dimensional Lie algebra a

occurring in the Iwasawa decomposition g = k ⊕ a⊕ n.
In view of the above results, it is an interesting problem to study Chernoff’s

theorem for the sublaplacianL on the Heisenberg groupHn. The following version
of Chernoff’s theorem has been proved in [2].

Theorem 1.4 (Bagchi-Ganguly-Sarkar-Thangavelu). Let f be a smooth func-

tion on H
n satisfying f (z, t) = f0(|(z, t)|) where |(z, t)| = (|z|4 + t2)1/4 is the Koranyi

norm on Hn. Assume that Lmf ∈ L2(Hn) for all m ∈ N and
∑∞

m=1 ‖Lmf‖− 1
2m

2 = ∞.

If f and all its partial derivatives vanish at 0, then f is identically zero.

Observe that as in the case of symmetric spaces of arbitrary rank studied in [4]
we have also imposed an extra condition on f . It is still an open problem to prove
the above result without the extra assumption on f . However, in this paper we
consider the full Laplacian�H instead of L and prove the following version which
is the analogue of Theorem 1.2 in our context.
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Theorem 1.5. Let f be a smooth function on H
n such that �m

H
f ∈ L2(Hn) for

all m ∈ N and
∑∞

m=1 ‖�m
H

f‖− 1
2m

2 = ∞. If f vanishes on a nonempty open set, then f
is identically zero.

As an application of this result, we are able to strengthen the Ingham’s theorem
proved in [2]. In Theorem 1.3 in [2] we have investigated the admissible decay
of the Fourier transform f̂ (λ) of a nontrivial function f on H

n. As f̂ (λ) is operator
valued, the decay ismeasured in terms of theHermite operatorH(λ) in the following
form:

(1.1) f̂ (λ)∗f̂ (λ) ≤ Ce−2
√

H(λ)�(
√

H(λ))

for a nonnegative function � defined on [0,∞). More precisely, the following
theorem has been proved.

Theorem 1.6. Let �(λ) be a nonnegative function on [0,∞) such that �(λ)
decreases to zero when λ → ∞ and satisfies the condition

∫ ∞
1 �(t)t−1dt < ∞.

Then there exists a nonzero compactly supportedcontinuous function f onHn whose

Fourier transform f̂ satisfies the estimate (1.1). Conversely, for any nontrivial
integrable function f vanishing on a neighborhood of zero satisfying the extra

assumption f (z, t) = f0(|(z, t)|), the estimate (1.1) cannot hold unless∫ ∞

1
�(t)t−1dt <∞.

In this paper we show that the extra condition on f can be dispensed with if we
slightly strengthen the condition (1.1). Let g be a function on R whose Euclidean
Fourier transform satisfies the estimate |ĝ(λ)| ≤ Ce−|λ|�(|λ|) for all λ ∈ R. If f0
satisfies (1.1), then the function f (z, t) =

∫ ∞
−∞ f0(z, t−s)g(s)ds satisfies the condition

(1.2) f̂ (λ)∗f̂ (λ) ≤ C e−2|λ|�(|λ|)e−2
√

H(λ)�(
√

H(λ)).

By combining the first part of Theorem 1.6 and the classical theorem of Ingham it
is not difficult to prove the following result.

Theorem 1.7. Let �(λ) be a nonnegative function on [0,∞) such that �(λ)
decreases to zero when λ → ∞. Then there exists a nonzero compactly supported
continuous function f on Hn whose Fourier transform f̂ (λ) satisfies the estimate

(1.2) if and only if
∫ ∞
1 �(t)t−1dt <∞.

The proof of this theorem which will be presented in Section 4 is not difficult.
Thus, if

∫ ∞
1 �(t)t−1dt = ∞, then we cannot have any nontrivial function f with

compact support whose Fourier transform satisfies (1.2). However, if we only
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assume that f vanishes on a nonempty open set, then proving that f is identically
zero is much more difficult. We need to make use of the full power of Theorem 1.5.
In this paper we prove the following result.

Theorem 1.8. Let �(λ) be a nonnegative function on [0,∞) such that it
decreases to zerowhenλ → ∞ and satisfies the condition

∫ ∞
1 �(t)t−1dt = ∞. Let f

be an integrable function onHn whoseFourier transform satisfies the estimate (1.2).
Then f cannot vanish on any nonempty open set unless it is identically zero.

Actually, we prove a refined version of the above theorem by replacing (1.2) by
a decay assumption on the spectral projections associated to the sublaplacian. In
order to motivate our result, it is instructive to recast the condition (1.2) in terms of a
different but equivalent definition of Fourier transform. In the above, f̂ (λ), λ ∈ R∗

is defined in terms of the Schrödinger representation πλ of H
n realized on the

Hilbert space L2(Rn). Instead, we can consider functions f on Hn as right U(n)
invariant functions on the Heisenberg motion group Gn = H

n
�U(n) which allows

us to consider ρλk (f ) for a family of class-1 representations of Gn indexed by λ ∈ R
∗

and k ∈ N realized on certain Hilbert spaces Hλ
k which are some explicit function

spaces on H
n.

The representations ρλk when restricted to Hn are not irreducible but split into
finitely many irreducible unitary representations each one being equivalent to πλ.
Since ρλk are class-1 representations of Gn each of them has a unique U(n)-fixed
vector in Hλ

k which we denote by en−1
k,λ (z, t). Thus the scalar valued function

f → ρλk (f )e
n−1
k,λ (z, t) = eiλtf̂ (λ, k, z) can be considered as the analogue of the Helga-

son Fourier transformon Riemannian symmetric spaces of noncompact type. It can
be shown that eiλt f̂ (λ, k, z) are eigenfunctions of the sublaplacian with eigenvalues
(2k + n)|λ| and f can be recovered by the formula

(1.3) f (z, t) = (2π)−n−1
∫ ∞

−∞
eiλt

( ∞∑
k=0

ρλk (f )e
n−1
k,λ (z, 0)

)
|λ|ndλ.

We can thus view the above as the spectral decomposition of the sublaplacian.
Moreover,

(1.4)
(k + n − 1)
k!(n − 1)!

‖ρλk (f )‖2
HS = (2π)−n|λ|n

∫
Cn

|ρλk (f )en−1
k,λ (z, 0)|2dz.

It is not difficult to check that the condition (1.2) leads to the estimate

(1.5)
(k + n − 1)
k!(n − 1)!

‖ρλk (f )‖2
HS ≤ C e−2|λ|�(|λ|)e−2

√
(2k+n)|λ|�(

√
(2k+n)|λ|)

and it turns out that Theorem 1.8 can be proved solely under the above condition
on ‖ρλk (f )‖HS (see Subsection 4.1).
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However, we can do better than this: instead of assuming decay estimates
on ‖ρλk (f )‖HS we can impose pointwise estimates on the spectral projections
ρλk (f )e

n−1
k,λ (z, t) and prove the following version of Ingham’s theorem.

Theorem 1.9. Let �(λ) be a nonnegative function on [0,∞) such that �(λ)
decreases to zero when λ → ∞ and satisfies the condition

∫ ∞
1 �(t)t−1dt = ∞.

Let f be a nontrivial integrable function on Hn which vanishes on an open set V.

Then its (Helgason) Fourier transform cannot satisfy the uniform estimate

sup
(z,t)∈V

|ρλk (f )en−1
k,λ (z, t)| ≤ C e−|λ|�(|λ|)e−√

(2k+n)|λ|�(
√

(2k+n)|λ|).

Aswe have alreadymentioned,ρλk (f )e
n−1
k,λ (z, t) are eigenfunctions ofL and hence

the above theorem is a version of Ingham’s theorem for the spectral projections.
Earlier we have proved such theorems for spectral projections associated to certain
elliptic differential operators; see [11] for� on noncompactRiemannian symmetric
spaces and [10] for the Hermite and special Hermite operators and � on compact
symmetric spaces.

The plan of the paper is as follows. In the next section we collect necessary
preliminaries on the Heisenberg group, Heisenberg motion group and Laguerre
expansions. In Section 3, we prove an analogue of Chernoff’s theorem for the
generalized Laplacian and we use this to prove an analogue of Chernoff’s theorem
for the full Laplacian on the Heisenberg group. Finally in Section 4, we prove
Ingham type uncertainty principles for the group Fourier transform and spectral
projections associated to the sublaplacian.

2 Preliminaries on the Heisenberg group

We develop the required background for the Heisenberg group. General references
for this section are the monographs of Thangavelu [21], [23] and [24]. Also see
the book [9] of Folland.

2.1 Fourier transform on the Heisenberg group. Let Hn := C
n × R

be the (2n + 1)-sdimensional Heisenberg group with the group law

(z, t).(w, s) :=
(
z +w, t + s +

1
2

Im(z.w̄)
)
, ∀(z, t), (w, s) ∈ H

n.

This is a step two nilpotent Lie group where the Lebesgue measure dzdt on C
n ×R

serves as the Haar measure. The representation theory of Hn is well-studied
in the literature. In order to define Fourier transform, we use the Schrödinger
representations as described below.
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For each nonzero real number λ we have an infinite-dimensional representa-
tion πλ realized on the Hilbert space L2(Rn). These are explicitly given by

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2 x·y)ϕ(ξ + y),

where z = x+ iy and ϕ ∈ L2(Rn). These representations are known to be unitary and
irreducible. Moreover, by a theorem of Stone and Von-Neumann (see, e.g., [9]),
up to unitary equivalence these account for all the infinite-dimensional irreducible
unitary representations of Hn which act as eiλtI on the center. Also there is another
class of finite dimensional irreducible representations. As they do not contribute
to the Plancherel measure we will not describe them here.

The Fourier transform of a function f ∈ L1(Hn) is the operator valued function
defined on the set of all nonzero reals, R∗; given by

f̂ (λ) =
∫
Hn

f (z, t)πλ(z, t)dzdt.

Note that f̂ (λ) is a bounded linear operator on L2(Rn). It is known that when
f ∈ L1 ∩ L2(Hn) its Fourier transform is actually a Hilbert–Schmidt operator and
one has ∫

Hn
|f (z, t)|2dzdt = (2π)−(n+1)

∫ ∞

−∞
‖f̂ (λ)‖2

HS|λ|ndλ
where ‖.‖HS denotes the Hilbert–Schmidt norm. The above allows us to extend the
Fourier transform as a unitary operator between L2(Hn) and the Hilbert space of
Hilbert–Schmidt operator valued functions on R which are square integrable with
respect to the Plancherel measure dμ(λ) = (2π)−n−1|λ|ndλ. We polarize the above
identity to obtain∫

Hn
f (z, t)g(z, t)dzdt =

∫ ∞

−∞
tr(f̂ (λ)ĝ(λ)∗) dμ(λ).

Also for suitable function f on H
n we have the following inversion formula:

f (z, t) =
∫ ∞

−∞
tr(πλ(z, t)

∗f̂ (λ))dμ(λ).

Now by definition of πλ and f̂ (λ) it is easy to see that

f̂ (λ) =
∫
Cn

f λ(z)πλ(z, 0)dz

where f λ stands for the inverse Fourier transform of f in the central variable:

f λ(z) :=
∫ ∞

−∞
eiλ.tf (z, t)dt.
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Given a suitable function g on C
n, we consider the following operator valued

function defined by

Wλ(g) :=
∫
Cn

g(z)πλ(z, 0)dz.

With these notations we note that f̂ (λ) = Wλ(f λ). These transforms are called the
Weyl transforms. We have the following Plancherel formula for a Weyl transform
(see [24, 2.2.9, page 49]):

(2.1) ‖Wλ(g)‖2
HS|λ|n = (2π)n‖g‖2

2, g ∈ L2(Cn).

Now we move our attention to spherical means on H
n introduced by Nevo–

Thangavelu in [16]. This will play a very important role in proving Chernoff’s
theorem for the full Laplacian.

2.2 Spherical means on H
n. We consider the spherical means of a func-

tion f on H
n defined by

(2.2) f ∗ μr(z, t) =
∫

|w|=r
f
(
z −w, t − 1

2
Im z ·w

)
dμr(w)

where μr is the normalized surface measure on the sphere Sr = {(z, 0) : |z| = r}
in H

n. In the following, we describe the special Hermite expansion of the spherical
means which will play a very important role later. In order to do that, we consider
the Laguerre function of type (n − 1) defined by

ϕn−1
k (r) := Ln−1

k

(1
2
r2
)
e− 1

4 r2

where Ln−1
k (r) denotes the Laguerre polynomials of type (n − 1). For λ �= 0,

let ϕn−1
k,λ (r) := ϕn−1

k (
√|λ|r). By abuse of notation, we write ϕn−1

k,λ (z) := ϕn−1
k,λ (|z|),

z ∈ C
n. It is well-known that f λ has the following expansion (see [24, 2.3.29, page

58]):

(2.3) f λ(z) = (2π)−n|λ|n
∞∑
k=0

f λ ∗λ ϕn−1
k,λ (z),

where f λ ∗λ ϕn−1
k,λ (z) is the λ-twisted convolution defined by

f λ ∗λ ϕn−1
k,λ (z) =

∫
Cn

f λ(z −w)ϕn−1
k,λ (w)ei λ2 Im z·w dw.

Now in view of the inversion formula for the Fourier transform we have

f (z, t) = (2π)−n−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

f λ ∗λ ϕn−1
k,λ (z)

)
|λ|ndλ.
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Using the fact that (f ∗ μr)λ(z) = f λ ∗λ μr(z) we see that

(2.4) f ∗ μr(z, t) =
1
2π

∫ ∞

−∞
e−iλtf λ ∗λ μr(z) dλ

which, along with the following expansion proved in [20, Theorem 4.1] and [16,
Proof of Proposition 6.1],

f λ ∗λ μr(z) = (2π)−n|λ|n
∞∑
k=0

k!(n − 1)!
(k + n − 1)!

ϕn−1
k,λ (r)f λ ∗λ ϕn−1

k,λ (z),

leads to the expansion

(2.5)

f ∗ μr(z, t)

= (2π)−n−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

k!(n − 1)!
(k + n − 1)!

ϕn−1
k,λ (r)f λ ∗λ ϕn−1

k,λ (z)
)
|λ|n dλ.

The above formula, which provides a spectral decomposition for the spherical
means, will be very useful for our purpose. Next we describe the Heisenberg
motion group and its connection with the Fourier transform on H

n.

2.3 Heisenberg motion group and Fourier transform. Let U(n) de-
note the group of all unitary matrices of order n. This acts on H

n by the automor-
phisms

σ.(z, t) = (σz, t), σ ∈ U(n).

We consider the semi-direct product of Hn and U(n), Gn := Hn �U(n), which acts
on H

n by

(z, t, σ).(w, s) =
(
z + σw, t + s +

1
2

Im(z · σw)
)

whence the group law in Gn is given by

(z, t, σ).(w, s, τ) =
(
z + σw, t + s +

1
2

Im(z · σw), στ
)
.

The group Gn is called the Heisenberg motion group which contains H
n

and U(n) as subgroups. AlsoH
n can be identified with the quotient groupGn/U(n).

As a matter of fact, functions on H
n can be viewed as right U(n) invariant func-

tions on Gn. The Haar measure on Gn is given by dσ dz dt where dσ denotes the
normalized Haar measure on U(n). To bring out the connection between the group
Fourier transform on Hn and the Heisenberg motion group, we need to describe a
family of class-1 representations of Gn. We start by recalling the definition of such
representations.
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Let G be a locally compact topological group and K be a compact subgroup
of G. Suppose π is a representation of G realized on the Hilbert space H. Let HK

denote the set of all K-fixed vectors given by

HK := {v ∈ H : π(k)v = v, ∀k ∈ K}.
It can be easily checked that HK is a subspace of H. We say that π is a class-1
representation of the pair (G,K) if HK �= {0}. Moreover, when (G,K) is a Gelfand
pair it is well-known that dimHK = 1. In the following, we describe a certain
family of class-1 representations for the Gelfand pair (Gn,U(n)). For that we need
to set up some more notation.

For α ∈ Nn and λ �= 0 let �λ
α(x) := |λ|n/4�α(

√|λ|x), x ∈ Rn, where �α

denotes the normalized Hermite functions on R
n. We know that for each λ �= 0,

{�λ
α : α ∈ Nn} forms an orthonormal basis for L2(Rn). Suppose

Eλα,β(z, t) := (πλ(z, t)�
λ
α,�

λ
β), (z, t) ∈ H

n

denotes the matrix coefficients of the Schrödinger representation πλ of Hn. For
each λ �= 0 and k ∈ N, we consider the Hilbert space Hλ

k spanned by

{Eλα,β : α, β ∈ N
n, |β| = k}

and equipped with the inner product

(f, g)Hλ
k
:= (2π)−n|λ|n

∫
Cn

f (z, 0)g(z, 0)dz.

We define a representation ρλk of Gn realized on Hλ
k by the prescription

ρλk (z, t, σ)ϕ(w, s) := ϕ((z, t, σ)−1(w, s)), (w, s) ∈ H
n.

It is well-known that ρλk is an irreducible unitary representation of Gn for all λ �= 0
and k ∈ N. Also for λ �= 0 and k ∈ N we consider the function en−1

k,λ on H
n defined

by

en−1
k,λ (z, t) =

k!(n − 1)!
(k + n − 1)!

∑
|α|=k

(πλ(z, t)�
λ
α,�

λ
α).

It is known that the above function can be expressed in terms of Laguerre functions
as follows (See [23, page 52]):

en−1
k,λ (z, t) =

k!(n − 1)!
(k + n − 1)!

eiλtϕn−1
k,λ (z).

It can be checked that en−1
k,λ is a U(n)-fixed vector corresponding to the represen-

tation ρλk and hence ρλk is a class-1 representation of the pair (Gn,U(n)). More-
over, (Gn,U(n)) being a Gelfand pair, en−1

k,λ is unique up to a scalar multiple. Also
it can be easily checked that en−1

k,λ (0, 0) = 1.
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Given f ∈ L1(Hn), considering it as an U(n)-invariant function on Gn, we
associate an operator valued function ρλk (f ) acting on Hλ

k defined by

ρλk (f ) :=
∫

Gn

f (z, t)ρλk (z, t, σ)dσ dz dt.

Now since ρλk is unitary, it can be easily checked that ρλk (f ) is a bounded operator
and the operator norm is bounded above by ‖f‖1. As a matter of fact, the scalar
valued function

f → ρλk (f )e
n−1
k,λ (z, t) =: eiλtf̂ (λ, k, z)

can be viewed as an analogue of the Helgason Fourier transform of f . We know
that using the definition of ρλk the following can be easily checked:

ρλk (f )e
n−1
k,λ (z, t) =

k!(n − 1)!
(k + n − 1)!

eiλtf−λ ∗−λ ϕn−1
k,λ (z).

This leads to the following nice formula proved in [18, Proposition 2.1]:

(2.6)
(k + n − 1)
k!(n − 1)!

‖ρλk (f )‖2
HS = (2π)−n|λ|n

∫
Cn

|f−λ ∗−λ ϕn−1
k,λ (z)|2dz.

We end the preliminaries with a description of the spectral decomposition of
the sublaplacian on H

n and expansions in terms of Laguerre functions.

2.4 The sublaplacian on Hn and the generalized sublaplacian. We
let hn stand for the Heisenberg Lie algebra consisting of left invariant vector fields
on Hn. A basis for hn is provided by the 2n + 1 vector fields

Xj =
∂

∂xj
+

1
2
yj
∂

∂t
, Yj =

∂

∂yj
− 1

2
xj
∂

∂t
, j = 1, 2, . . . , n

and T = ∂
∂t . These correspond to certain one parameter subgroups of Hn. The

sublaplacian on H
n is defined by L := −∑∞

j=1(X
2
j + Y2

j ) which is given explicitly
by

L = −�Cn − 1
4
|z|2 ∂

2

∂t2
+ N

∂

∂t
,

where�Cn stands for the Laplacian on C
n and N is the rotation operator defined by

N =
n∑

j=1

(
xj
∂

∂yj
− yj

∂

∂xj

)
.

This is a sub-elliptic operator and homogeneous of degree 2 with respect to the
nonisotropic dilation given by δr(z, t) = (rz, r2t). The sublaplacian is also invariant
under rotation, i.e.,

Rσ ◦ L = L ◦ Rσ, σ ∈ U(n).
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We denote the full laplacian on H
n by �H which is defined as follows:

�H = −
n∑

j=1

(X2
j + Y2

j ) − T2.

We consider the special Hermite operator Lλ defined by the relation

(Lf )λ(z) = Lλf
λ(z).

It turns out that Lλ is explicitly given by

Lλ = −�Cn +
1
4
λ2|z|2 + iλN.

In view of the fact that f λ ∗λ ϕn−1
k,λ (z) are eigenfunctions of Lλ with eigenvalues

(2k + n)|λ|, using (2.3), we have the following expansion:

Lλf
λ(z) = (2π)−n|λ|n

∞∑
k=0

(2k + n)|λ|f λ ∗λ ϕn−1
k,λ (z)

leading to the following spectral decomposition of L:

(2.7) Lf (z, t) = (2π)−n−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

((2k + n)|λ|)f λ ∗λ ϕn−1
k,λ (z)

)
|λ|ndλ.

Moreover, we can rewrite the Plancherel formual in terms of these projections
f → f ∗λ ϕn−1

k,λ . Indeed, it has been proved in [24, Proposition 2.3.3] that

Wλ(ϕ
n−1
k,λ ) = (2π)n |λ|−nPk(λ).

Using this and the definition of the Hilbert–Schmidt norm we have

‖f̂ (λ)‖2
HS =

∞∑
k=0

‖Wλ(f
λ)Pk(λ)‖2

HS = (2π)−2n|λ|2n
∞∑
k=0

‖Wλ(f
λ ∗λ ϕn−1

k,λ )‖2
HS.

In view of the Plancherel formula for the Weyl transform (2.1) we get∫
Cn

|f λ(z)|2dz = (2π)−2n|λ|2n
∞∑
k=0

‖f λ ∗λ ϕn−1
k,λ ‖2

2.

Integrating with respect to λ we obtain

(2.8)
∫
Hn

|f (z, t))|2dzdt = (2π)−2n−1
∫ ∞

−∞

( ∞∑
k=0

‖f λ ∗λ ϕn−1
k,λ ‖2

2

)
|λ|2n dλ.

We say that a function f on H
n is radial if it is radial in the z variable and by

abusing the notation we write f (z, t) = f (r, t), r = |z|. The action of L on such
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radial functions is given by Lf (z, t) = Ln−1f (r, t) where the operator Ln−1 is given
by

Ln−1 = − ∂2

∂r2
− 2n − 1

r
∂

∂r
− 1

4
r2 ∂

2

∂t2
.

This suggests that we consider the family of operators Lα, α ≥ −1/2, on
S = R+ × R defined by

Lα = − ∂2

∂r2
− 2α + 1

r
∂

∂r
− 1

4
r2 ∂

2

∂t2
.

These operators are called generalized sublaplacians whose spectral decompo-
sition can be written down explicitly. Let us define the Laguerre functions of
type α≥−1/2 by

ϕαk,λ(r) := Lαk
(1
2
|λ|r2

)
e− 1

4 |λ|r2
.

It is well known (see [19]) that the functions eαk,λ(r, t) defined by

eαk,λ(r, t) :=
�(k + 1)�(α + 1)
�(k + α + 1)

eiλtϕαk,λ(r)

are eigenfunctions of Lα with eigenvalue (2k + α + 1)|λ| and hence the spectral
decomposition of the operator Lα is then given by

(2.9) Lαf (r, t) = (2π)−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

(2k + α + 1)|λ|Rαk,λ(f )ϕαk,λ(r)
)

dλ.

In the above expansion, the coefficients Rαk,λ(f ) are given by

Rαk,λ(f ) =
∫ ∞

−∞

∫ ∞

0
f (r, t)eαk,λ(r, t) r2α+1drdt.

Note that with the obvious definition of f λ(r) we have

Rαk,λ(f ) =
�(k + 1)�(α + 1)
�(k + α + 1)

∫ ∞

0
f λ(r)ϕαk,λ(r)r

2α+1dr.

The spectral decomposition (2.9) leads to the following theorem about expansions
in terms of the functions eαk,λ(r, t).

Theorem2.1. For any f∈L2(S,r2α+1drdt)wehave the L2-convergent expansion

f (r, t) = cα(2π)−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

Rαk,λ(f )ϕ
α
k,λ(r)

)
|λ|α+1 dλ.

The Plancherel theorem for the above expansion reads as follows:∫ ∞

−∞

∫ ∞

0
|f (r, t)|2r2α+1drdt = c′

α

∫ ∞

−∞

( ∞∑
k=0

�(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|2
)

|λ|α+1 dλ.

In the above formulas, cα and c′
α are explicit constants.
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We refer the reader to Stempak [19] for more details about the results described
above.

In the next section we prove an analogue of Chernoff’s theorem for the gener-
alized Laplacian �α = −∂2

t + Lα on R
+ × R. In view of the expansion (2.5) the

particular case α = n − 1 plays an important role in proving Chernoff’s theorem
for the sublaplacian on H

n.

3 An analogue of Chernoff’s theorem for the Laplacian
on H

n

In this section we prove an analogue of Chernoff’s theorem for the Laplacian
�H = −∂2

t + L on H
n. As explained earlier, the idea is to prove an analogue of

Chernoff’s theorem for the generalized Laplacian�α first and then use it to deduce
the required result.

3.1 Chernoff’s theorem for �α. As in our earlier works [10, 11] we
make use of the following result of de Jeu [14] which is a generalization of a
theorem of Carleman in the one dimensional case.

Theorem 3.1. Let μ be a finite positive Borel measure on Rn for which

all the moments M(j)(m) =
∫
Rn xm

j dμ(x),m ≥ 0 are finite. If we further as-
sume that the moments satisfy the Carleman condition

∑∞
m=1 M(j)(2m)−1/2m = ∞,

j = 1, 2, . . . , n, then the polynomials are dense in Lp(Rn, dμ), 1 ≤ p <∞.

Remark 3.2. We require the above result only when n = 2. Moreover,
polynomials that are even in the second variable are dense in the spaceLp

2,e(R
2, dμ),

1 ≤ p < ∞ consisting of functions that are even in the second variable.

We also require the two elementary results about series of positive real numbers
described in the following lemma.

Lemma 3.3. (a) Let {Mn}n be a sequence of positive real numbers satisfying∑∞
n=1 M−1/n

n = ∞. Suppose {Kn}n is another sequence of positive real numbers
such that Kn ≤ aMn + bn for some constants a, b > 0. Then

∑∞
n=1 K−1/n

n = ∞.

(b) Let {am}m be a sequence of positive real numbers such that
∑∞

m=1 am = ∞.

Then for any positive integer j, we have
∑∞

m=1 a
1+ j

m
m = ∞.

For proofs of the two results stated in the above lemma, we refer the reader to
[7, Lemma 3.2] and [3, Lemma 3.3] respectively.

We are now in a position to state and prove the following version of Chernoff’s
theorem for the operator�α = −∂2

t + Lα. In what follows, we write L2(S) in place
of L2(S, r2α+1drdt) for the sake of brevity.
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Theorem 3.4. Let f ∈ C∞(S) be such that �m
α f ∈ L2(S) for all m ≥ 0

and satisfies the Carleman condition
∑∞

m=1 ‖�m
α f‖− 1

2m

L2(S) = ∞. If f vanishes on a
neighborhood of (0, 0), then f is identically zero.

Proof. Let �̃α = {(λ, (2k + α + 1)|λ|) : λ ∈ R, k ∈ N}, which is known as the
Heisenberg fan when α = n − 1. We let �α = {(x, y) : (x, y2) ∈ �̃α} and define a
measure μf on R

2 supported on �α as follows: for any Borel function ϕ on R
2∫

R2
ϕ(x, y)dμf (x, y)

=
∫ ∞

−∞

( ∞∑
k=0

ϕe(λ,
√

(2k + α + 1)|λ|) �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|
)

|λ|α+1dλ

where ϕe(x, y) = 1
2 (ϕ(x, y) + ϕ(x,−y)). Under the assumptions on f it follows

that μf is a finite Borel measure which satisfies∫
R2
ϕ(x,−y)dμf (x, y) =

∫
R2
ϕ(x, y)dμf (x, y).

As a consequence, all the odd moments M(2)(2m + 1) of μf are zero and the even
moments are given by

(3.1)

M(2)(2m)

=
∫ ∞

−∞

( ∞∑
k=0

((2k + α + 1)|λ|)m �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|
)

|λ|α+1dλ.

We also have

(3.2) M(1)(2m) =
∫ ∞

−∞

( ∞∑
k=0

λ2m �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|
)

|λ|α+1dλ.

We will now show that the moments M(j)(2m), j = 1, 2 satisfy the Carleman
condition. Observe that M(j)(2m) ≤ M(2m) where

(3.3)

M(2m)

=
∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + α + 1)|λ|)m �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|
)

|λ|α+1dλ.

Therefore, it is enough to check the Carleman condition for M(2m). By splitting
M(2m) = M0(2m) + M∞(2m) where

M0(2m)

=
∫ ∞

−∞

( ∑
(2k+α+1)|λ|≤1

(λ2 + (2k + α + 1)|λ|)m �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|
)

|λ|α+1dλ

we estimate them separately.
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By applying the Cauchy–Schwarz inequality and using the Plancherel formula
stated in Theorem 2.1 we see that M0(2m)2 is bounded by

C ‖f‖2
L2(S)

∫ ∞

−∞

( ∑
(2k+α+1)|λ|≤1

(λ2 + (2k + α + 1)|λ|)m �(k + α + 1)
�(k + 1)�(α + 1)

)
|λ|α+1dλ.

As �(k+α+1)
�(k+1)�(α+1) ≤ Cα(2k + α + 1)α and λ2 + (2k + α + 1)|λ| ≤ 2 the above integral is

bounded by

Cα 2m
∞∑
k=0

(2k + α + 1)α
∫

(2k+α+1)|λ|≤1
|λ|α+1dλ ≤ C′

α 2m
∞∑
k=0

(2k + α + 1)−2 < ∞.

This gives the estimate M0(2m) ≤ 2m C1‖f‖L2(S). In order to estimate M∞(2m) we
choose a positive integer j > α/2 + 1 so that

C2
j =

∫ ∞

−∞

( ∑
(2k+α+1)|λ|≥1

((2k + α + 1)|λ|)−2j �(k + α + 1)
�(k + 1)�(α + 1)

)
|λ|α+1dλ < ∞.

By writing

(λ2 + (2k + α + 1)|λ|)m = (λ2 + (2k + α + 1)|λ|)m+j(λ2 + (2k + α + 1)|λ|)−j,

using (2.9) and applying Cauchy–Schwarz, we see that M∞(2m)2 is bounded by C2
j

times∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + α + 1)|λ|)2(m+j) �(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|2
)

|λ|α+1 dλ

which is a constant multiple of ‖�m+j
α f‖2

L2(S). Thus we have proved the estimates

(3.4) M(j)(2m) ≤ aj‖�m+j
α f‖L2(S) + b2m‖f‖L2(S).

In view of the second part of Lemma 3.3, the hypothesis gives

∞∑
m=1

‖�m+j
α f‖− 1

2m

L2(S) = ∞.

Using this along with the first part of Lemma 3.3, the above estimate allows us
to conclude that

∑∞
m=1 M(j)(2m)− 1

2m = ∞. Thus the moment sequences M(j)(2m)
satisfy the Carleman condition.

Hence by the remark after Theorem 3.1 we know that polynomials that are even
in the second variable are dense in L1

2,e(R
2, dμf ). Consider the function ϕ defined

on �α by

ϕ(λ,
√

(2k + α + 1)|λ|) = ϕ(λ,−√
(2k + α + 1)|λ|) = Rαk,λ(f ).
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As ϕ(x, y) is even in the second variable it follows that

∫
R2

|ϕ(x, y)|dμf (x, y) =
∫ ∞

−∞

( ∞∑
k=0

�(k + α + 1)
�(k + 1)�(α + 1)

|Rαk,λ(f )|2
)

|λ|α+1 dλ

= c−1
α ‖f‖2

L2(S).

This shows that ϕ ∈ L1
2,e(R

2, dμf ) and hence, given any ε > 0, we can find a
polynomial q(x, y) which is even in the second variable such that∣∣∣∣

∫
R2

(ϕ(x, y) − q(x, y))dμf (x, y)
∣∣∣∣ ≤

∫
R2

|ϕ(x, y) − q(x, y)|dμf (x, y) < ε.

Therefore, with ψ(x, y) = ϕ(x, y) − q(x, y), which is even in the second variable,
we have

(3.5)

∣∣∣∣
∫ ∞

−∞

( ∞∑
k=0

ψ(λ,
√

(2k + α + 1)|λ|) �(k + α + 1)
�(k + 1)�(α + 1)

Rαk,λ(f )
)

|λ|α+1dλ

∣∣∣∣< ε.
We now claim that∫ ∞

−∞

( ∞∑
k=0

q(λ,
√

(2k + α + 1)|λ|) �(k + α + 1)
�(k + 1)�(α + 1)

Rαk,λ(f )
)

|λ|α+1dλ = 0.

Assuming the claim for amoment let us complete the proof. Recalling the definition
of ϕ, from (3.5) we obtain

∫ ∞

−∞

( ∞∑
k=0

ϕ(λ,
√

(2k + α + 1)|λ|) �(k + α + 1)
�(k + 1)�(α + 1)

Rαk,λ(f )
)

|λ|α+1dλ

= c−1
α ‖f‖2

L2(S) < ε.

As ε is arbitrary, this proves the theorem.
Returning to the claim, it is enough to show that

(3.6)
∫ ∞

−∞

( ∞∑
k=0

λj((2k + α + 1)|λ|)m �(k + α + 1)
�(k + 1)�(α + 1)

Rαk,λ(f )
)

|λ|α+1dλ = 0

for any j,m ∈ N. This follows from the hypothesis that f vanishes in a neighborhood
of (0, 0) and the inversion formula (see Theorem 2.1)

f (r, t) = cα(2π)−1
∫ ∞

−∞

( ∞∑
k=0

�(k + α + 1)
�(k + 1)�(α + 1)

Rαk,λ(f )e
α
k,−λ(r, t)

)
|λ|α+1 dλ.

By applying ∂j
t L

m
α to the above formula, evaluating at (0, 0) and using eαk,λ(0, 0) = 1

the claim (3.6) is proved. �
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3.2 Chernoff’s theorem for �H on the Heisenberg group. We make
use of Theorem 3.4 to prove the following analogue of Chernoff’s theorem for
the full Laplacian �H on H

n. For the proof we need the expansion (2.5)) of the
spherical means f ∗ μr(z, t) in terms of ϕn−1

k,λ (t).

Theorem 3.5. Let f ∈ C∞(Hn) be such that �m
H

f ∈ L2(Hn) for all m ≥ 0

and satisfies the Carleman condition
∑∞

m=1 ‖�m
H

f‖− 1
2m

2 = ∞. If f vanishes on a

nonempty open set, then f is identically zero.

Proof. Since the Laplacian �H is translation invariant, without loss of gen-
erality we can assume that f vanishes on an open neighborhood V of the identity
in H. Clearly for some a > 0, Ba(0) × (−a, a) ⊂ V where Ba(0) denotes the ball
of radius a in C

n. Now we consider the spherical means of f

f ∗ μr(z, t) :=
∫

|w|=r
f
(
z −w, t − 1

2
Im z ·w

)
dμr(w)

and we consider Fz(r, t) := f ∗ μr(z, t) as a function on S = R
+ × R. Let

δ = min(a/2,
√

a). For any z ∈ Bδ(0), (r, t) ∈ U := (0, δ)×(−δ/2, δ/2) and |w| = r,
we see that |z −w| < a and |t − 1

2 Im z ·w| < a/2 + δ2/2 ≤ a so that(
z −w, t − 1

2
Im z ·w

)
∈ Ba(0) × (−a, a).

Consequently, for any z ∈ Bδ(0), Fz(r, t) = 0 for all (r, t) ∈ U. Now, a comparison
of Theorem 2.1 with the following expansion,

(3.7)

Fz(r, t)

= (2π)−n−1
∫ ∞

−∞
e−iλt

( ∞∑
k=0

k!(n − 1)!
(k + n − 1)!

ϕn−1
k,λ (r)f λ ∗λ ϕn−1

k,λ (z)
)
|λ|n dλ,

shows that

Rn−1
k,λ (Fz) =

k!(n − 1)!
(k + n − 1)!

f λ ∗λ ϕn−1
k,λ (z).

As ϕn−1
k,λ (r)e−iλt are eigenfunctions of �n−1 = −∂2

t + Ln−1 it follows from the
Plancherel formula in Theorem 2.1 that

(3.8)

‖�m
n−1Fz‖2

L2(S)

=
∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + n)|λ|)2m k!(n − 1)!
(k + n − 1)!

|f λ ∗λ ϕn−1
k,λ (z)|2

)
|λ|ndλ.

In view of the well-known formula ϕn−1
k,λ ∗λ ϕn−1

k,λ = (2π)n|λ|−nϕn−1
k,λ (see [24, Corol-

lary 2.3.4]) we have

f λ ∗λ ϕn−1
k,λ (z) = (2π)−n|λ|n f λ ∗λ ϕn−1

k,λ ∗λ ϕn−1
k,λ (z)
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which gives the following estimate by the Cauchy–Schwarz inequality:

(3.9) |λ|n |f λ ∗λ ϕn−1
k,λ (z)|2 ≤ cn |λ|2n (k + n − 1)!

k!(n − 1)!
‖f λ ∗λ ϕn−1

k,λ ‖2
2.

In proving the above we have made use of the fact that

‖ϕn−1
k,λ ‖2

2 = cn|λ|−n (k + n − 1)!
k!(n − 1)!

.

Using this in (3.8) and recalling the Plancherel formula (2.8) we obtain

‖�m
n−1Fz‖2

L2(S)

≤ cn

∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + n)|λ|)2m‖f λ ∗λ ϕn−1
k,λ ‖2

2

)
|λ|2n dλ = cn‖�m

Hf‖2
2.

Therefore, the hypothesis on f allows us to conclude that

∞∑
m=1

‖�m
n−1Fz‖− 1

2m

L2(S) = ∞.

But we know that Fz vanishes on the neighborhood U of (0, 0) and hence we can
appeal to Theorem 3.4 to conclude that Fz is identically zero. This means that for
any z ∈ Bδ(0), f λ ∗λ ϕn−1

k,λ (z) = 0 for every (λ, k) ∈ R × N. But f λ ∗λ ϕn−1
k,λ , being

an eigenfunction of the elliptic operator Lλ, is real analytic. Hence f λ ∗λ ϕn−1
k,λ is

identically zero for all λ and k. Therefore, it follows that f = 0 which proves the
theorem. �

Remark 3.6. A close examination of the above proof shows that we only

need to assume that
∑∞

k=0 ‖�m
n−1Fz‖− 1

2m

L2(S) = ∞ for all z ∈ Bδ(0). We will make use
of this observation in formulating and proving an Ingham type theorem for the
Fourier transform on the Heisenberg group in the next section.

Remark 3.7. Proving the exact analogue of Chernoff’s theorem for�H where
the vanishing condition in Theorem 3.5 is replaced by the vanishing of all partial
derivatives of the function at a single point, is a very interesting open problem.

4 Ingham’s theorem on the Heisenberg group

In this section, we make use of the version of Chernoff’s theorem proved in the
previous section, to prove Ingham type uncertaity principles on Hn.
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4.1 Ingham’s theorem for the Fourier transform. We begin with a
proof of Theorem 1.7. Under the integrability assumption on � we can construct
compactly supported functions g and h on H

n and R respectively such that

ĝ(λ)∗ĝ(λ) ≤ C e−2
√

H(λ)�(
√

H(λ)), |ĥ(λ)| ≤ Ce−|λ|�(|λ|).

(See [2, Theorem 4.5] for the Heisenberg group case and [13] for R.) Then the
function f = g∗3h satisfies (1.2)where∗3 stands for the convolution in the t-variable
. For the converse, assume that

∫ ∞
1 �(t)t−1dt = ∞. If f is compactly supported and

satisfies (1.2)we need to prove that f = 0. Wefirst assume that�(λ)≥cλ−1/2, λ≥1.
It is enough to show that for any ϕ∈L2(Cn) the function

fϕ(t) =
∫
Cn

f (z, t)ϕ(z)dz

vanishes identically. As fϕ is compactly supported, in view of Ingham’s theorem
for the Fourier transform on R it is enough to show that |f̂ϕ(λ)| ≤ Ce−|λ|�(|λ|) . By
the Cauchy–Schwarz inequality,

|f̂ϕ(−λ)| =
∣∣∣∣
∫

Cn
f λ(z)ϕ(z)dz

∣∣∣∣ ≤ ‖ϕ‖2‖f λ‖2 = (2π)−n/2‖ϕ‖2|λ|n/2‖f̂ (λ)‖HS.

Calculating the Hilbert–Schmidt norm by using the Hermite basis and using the
hypothesis (1.2) we obtain

‖f̂ (λ)‖2
HS ≤ Ce−2|λ|�(|λ|)

( ∞∑
k=0

(k + n − 1)!
k!(n − 1)!

e−2
√

(2k+n)|λ|�(
√

(2k+n)|λ|)
)
.

Under the extra assumption on� the above sum is bounded by a constantmultiple of( ∞∑
k=0

(2k + n)n−1e−2c((2k+n)|λ|)1/4
)

≤ C1

∫ ∞

0
tn−1e−2 c (|λ|t)1/4 ≤ C2|λ|−n.

This proves the required estimate on f̂ϕ(λ) under the extra assumption on �.
The extra assumption on �, namely �(λ) ≥ cλ−1/2, λ ≥ 1, can be removed

by proceeding as in [2, Theorem 4.6]. With θ(λ) = (1 + λ2)−1/4 we can construct a
compactly supported radial function g on H

n such that

ĝ(λ)∗ĝ(λ) ≤ Ce−2
√

H(λ) θ(
√

(H(λ)) e−2|λ| θ(|λ|)

and let gδ(z, t) = δ−(2n+2)g(δ−1z, δ−2t). Then, as shown in [1, Theorem 4.6],
the function fδ(z, t) = f ∗ gδ(z, t) will satisfy the hypothesis with � replaced
by �δ(λ) = �(λ) + θδ(λ) for which the extra condition, viz. �δ(λ) ≥ cδ|λ|−1/2,
|λ| ≥ 1, holds. Hence, we can conclude that f ∗ gδ = 0 for all δ > 0. Finally an
approximate identity argument completes the proof.
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We remark that the above proof does not work if f is not compactly supported
but only vanishes on an open set. This is simply because the function fϕ(t) need
not vanish on any open interval. We now present a proof of Theorem 1.8 for which
we require the following preparatory lemma and a proposition.

Lemma4.1. Let� be as in Theorem1.8. Further assume that�(λ) ≥ cλ−1/2,
λ ≥ 1. Then the sequence Am =

∫ ∞
0 λm+ne−λ�(λ)dλ satisfies the estimate

Am ≤ Cn(
2m
�(m4)

)m for all m ≥ m0.

This is proved as part of the proof of Ingham’s theorem in [13]. We also need
the following proposition proved in [2, Proof of Theorem 4.6].

Proposition 4.2. Let� be as in Theorem 1.8. Further, assume that for λ ≥ 1,

�(λ) ≥ cλ−1/2. Then under the assumption that

f̂ (λ)∗f̂ (λ) ≤ C e−2
√

H(λ)�(
√

H(λ)),

for some constant a ≥ 1 we have the estimate ‖Lmf‖2 ≤ ( am
�(m4) )

2m for all m ≥ m0.

Proof of Theorem 1.8. First we make an observation: without loss of gen-
erality, we can assume that f vanishes on BH(0, a) for some a > 0 where BH(0, a)
is the Koranyi ball of radius a. We first assume that �(λ) ≥ cλ−1/2, λ ≥ 1. We
will show that under the hypothesis in Theorem 1.8, the function f satisfies the
conditions of Theorem 1.5. In view of the Plancherel theorem for Hn we have

‖�m
Hf‖2

2 = (2π)−n−1
∫ ∞

−∞
‖f̂ (λ)(λ2 + H(λ))m‖2

HS |λ|ndλ.

Calculating the Hilbert–Schmidt operator norm using the Hermite basis, we have

‖�m
H f‖2

2 = (2π)−n−1
∫ ∞

−∞

( ∑
α∈Nn

(λ2 + (2|α| + n)|λ|)2m‖f̂ (λ)�λ
α‖2

2

)
|λ|n dλ.

In estimating the above we split the sum into two parts. The term where the sum
is taken over those α for which (2|α| + n) ≥ |λ| is bounded by

(4.1)
22m(2π)−n−1

∫ ∞

−∞

( ∑
(2|α|+n)≥|λ|

((2|α| + n)|λ|)2m‖f̂ (λ)�λ
α‖2

2

)
|λ|n dλ

≤ 22m‖Lmf‖2
2.

The remaining part of ‖�m
H

f‖2
2 is bounded by

(4.2) 22m(2π)−n−1
∫ ∞

−∞
λ4m

( ∑
(2|α|+n)≤|λ|

‖f̂ (λ)�λ
α‖2

2

)
|λ|n dλ.
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Under the hypothesis on f the Fourier transform satisfies (1.2) and hence the above
term is bounded by

22m(2π)−n−1
∫ ∞

−∞
λ4me−2|λ|�(|λ|)

( ∑
(2|α|+n)≤|λ|

e−2
√

(2|α+n)|λ|�(
√

(2|α|+n)|λ|)
)

|λ|n dλ.

Under the extra assumption, λ�(λ) ≥ cλ1/2, the sum inside the above integral is
bounded by ∑

(2|α|+n)≤|λ|
e−2c((2|α+n)|λ|)1/4 ≤ ∑

α∈Nn

e−2c
√

(2|α|+n) ≤ C.

Thus, the term (4.2) is estimated by the integral

(4.3) C 22m
∫ ∞

−∞
λ4m|λ|ne−2|λ|�(|λ|)dλ ≤ Cn2

−2m
∫ ∞

0
λ4m+ne−λ�(λ)dλ.

We can therefore estimate (4.1) by using Proposition 4.2 and (4.3) by means of
Lemma 4.1 and for large m obtain

(4.4) ‖�m
Hf‖2 ≤ 2m

( a m
�(m4)

)2m
+ Cn2

−m
( 2m
�(m4)

)2m ≤ C2m
( m
�(m4)

)2m

for some constant C > 0. As t−1�(t) is not integrable over [1,∞) it follows that

∞∑
m=1

�(m4)
m

= ∞

and hence f satisfies the hypothesis in Theorem 1.5. Consequently, f vanishes
identically.

This proves the theorem under the extra assumption on �. The general case
can be proved as in the proof of Theorem 1.7 presented above after some suitable
modifications at certain places. Indeed, take θ(λ) = (1 + λ2)−1/4. As explained at
the beginning of the proof of Theorem 1.7 above, we can construct a compactly
supported radial function g on H

n such that

ĝ(λ)∗ĝ(λ) ≤ Ce−2
√

H(λ) θ(
√

(H(λ)) e−2|λ| θ(|λ|)

and further we can arrange that supp(g) ⊂ BH(0, a/2). Now defining gδ as in
the proof of Theorem 1.7, we observe that fδ := f ∗ gδ vanishes on BH(0, δa/2)
for all 0 < δ < 1. Moreover, as shown in [2, Theorem 4.6] the function fδ will
satisfy the hypothesis with� replaced by�δ(λ) = �(λ) + θδ(λ) for which the extra
condition, viz. �δ(λ) ≥ cδ|λ|−1/2, |λ| ≥ 1 holds. Hence, we can conclude that
f ∗ gδ = 0 for all 0 < δ < 1. Finally, using an approximate identity argument,
letting δ go to zero, we obtain f = 0 which proves the theorem. �
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4.2 Ingham’s theorem for the spectral projections. An examination
of the above proof reveals that we do not need the full power of the hypothesis (1.2)
in proving Theorem 1.8. In fact, it is sufficient to assume that for every k

(4.5)
∑
|α|=k

‖f̂ (λ)�λ
α‖2

2 ≤ Ce−2|λ|�(|λ|)e−2
√

(2k+n)|λ|�(
√

(2k+n)|λ|).

The sum in the above is just ‖f̂ (λ)Pk(λ)‖2
HS and since

Wλ(f
λ ∗λ ϕn−1

k,λ ) = (2π)n|λ|−nf̂ (λ)Pk(λ),

the estimate (4.5) follows once we assume that

(4.6) |λ|n
∫
Cn

|f λ ∗λ ϕn−1
k,λ (z)|2dz ≤ C e−2|λ|�(|λ|)e−2

√
(2k+n)|λ|�(

√
(2k+n)|λ|).

In view of the formula (2.6) it is clear that (4.6) is an immediate consequence of

(4.7)
(k + n − 1)!
k!(n − 1)!

‖ρλk (f )‖2
HS ≤ C e−2|λ|�(|λ|)e−2

√
(2k+n)|λ|�(

√
(2k+n)|λ|).

This chain of inequalities clearly shows that Theorem 1.8 can be proved under
the assumption (2.6) as claimed in the introduction. We now present a proof of
Theorem 1.9 which shows that the norm estimate on ρλk can be replaced by a
pointwise estimate.

Proof of Theorem 1.9. If we let fh(g) = f (h−1g) stand for the left translation
of f by an element h ofHn, then ρλk (fh)e

n−1
k,λ (z, t) = ρλk (f )e

n−1
k,λ (h−1(z, t)) and hence we

can assume that f vanishes on a neighbourhood of 0. Without loss of generality we
can assume that f vanishes in a neighbourhood V of zero . In view of Remark 3.6

it is enough to show that
∑∞

m=1 ‖�m
n−1Fz‖− 1

2m

L2(S) = ∞ for all z ∈ Bδ(0) for some δ > 0
where Fz is as in the proof of Theorem 3.5 and

(4.8)

‖�m
n−1Fz‖2

L2(S)

=
∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + n)|λ|)2m k!(n − 1)!
(k + n − 1)!

|f λ ∗λ ϕn−1
k,λ (z)|2

)
|λ|ndλ.

We can rewrite the above in terms of ρλk (f )e
n−1
k,λ (z, t) using the relation

ρλk (f )e
n−1
k,λ (z, t) =

k!(n − 1)!
(k + n − 1)!

eiλtf−λ ∗−λ ϕn−1
k,λ (z).

Thus we are led to estimate the following:∫ ∞

−∞

( ∞∑
k=0

(λ2 + (2k + n)|λ|)2m sup
(z,t)∈V

|ρ−λ
k (f )en−1

k,λ (z, t)|2
)

|λ|ndλ
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which, under the assumption that

sup
(z,t)∈V

|ρλk (f )eλk (z, t)| ≤ C e−|λ|�(|λ|)e−√
(2k+n)|λ|�(

√
(2k+n)|λ|), ∀λ, k

along with (4.8), shows that ‖�m
n−1Fz‖2

L2(S) is dominated by

∫ ∞

−∞

( ∞∑
k=0

(λ2+(2k+n)|λ|)2m k!(n − 1)!
(k + n − 1)!

e−2|λ|�(|λ|)e−2
√

(2k+n)|λ|�(
√

(2k+n)|λ|)
)

|λ|ndλ.

Now under the assumption that�(λ) ≥ cλ−1/2, λ ≥ 1, as in the proof of Theorem
1.8, we can show that ‖�m

n−1Fz‖L2(S) satisfies the Carleman condition and hence,
by Theorem 1.5, we conclude that f is identically zero.

For the general case, we proceed as follows. Let gδ and fδ be as in the proof of
Theorem 1.8. Then we have that fδ vanishes in a neighborhood Vδ of the origin for
all 0 < δ < 1. We need to show that fδ satisfies the hypothesis of Theorem 1.9.
Since gδ is radial, it follows that

|Rn−1
k,λ (gδ)| ≤ Ce−|λ| θδ(|λ|)e−√

(2k+n)|λ| θδ(√(2k+n)|λ|), for all λ, k

where

Rn−1
k,λ (gδ) =

k!(n − 1)!
(k + n − 1)!

∫
Cn

gλδ (z)ϕ
n−1
k,λ (z)dz.

Now expanding gλδ in terms of Laguerre functions (see [24, Proof of Proposition
2.4.2]) and making use of the following fact (see [24, Corollary 2.3.4]):

ϕn−1
k,λ ∗λ ϕn−1

m,λ = δkm(2π)n|λ|−nϕn−1
k,λ ,

we obtain

(4.9) ρλk (fδ)e
n−1
k,λ (z, t) = eiλt Rn−1

k,−λ(gδ) f−λ ∗−λ ϕn−1
k,λ (z).

Hence it follows that

sup
(z,t)∈Vδ

|ρλk (fδ)en−1
k,λ (z, t)| ≤ Ce−|λ|�δ(|λ|)e−√

(2k+n)|λ|�δ(√(2k+n)|λ|)

where�δ := �+ θδ , and by construction�δ(λ) ≥ cδ|λ|−1/2 for |λ| ≥ 1. Therefore,
from the first part of the proof it follows that fδ = 0 for 0 < δ < 1, which in view
of an approximate identity type argument yields f = 0, proving the theorem. �

Remark 4.3. Theorem 1.9 is sharp in the sense that when
∫ ∞
1 �(t)t−1dt < ∞

there exists a compactly supported smooth function f on Hn satisfying the uniform
estimate

(4.10) |ρλk (f )eλk (z, t)| ≤ C e−|λ|�(|λ|)e−√
(2k+n)|λ|�(

√
(2k+n)|λ|).
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Indeed, as explained in the proof of Theorem1.7, there exists a compactly supported
smooth radial function f onHn whose Fourier transform satisfies (1.2). Now since f
is radial, proceeding as in the proof above, the above estimate (4.10) can be checked
easily.

Remark 4.4. It would be interesting to see whether the conclusions of Theo-
rems 1.7, 1.8 and 1.9 still hold true if we use two different decreasing functions in
the decay condition instead of just one.
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Note added in the proof. The proof of Theorem 1.4 presented in [1] is not
com- plete. As a consequence, the converse part of Theorem1.6 remains unproved.
For the correct version we refer the reader to [1].
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