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Ephemeral antibubbles: Spatiotemporal evolution from direct numerical simulations
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Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising
applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions, that
the spatiotemporal evolution of antibubbles can be described naturally by the coupled Cahn-Hilliard-Navier-
Stokes (CHNS) equations for a binary fluid. Our DNSs capture elegantly the gravity-induced thinning and
breakup of an antibubble via the time evolution of the Cahn-Hilliard scalar-order-parameter field φ, which
varies continuously across interfaces, so we do not have to enforce complicated boundary conditions at the
moving antibubble interfaces. To ensure that our results are robust, we supplement our CHNS simulations with
sharp-interface volume-of-fluid DNSs. We track the thickness of the antibubble and calculate the dependence
of the lifetime of an antibubble on several parameters; we show that our DNS results agree with various
experimental results; in particular, the velocity with which the arms of the antibubble retract after breakup scales
as σ 1/2, where σ is the surface tension.
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I. INTRODUCTION

Antibubbles, which comprise a shell of a low-density fluid
inside a high-density fluid, have been known for close to 90
years, since the work of Hughes and Hughes [1]. In contrast to
an ordinary bubble, an antibubble has two surfaces, which trap
a certain volume of fluid between them. Therefore, the contact
area of an antibubble is much larger than that of a bubble with
the same fluid volume; this property can be exploited for a
variety of chemical reactions. Furthermore, antibubbles are
commonly used in clinical diagnostic imaging, sonoporation
(see, e.g., Ref. [2]), as agents for ultrasound-guided drug
delivery [3–5], and for active leakage detection [6]. Clearly,
an antibubble is unstable in the presence of gravity, and, if the
inner core of the antibubble is denser than the outer core, the
antibubble rises under gravity; because of hydrostatic pressure
in the outer core, the fluid rises from the bottom to the top,
resulting in a thinning, and subsequent collapse, of the shell.
Although there have been a number of experimental investiga-
tions of the spatiotemporal evolution of an antibubble [7–15]
and drops [16–20] to name a few, over the past few decades,
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theoretical studies of antibubble evolution have been initiated
only recently [15,21–25] and they have not attempted, hith-
erto, to address the spatiotemporal evolution of antibubbles in
detail. The number of experimental studies of the complete
spatiotemporal evolution of antibubbles is also limited, partly
because great care has to be exercised to stabilize antibubbles;
often, surfactant molecules have to be introduced into the
high-density liquid phase for such stabilization.

We develop a natural, multiphase model for antibubbles
and demonstrate how we can use direct numerical simula-
tions (DNSs) to follow the spatiotemporal development of
ephemeral, but beautiful, antibubbles. We show that the Cahn-
Hilliard-Navier-Stokes (CHNS) equations, which have been
used to study a variety of problems in binary-fluid flows
[26–35], provide a minimal theoretical framework for study-
ing the spatiotemporal evolution of antibubbles; in addition
to a velocity field, the CHNS system employs a phase field
φ that distinguishes between the two fluid phases. We use
the CHNS equations [26,27,29–32] to study antibubbles in
two dimensions (2D) and in three dimensions (3D) by using
extensive DNSs. To complement our CHNS results, we also
employ an alternative volume-of-fluid (VF) numerical scheme
that is a sharp-interface method.

Our studies yield several interesting results that (a) pro-
vide explanations for many experimental observations and (b)
suggest new experimental studies: Our results for the spa-
tiotemporal evolution of antibubbles, in 2D and 3D, show
clearly how antibubble breakup occurs either because of
gravity-induced thinning or the puncturing of its bottom
boundary; the collapsing antibubble then forms a rim that
retracts with a velocity vrim. We uncover signatures of this
collapse in Fourier-space spectra of (a) the Fourier transform
φ̂ of the Cahn-Hilliard field, (b) the velocity, and (c) the
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vorticity. We show that vrim ∼ σ 1/2, where σ is the surface
tension, and this power-law exponent is independent of the
kinematic viscosity ν of the background fluid. We investigate
the dependence of the scaled antibubble lifetime τ1/τg on σ ,
ν, and the scaled outer radius of the antibubble R0/h0, in 2D;
here, τg ≡ √

R0/Ag, with A the Atwood number and g the
acceleration due to gravity, and h0 is the initial thickness of
the antibubble shell. We compare our results with experiments
and earlier theoretical studies.

The remainder of this paper is organized as follows. In
Sec. II we present the models and the numerical methods that
we use. In Sec. III we present the results of our DNSs in the
following subsections: subsection III A on the spatiotemporal
evolution of antibubbles (2D DNSs); subsection III B on the
temporal evolution of Fourier spectra of φ and the velocity
and vorticity fields that are associated with antibubbles in our
2D DNSs; subsection III C on the velocity of the retracting
rim of the ruptured antibubble in our 2D DNSs; subsection
III D on the signatures of this rupture in the time depen-
dence of the energy; subsection III E 1 on the dependence
of the antibubble-rupture time on the size of the antibubble
and the surface tension; subsection III E 2 on the dependence
of the antibubble-rupture time on the kinematic viscosity;
subsection III F on the spatiotemporal evolution of antibubbles
in our 3D DNSs. We present conclusions and a discussion of
our results in Sec. IV.

II. MODEL AND NUMERICAL METHODS

An antibubble consists of a shell of light fluid of density
ρ1 inside a background heavy fluid of density ρ2; these flu-
ids are immiscible and incompressible. The following CHNS
equations provide a natural theoretical description for such a
binary-fluid mixture [36–39]:

ρ(φ)Dt u = −∇p + ς (φ)∇2u + Fσ

+
[
ρ(φ) − ρ1 + ρ2

2

]
g − αu, (1)

Dtφ = γ∇2μ, ∇ · u = 0. (2)

In Eqs. (1) and (2), Dt ≡ (∂t + u · ∇) is the convective deriva-
tive, u ≡ (ux, uy, uz ) is the fluid velocity, α is the coefficient of
friction (we use this only in 2D; physically, it can be thought
of as a contact friction coming from a surface or planar drag,
e.g., wind drag on the plane), g is the constant accelera-
tion due to gravity, which points downwards, ρ(φ) ≡ ρ1(1 +
φ)/2 + ρ2(1 − φ)/2 is the density, ς (φ) ≡ ν1(1 + φ)/2 +
ν2(1 − φ)/2 is the dynamic viscosity, and φ(x, t ) is the order-
parameter field at the point x and time t [with φ(x, t ) < 0
in the background (majority) phase and φ(x, t ) > 0 in the
antibubble-shell (minority) phase]. Here, ν1 is the viscosity
of the minority or the antibubble phase (φ > 0) and ν2 is the
viscosity of the majority or the background phase (φ < 0).
Thus the net viscosity ς (φ) is positive.

When we study 2D flows, we use the following stream-
function-vorticity formulation [26,40]:

(∂t + u · ∇)ω = ν∇2ω − αω − ∇ × (φ∇μ) − A∇φ × g,

(∂t + u · ∇)φ = γ∇2μ, ∇ · u = 0. (3)

Here, ω = (∇ × u) is the vorticity; in our 2D simulations, u =
(ux, uy, 0), so ω = ωêz. We obtain ω(x, t ) and φ(x, t ) from
our 2D DNS, and from these we calculate the total kinetic
energy E (t ) = 〈|u(x, t )|2〉x and the fluid-energy dissipation
rate ε(t ) = 〈ν|ω(x, t )|2〉x, where 〈〉x denotes the average over
space. We calculate the lifetime of an antibubble falling under
gravity in two ways: (a) From the energy time series and
(b) from the minimum thickness at the South pole of the
antibubble.

At time t = 0 we begin with the order-parameter profile
[36]

φ(x) = − tanh

[
1√
2ξ

(|x − xc| − R0)

]

+ tanh

[
1√
2ξ

(|x − xc| − R1)

]
− 1.0, (4)

where R0 and R1 are, respectively, the initial magnitudes of the
outer and inner radii of the antibubble, whose center is initially
at xc; the interface width ξ is measured by the dimensionless
Cahn number Ch = ξ/L, where L (= 2π ) is the linear size
of our simulation domain. In our study, the Cahn number is
just a constant fixed at t = 0 and is not a dynamical quantity
representing any physics of the system. We have used L = 2π

as the box size and the interface width is nondimensionalized
with this constant value of 2π . Alternatively, we could have
used some dynamical quantity (e.g., the integral length scale
of the system) if we wished the Cahn number to reflect the
dynamics of the system. But this is not our purpose here and is
beyond the scope of the current work. The interface width ξ is
the length over which φ changes from its value in the majority
phase to that in the majority phase at t = 0. Of course, if ξ is
large relative to R0 and R1, a ring shape will not be observed.
In particular, for such a ring to appear, ξ must be smaller than
the thickness h0 of the antibubble, i.e., h0/ξ > 1. To avoid
numerical artifacts, we choose parameters such that ξ � 3dx,
where dx is the resolution of our spatial grid. We use the initial
thickness of the antibubble shell h0 ≡ R0 − R1 as a typical
length scale.

In our CHNS studies we use the Boussinesq approxima-
tion, wherein ρ(φ)Dt u ≈ ρ1+ρ2

2 Dt u and [ρ(φ) − ρ1+ρ2

2 ]g ≈
−A( ρ1+ρ2

2 )φg in Eq. (1), where A = (ρ1 − ρ2)/(ρ2 + ρ1) is
the Atwood number; the surface-tension force Fσ ≡ −φ∇μ

and the chemical potential μ(x, t ) follow from the Cahn-
Hilliard free-energy functional F :

F[φ] = �

∫
[(φ2 − 1)2/(4ξ 2) + |∇φ|2/2]dx,

μ = δF[φ]/δφ(x, t ). (5)

Here, � is the energy density with which the two phases
mix in the interfacial regime [36], ξ sets the scale of the
interface width, σ = 2

√
2�

3ξ
is the surface tension, and γ is the

mobility [38] of the binary-fluid mixture; the Schmidt number
Sc = ν/D. We assume that γ and ρ are independent of φ;
we keep the diffusivity D = γ�

ξ 2 constant. The stability of the
antibubble system (in the absence of gravity) depends on the
parameters D and ξ . We have found that large values of D,
along with low values of ξ , help to make the antibubble stable;
D = 0.004 works well for our present study. Investigations
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TABLE I. Parameters R0, R1, h0, ξ , σ , ν, D,Ch, Sc for our CHNS DNS runs R1-R35. Initially, R0 and R1 are, respectively, the outer and
inner radii of the antibubble; h0 ≡ (R0 − R1); σ is the surface tension; ν is the kinematic viscosity. In all the runs, the Atwood number times
the acceleration due to gravity Ag = 0.99; the number of collocation points is N2; the diffusivity is D; the Cahn number Ch = ξ/L, ξ being
the interface width. The typical values of R0/h0 used in experiments are about 38 [22]. For all our 2D runs, the friction coefficient α = 0.001.

N R0/ξ R1/ξ R0/h0 h0/ξ D Ch Bo(×10−3) ν Sc

R1-R20 1024 (2D) 76.6 69.7 7 6.96 0.004 0.0028 36–0.45 0.007 1.75
R21-R35 1024 (2D) 76.6 69.7 7 6.96 0.004 0.0028 12–0.45 0.001 0.25
R36-50 1024 (2D) 76.6 69.7 8 6.96 0.004 0.0028 12–0.45 0.001 1.75
R51-65 1024 (2D) 76.6 69.7 9 6.96 0.004 0.0028 12–0.45 0.001 1.75
R66-86 1024 (2D) 76.6 69.7 11 6.96 0.004 0.0028 0.01 0.007 1.75–241.7

of the thermodynamic stability of the antibubblebubbles can
be found in [41–44]. However, detailed investigations with
varying D lie outside the scope of the current work. As we
have shown in our Supplemental Material ([45], Figs. S5 and
S6), the antibubble is stable for times that are at least as long
as our simulation times. At very long times, the antibubble
breaks and retracts to a circular disk-like shape. We study the
retraction dynamics of an antibubble by varying the Atwood
number A and the Bond number Bo = Agρh2

0/σ . The Bond
number is a convenient dimensionless ratio of body forces
(gravity), on the antibubble, and the surface or interfacial
tension σ . We express times in multiples of τg ≡ √

R0/Ag �
1.16, given the parameters we use. In the simulations reported
in this paper, the interface width ξ is the same for all the 2D
runs. Simulations with varying ξ lie outside of the scope of
the present paper. Note that, due to gravity, the inertial term
becomes very important and the observables reported in our
study are mostly dominated by the inertial terms instead of
the interfacial diffusion terms. Thus we expect the trend of
the observables to converge with varying ξ .

We solve the CHNS Eqs. (1) and (2) by using the
pseudospectral method with periodic boundary conditions;
because of the cubic nonlinearity in the chemical poten-
tial μ, we use N/2 dealiasing [46]. We use the exponential
Adams-Bashforth method ETD2 [47] for time marching. For
our 2D DNSs, we use computers with Graphics Processing
Units (e.g., the NVIDIA K80), which we program in CUDA
[48]. We use conventional CPU-based computers for our 3D
DNSs. We have N collocation points in each direction and
our domain length is L = 2π . Our efficient code allows us to
explore the CHNS parameter space and carry out very long
simulations that are essential for our studies.

For the VF method we note the following points. It is a
sharp-interface method, so it has Ch = 0. The surface tension
force for VF is Fσ ≡ σκδsn, where κ is the curvature, δs is
the Dirac delta function on the interface, and n is the nor-
mal to the interface. We use Basilisk [49,50], an open-source
solver for carrying out both 2D and 3D axisymmetric VF
DNSs. Basilisk, which employs the Bell-Collela-Glaz advec-
tion scheme [51] and the implicit viscosity solver [49,50], is
parallelized over conventional CPUs [49,50]. The VF solver
does not invoke the Boussinesq approximation and it can
handle large density and viscosity contrasts. The breakup of
an interface is sensitive to the resolution in the VF, so we
use an initial configuration in which the antibubble is already
punctured at the bottom and we then investigate its spatiotem-
poral evolution. This initial condition is similar to that used in

experiments and in Ref. [23]. We use the following boundary
conditions in our VF simulations: (a) In our 2D DNSs we
employ periodic boundary conditions in all directions; (b) in
the 3D axisymmetric case we use an axisymmetric boundary
condition on the z = 0 axis and the no-slip condition u = 0 at
other boundaries.

We list the parameters for some of our representative DNS
runs in Tables I, II, and Table III in the Supplementary Ma-
terial [45]. We also give tables with the details of all our
DNSs in the Supplemental Material (in particular, see Table I,
Table II, and Table IV in the Supplemental Material [45]).
As we show below, by utilizing both the CHNS framework
and the VF method, we can capture accurately the rupture
and retraction dynamics of an antibubble in an elegant and
numerically efficient way.

III. RESULTS

We now present the results of our DNSs in the following
subsections: in subsection III A we illustrate the spatiotempo-
ral evolution of 2D antibubbles and, in subsection III B, we
give the temporal evolution of Fourier spectra of φ and the
velocity and vorticity fields that are associated with these an-
tibubbles. In subsection III C we explore the dependence on σ

of the velocity of the retracting rim of a ruptured 2D antibub-
ble and, in subsection III D, we examine the signatures of this
rupture in the time dependence of the energy. Furthermore, we
elucidate the dependence of the antibubble-rupture time on the
size of the antibubble and the surface tension (subsection III E
1) and on the kinematic viscosity (subsection III E 2). We then
present illustrative results on the spatiotemporal evolution of
3D antibubbles in subsection III F

A. Spatiotemporal evolution: 2D

In Fig. 1 we display, via pseudocolor plots of φ and ω, the
spatiotemporal evolution of a 2D antibubble rising under grav-
ity in our CHNS DNS; blue and red indicate heavy and light
fluids, respectively. We show pseudocolor images for only two
representative cases, one each from the CHNS and the VF
simulations. All other cases (Tables I and II) show similar
spatiotemporal evolution of an antibubble, with the only dif-
ference being the time of antibubble rupture and the velocity
of the antibubble rim. Figure 1(a) shows the pseudocolor plot
of φ for the antibubble at a time � 0. Initially, the antibubble
rises because of gravity, breaks [Fig. 1(b)], then displays arms
that retract and forms a disk-shaped droplet, which rises under
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FIG. 1. Pseudocolor plots of the CHNS φ field with antibubble radius R0/h0 = 7 at time (a) t = 0.0, (b) t = 1.74τg, and (c) t = 2.01τg

for ν = 0.007 and σ = 1.66; pseudocolor plots of the corresponding ω field (d)–(f). These plots show that, initially, the antibubble rises under
gravity, breaks, (a),(d), then it retracts (b),(e), becomes a circular droplet, and rises again (e),(f). Pseudocolor plots of the volume fraction
for the 2D VF run PR5 (see Table III in the Supplemental Material [45]) at time (g) t = 0, (h) t = 0.1τg, and (i) t = 0.3τg; (j), (k), and (l)
pseudocolor plots of the vorticity for the 2D VF PR5 run at the same times as in (g), (h), and (i), respectively; in these 2D VF runs, σ = 1.68;
these plots show that the antibubble retracts and forms a rim. Time is measured in units of τg.
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TABLE II. Parameters R0, R1, h0, ξ , σ , ν, D,Ch, Sc for our CHNS DNS runs Q1-Q7. Initially, R0 and R1 are, respectively, the outer and
inner radii of the antibubble; h0 ≡ (R0 − R1); σ is the surface tension; ν is the kinematic viscosity. In all the runs, the Atwood number times
the acceleration due to gravity Ag = 0.5, the number of collocation points for Q1-Q6 is N3 = 2563 and for Q7 is N3 = 5123: the diffusivity is
D; the Cahn number Ch = ξ/L, with ξ being the interface width. The typical values of R0/h0 used in experiments are about 38 [22].

N R0/ξ R1/ξ R0/h0 h0/ξ D Ch Bo(×10−3) ν Sc

Q1 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 1.3 0.0016 0.27
Q2 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 0.63 0.0016 0.27
Q3 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 0.4 0.0016 0.27
Q4 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 0.3 0.0016 0.27
Q5 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 0.25 0.0016 0.27
Q6 256 (3D) 24.0 12.0 1.2 12.0 0.006 0.013 0.21 0.0016 0.27
Q7 512 (3D) 14 10.5 4.0 3.5 0.006 0.011 2.7 0.0016 0.27

gravity [Fig. 1(c)], because the antibubble-shell (red) fluid
is lighter than the background (blue) fluid. Figures 1(d)–1(f)
show pseudocolor plots of the vorticity field at the same times
as their φ counterparts in Figs. 1(a)–1(c). The spatiotemporal
evolution of such a 2D antibubble is shown in videos S7 and
S8 in the Supplemental Material [45]. Note that, just after
forming the disk-type shape, the antibubble goes down in
a direction opposite to that dictated by gravity [Fig. 1(e)],
because the surface tension is high; so, during the retraction
of the arms, when interfacial energy is released, the retracting
droplet can be pushed in this opposite direction. Eventually
this backward thrust is damped by viscosity and, finally, the
(light) droplet rises under gravity. We begin with ω = 0, ev-
erywhere. We see that, because of the ∇ × φ∇μ term on the
right-hand side (RHS) of Eq. (3), a vorticity field is generated
at the outer and inner surfaces of the antibubble, i.e., wherever
φ changes in space. The vortical regions that are generated
initially have a size that is comparable to the interface width.
These vortices then grow with time, until they are damped by
viscosity. Similarly, the gravity term is also significant wher-
ever φ changes sign. The competition between the viscous,
surface-tension, and gravity terms in the CHNS equations de-
termines the breakup time of an antibubble, as we show below.

In Figs. 1(g)–1(l) we use pseudocolor plots to illustrate an-
tibubble retraction in our VF DNS in 2D (run PR1 in Table IV
in the Supplemental Material [45]). Both our CHNS and VF
DNSs show that, as it ruptures, an antibubble forms a rim,
which then retracts.

In our VF study the antibubble is punctured early in
the DNS [Fig. 1(g)]; this is in contrast to the breakup by
gravity-induced drainage in our CHNS DNS, which occurs
in Fig. 1(b) at �1.74τg. Thus we cannot compare the breakup
times between VF and CHNS DNSs directly. We can, how-
ever, compare either the retraction velocity of the antibubble
rim or the time that the rim takes to move a given dis-
tance in both CHNS and VF DNSs, which have the same
surface tension (as in Fig. 1). In our CHNS DNS, the time
difference between Fig. 1(c) and the antibubble-rupture time
[Fig. 1(b)] is �0.27τg; in our VF DNS, the time difference
between Fig. 1(i) and the antibubble-puncture time [Fig. 1(g)]
is �0.3τg. Thus the time that the rim takes to move a given
distance is approximately equal in the CHNS and VF DNS
results, which we show in Fig. 1; in both these DNSs, the
surface tensions are the same.

B. Fourier spectra

Fourier-space spectra give us a complementary view of
the spatiotemporal evolution of the rupture of an antibubble
[cf. the physical-space pseudocolor plots in Figs. 1(a)–1(l)].
In Fig. 2 we show, for our 2D CHNS DNSs, log-log (base
10) plots of the spectra for the field φ, the energy spectrum
E (k, t ), and the enstrophy spectrum �(k, t ), at different times
during this evolution. These spectra are defined as follows:

S(k, t ) ≡
∑

k− 1
2 �k′�k+ 1

2

〈φ̂(k′, t )φ̂(−k′, t )〉,

E (k, t ) ≡ 1

2

∑
k− 1

2 �k′�k+ 1
2

〈û(k′, t )û(−k′, t )〉,

�(k, t ) ≡ 1

2

∑
k− 1

2 �k′�k+ 1
2

〈ω̂(k′, t )ω̂(−k′, t )〉. (6)

Here, the circumflex denotes a spatial Fourier transform and k
and k′ are, respectively, the magnitudes of the wave vectors
k and k′. At early times [Figs. 2(a), 2(d) and 2(g)], these
spectra, especially S(k, t ), show oscillations with small and
large periods, which are, respectively, related inversely to the
outer radius of the antibubble and the thickness of its shell. In
particular, the oscillations at large k have a period of �k � 2π

h ,
where h = R0 − R1 is the thickness of the antibubble at t = 0.
As the antibubble ruptures [Figs. 2(b), 2(e) and 2(h)], it loses
its circular shape and, in turn, the spectra lose their oscilla-
tions. Finally, the antibubble is replaced by a single droplet
[Fig. 1(c)] of the light fluid, which rises under gravity; at
this stage, these spectra, especially S(k, t ), show oscillations
with a small period, which is related inversely to the radius
of this rising droplet. These Fourier-space spectra show that
the breakup of an antibubble leads to turbulence, insofar as
E (k, t ), S(k, t ), and �(k, t ) extend significantly over several
orders of magnitude of k. The Taylor-microscale Reynolds
number Reλ is 0.54, 128.5, and 163.4 in Figs. 2(a)–2(c), re-
spectively; here, Reλ = urmsλ/ν, where the root-mean-square
velocity urms(t ) = 2

∑
k E (k, t ) and the Taylor microscale

λ ≡ [
∑

k2E (k, t )/
∑

E (k, t )]−1/2.
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FIG. 2. Log-log (base 10) plots of the spectra [Eq. (6)] (a)–(c) S(k, t ), (d)–(f) E (k, t ), and (g)–(i) �(k, t ) versus k, with k0 = 1 and time in
units of τg.

C. Rim-retraction velocity

When an antibubble ruptures, the surface-tension energy
(the interfacial free energy in the CHNS description) is con-
verted to the kinetic energy of the antibubble. The rate of
change of the former is σ dS (t )/dt , where S (t ) is the outer
perimeter of the antibubble in our 2D DNSs, and the kinetic
energy that is released is EM = ∫

S f
[ρv2(x, t )]dx, where S f

is the area of the majority phase surrounding the minority
phase; this causes the film to retract. Figures 1(a)–1(l) show
that, in both of our CHNS and VF DNSs, as it ruptures, an
antibubble forms a rim, which then retracts. When this rim
retracts, the outer perimeter of the antibubble reduces by a
length R f on one side after the rupture and, if a is the thickness
of the vanished film, then EM = ρv2

rimaR f , where vrim is the
rim-retraction velocity. If we assume, furthermore, that the
rim retracts with a constant velocity, then dvrim/dt = 0, so
dR f /dt = vrim. Finally, we find

σdS (t )/dt ∝ dEM/dt, ⇒ vrim = (σ/ρ)1/2. (7)

This dependence of vrim on σ matches the experimental obser-
vations in Ref. [21]. Moreover, this dependence is the same in
both our CHNS and VF DNSs, even though, in the former, an-
tibubble breakup occurs because of gravity-induced thinning,
whereas, in the latter, this breakup is induced by puncturing
the antibubble at its bottom boundary. The puncturing initial

condition has also been used in the experiments and a theory
of antibubble collapse [22,23].

The plot in Fig. 3 shows that rim velocities, which we ob-
tain from 2D CHNS and VF DNSs and our 3D axisymmetric

0 2.0 4.0 6.0 8.0 10.0

vth

0

5

10

v r
im

R1 − R17
APR9 − APR14
APR1 − APR8
PR1 − PR6

FIG. 3. Plot of the retraction velocity vrim versus the theoretical
estimate vth = √

σ/ρ2a for our 2D CHNS runs R1-R17 (Table I),
2D VF runs PR1-PR6, and 3D axisymmetric VF runs APR1-APR14
(Table III in the Supplemental Material [45]); red circles show data
from our CHNS runs; green, yellow, and blue markers indicate data
from our VF runs. The black line represents the theoretical line. Here

the surface tension σ = Agρh2
0

Bo , where Bo is the Bond number.
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FIG. 4. Plots of (a) the total kinetic energy E (t ) and (b) the time derivative dE (t )/dt versus t/τg for the 2D CHNS runs R16-R20; (c) plots
versus Bo of the antibubble lifetimes τ1 and τ2 calculated, respectively, from the energy time series (blue line with circles) and the minimum
antibubble thickness (orange line with squares), for the 2D CHNS runs R1-R16. (d) Plots versus Bo (for Sc = 1.75), of τ1/τg for R0/h0 = 7
(DNS runs R21-R35, blue line with circles), R0/h0 = 8 (DNS runs R36-R50, orange line with crosses), R0/h0 = 9 (DNS runs R51-R65, green
line with squares); (e) log-log plot of τ1/τg versus Sc, over three orders of magnitude and at a fixed value of Bo (runs R66-R85); (f) plots of
hmin versus t/τg, at Bo = 0.01 and A = 0.01 and g = 99, for Sc = 1.75 (R66, blue line), Sc = 2.6 (R67, orange line), Sc = 20 (R77, green
line), and Sc = 151.5 (R84, red line). Details can be found in Tables I and II in the Supplemental Material [45].

VF runs, for both high and low A, are in excellent agreement
with the theoretical prediction vth ∼ √

σ/ρ2a [23], where a is
the radius of the rim (a = √

h0R0/π ).

D. Energy time series

When an antibubble bursts, the surface tension energy is
converted into the kinetic energy of the fluid; this yields a
spike in the fluid-energy time series [see Fig. 4(a)]. There-
fore, we identify the breakup time τ1 as the instant at which
dE (t )/dt displays a maximum [see Fig. 4(b)]. We also define
the breakup time τ2 at which the antibubble-shell thickness
hmin, at the lower end of the antibubble, vanishes. In Fig. 4(c)
we show plots of both τ1 and τ2 versus Bo for an antibubble
with R0/h0 = 11 and ν = 0.967. This plot shows that both
our estimates of the collapse times, τ1 and τ2, agree with each
other. (For details, see Sec. I in the Supplemental Material
[45].)

E. Antibubble-breakup times

The antibubble-breakup times, which we have defined
above, depend on the initial size of the antibubble, the sur-
face tension, and the kinematic viscosity. We explore these
dependences below via our 2D CHNS DNSs.

1. Dependences on size and surface tension

The size- and surface-tension dependences of the
antibubble-breakup time follow from the plots of τ1/τg versus

Bo, which we give in Fig. 4(d), for (i) R0/h0 = 7 (DNS runs
R21-R35, blue line with circles), (ii) R0/h0 = 8 (DNS runs
R36-R50, orange line with crosses), and (iii) R0/h0 = 9 (DNS
runs R51-R65, green line with squares). In all these plots,
the viscosity is fixed and the Schmidt number Sc = 1.75. Al-
though the scaling of τ1 by τg = √

R/Ag makes all the curves
collapse on top of each, to a large degree, there is a small, but
noticeable, difference between these curves.

2. Dependence on the kinematic viscosity

In Fig. 4(e), we present a log-log plot of τ1/τg versus Sc,
over three orders of magnitude and at a fixed value of Bo;
clearly, τ1/τg increases with Sc, with low-Sc and high-Sc
asymptotes, which are consistent with Sc

1
3 and Sc

2
3 .

In Fig. 4(f), we plot hmin versus t/τg, at Bo = 0.01, A =
0.01, and g = 99, for Sc = 1.75 (blue line), Sc = 2.6 (orange
line), Sc = 20 (green line), and Sc = 151.5 (red line). We note
that hmin falls rapidly, for Sc = 1.75, but falls slowly, when
Sc = 151.5. This observation agrees with experiments [21].

F. Three-dimensional antibubbles

We now present illustrative results for 3D antibubbles
evolving under gravity from our CHNS and VF runs Q1-Q7,
in Table II, and APR1-APR14 in Table III in the Supple-
mental Material [45]), respectively. In Fig. 5(a) we give, for
comparison, an image of an antibubble from an experiment
(courtesy of Kalelkar from Ref. [12]). In Figs. 5(b) and 5(c)
we show psuedocolor plots of two-dimensional sections of φ
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FIG. 5. Pseudocolor plot of order parameter showing a section at y = π from 3D simulations of antibubbles from run R2 at (a) t = 0.1τg;
(b) t = 0.2τg and (c) t = 0.3τg; pseudocolor plots of φ from our 3D axisymmetric VF run APR7 at (d) t = 0, (e) t = 0.1τg, and (f) t = 0.3τg

showing majority (blue) and minority (red) phases; (g) plot of τ1/τg versus Bo from our 3D CHNS runs Q1-Q6.

(with y = π in our 3D CHNS run R2) at (b) t = 0.1τg and
(c) t = 0.3τg. We see that the South pole of the antibubble
becomes thinner, with the passage of time, while a dome
develops at its North pole. We also find that, at least for the
parameters we use, the initially spherical antibubble remains
axisymmetric. Therefore, we design our 3D VF simulations to
be axisymmetric. In Figs. 5(d) and 5(e) we show the rupture
of an antibubble in our 3D axisymmetric APR7 VF run at (d)
t = 0, (e) t = 0.1τg, and (f) t = 0.3τg.

As we did in our 2D CHNS studies, we identify the
antibubble-breakup time τ1 as the time when dE/dt reaches
its maximum value. In Fig. 5(g) we plot τ1/τg versus Bo for
our 3D CHNS runs Q1-Q6; we find that this plot is qualita-
tively similar to its 2D CHNS counterpart in Fig. 4(b). We
recall that the plot in Fig. 3(b) also shows that rim velocities,
which we obtain from 3D axisymmetric VF runs, are in excel-
lent agreement with the theoretical prediction [23].

IV. CONCLUSIONS

An experimental study [7] has the title Vita brevis (Latin
for short life) of antibubbles. We have shown how to use
the CHNS system for studying the spatiotemporal evolution
of this short life of antibubbles, in both 2D and 3D. Our
DNSs of the CHNS system allow us to study, numerically
and theoretically, the collapse or breakup of an antibubble

because of the gravity-induced thinning at its South pole. This
occurs in experiments via the drainage of air from the lower
end of the antibubble. In some experiments, where antibubbles
are stabilized, say by the addition of surfactants, antibubble
rupture is precipitated by piercing its shell; we have studied
such rupture via the VF method. By considering Fourier-space
spectra, we have shown that the breakup of an antibubble leads
to turbulence, insofar as these spectra have significant weight
over several orders of magnitude of wave numbers. Our DNSs
have allowed us to study the dependence of the antibubble
lifetime on the surface tension, which is related inversely to
the Bond number Bo, the kinematic viscosity, which is related
directly to the Schmidt number Sc, and the ratio R0/h0 of the
initial antibubble radius R0 and its thickness h0. We have also
shown how the antibubble-rim-retraction velocity depends on
the surface tension, in both CHNS and VF DNSs.

The dependence of the antibubble lifetime on the surface
tension has been studied earlier [21], through experiments and
numerical simulation of the balance equations obtained from
lubrication theory. A recent study [24] uses the Allen-Cahn-
Navier-Stokes equations, with order-parameter conservation
enforced numerically via a Lagrange multiplier. Our work
extends significantly theoretical and DNS studies of antibub-
bles, by using the CHNS system, in which order-parameter
conservation is built in manifestly, and the VF method that
can be used fruitfully if interfaces are very thin and non-
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Boussinesq effects are present. Our results agree with earlier
results, where they exist. The number of studies on antibub-
bles is limited partly because great care has to be exercised to
stabilize antibubbles in terrestrial (as opposed to zero-gravity)
experiments. Often a surfactant has to be introduced into the
high-density liquid phase for such stabilization. We hope our
detailed study of the spatiotemporal evolution of antibubbles,
from their initiation to their rupture, and of their effect on
the background fluid, will lead to more experimental studies
of the properties of these ephemeral, but beautiful, inverted
bubbles.
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