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a b s t r a c t 

Compressive Sensing (CS) has recently attracted attention for ECG data compression. In CS, an ECG sig- 

nal is projected onto a small set of random vectors. Recovering the original signal from such compressed 

measurements remains a challenging problem. Traditional recovery methods are based on solving a reg- 

ularized minimization problem, where a sparsity-promoting prior is used. In this paper, we propose an 

alternative iterative recovery algorithm based on the Plug-and-Play (PnP) method, which has recently 

become popular for imaging problems. In PnP, a powerful denoiser is used to implicitly perform reg- 

ularization, instead of using hand-crafted regularizers; this has been found to be more successful than 

traditional methods. In this work, we use a PnP version of the Proximal Gradient Descent (PGD) algo- 

rithm for ECG recovery. To ensure mathematical convergence of the PnP algorithm, the signal denoiser 

in question needs to satisfy some technical conditions. We use a high-quality ECG signal denoiser fulfill- 

ing this condition by learning a Bayesian prior for small-sized signal patches. This guarantees that the 

proposed algorithm converges to a fixed point irrespective of the initialization. Importantly, through ex- 

tensive experiments, we show that the reconstruction quality of the proposed method is superior to that 

of state-of-the-art methods. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Electrocardiogram (ECG) is widely used for diagnosis and moni- 

oring cardiac conditions such as hypertension [1] , heart failure [2] , 

rrhythmia [3] etc. Essentially, an ECG signal is a representation of 

he electric activity in the heart over time. Extensive use of ECG 

n healthcare fosters a need for sophisticated signal processing ap- 

roaches to efficiently compress, analyze, store and transmit ECG 

ignals. For example, in wearable devices, there is a need to re- 

uce energy consumption due to data transmission and to increase 

emory usage efficiency. Recently, several efforts have been made 

o develop wireless ECG sensors for continuous health monitoring, 

or which it is desirable to have devices with low power consump- 

ion or low complexity. However, continuous wireless transmission 

f long-term biomedical data consumes a significant amount of en- 

rgy. Thus, compression of ECG signals would be helpful to achieve 

nergy efficiency. 
� K. N. Chaudhury was partially supported by Core Research Grant 
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Compressive Sensing (CS) is a possible solution for signal com- 

ression. It employs random linear projections that aim to pre- 

erve the structure of the signal. The signal can be reconstructed 

rom its projections using nonlinear recovery methods. In fact, sev- 

ral works have explored the application of CS to biomedical sig- 

al processing, including ECG [4–6] , EMG [7,8] , EEG [9] signals and 

RI images [10] . 

.1. Compressive sensing of ECG signals 

The data acquisition model in CS is given by Zhang et al. [5] ,

ant and Krishnan [6] 

 = �x + n (1) 

here x ∈ R 

N is the original ECG signal having length N, � ∈ R 

M×N 

s a compression matrix with M � N, and n denotes the noise in 

he acquisition system. Typically, n is assumed to be white Gaus- 

ian noise with mean 0, whereas � is taken to be a random Gaus- 

ian or binary matrix [4–6] . 

The original signal x can be approximately recovered by solving 

he regularized inversion problem 

in 

 ∈ R N 
f ( x ) + λg( x ) , (2) 

https://doi.org/10.1016/j.sigpro.2022.108738
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here the term f ( x ) = 

1 
2 ‖ y − �x ‖ 2 forces consistency of the re- 

overed signal w.r.t. the measurements, whereas g( x ) (known as 

he regularizer) acts as a penalty function that forces the recovered 

ignal to have some desirable properties such as smoothness. Here, 

is a positive scalar used to control the amount of regularization 

nd ‖ · ‖ denotes the � 2 norm. 

A good regularizer g( x ) is necessary since recovering x from 

 is an ill-posed problem (as M � N). Several regularizers have 

een explored for the ECG compressive recovery task, such as 

he weighted � 1 norm [11] , various other � p norms [12] , total 

ariation (TV) [13] , and second-order sparsity-promoting functions 

6] . Moreover, efficient recovery algorithms have been derived by 

xploiting the temporal correlation between successive samples; 

xamples include � 1 d p -regularized least-squares [14] , Block Sparse 

ayesian Learning Bound-Optimization (BSBL-BO) [15] , and Block 

parse Bayesian Learning with Expectation Maximization (BSBL- 

M) [16] . The latter two are considered to be state-of-the-art. 

.2. Classical regularization 

It is well-known that the � 1 norm promotes sparse solu- 

ions; moreover, natural signals such as ECG are known to be 

pproximately sparse in suitably chosen domains [11,13] . There- 

ore, sparsity-promoting regularizers based on the � 1 norm in the 

avelet and gradient domains (TV) have traditionally been used 

or ECG reconstruction. The downside is that the � 1 norm is not 

ifferentiable. Hence, the objective function in (2) as a whole 

s non-differentiable, even though f ( x ) is differentiable. A good 

hoice of iterative numerical solvers to solve such problems is the 

lass of proximal algorithms [17] , such as ADMM and Proximal Gra- 

ient Descent (PGD). A proximal algorithm generally consists of 

maller subproblems which individually involve only one of the 

wo functions. Consequently, it is possible to take advantage of 

he differentiability of f ( x ) . In this paper, we focus on PGD since

t is a particularly simple proximal algorithm. PGD is sometimes 

nown as the Iterative Shrinkage-Thresholding Algorithm (ISTA) 

18] . Starting from an initial point x 0 ∈ R 

N , PGD creates a sequence

f points x 1 , x 2 , . . . recursively using the rule 

 k +1 = prox γ λg 

(
x k − γ∇ f ( x k ) 

)
, (3) 

here γ > 0 is a fixed parameter (known as the step size) and 

rox γ λg (·) is a function known as the proximal operator of g: 

rox γ λg ( z ) = argmin 

w ∈ R N 

[ 
1 

2 

‖ w − z ‖ 

2 + γ λg( w ) 
] 
. (4) 

ote that if we put � = I in (2) , then (2) reduces to (4) . Thus,

he proximal operator can be interpreted effectively as a Gaussian 

enoising operator. For regularizers such as the � 0 and � 1 norms, 

he proximal operator has a closed-form formula [17] . Hence, the 

GD algorithm is easy to implement. As discussed in Section 2 , the 

lgorithm is guaranteed to converge under some mild conditions 

o a minimum of f ( x ) + λg( x ) . Note that every PGD step can be

een as the composition of two operations: the first (computing 

 k − γ∇ f ( x k ) ) is effectively one step of the classical gradient de- 

cent algorithm and depends only on the function f , while the sec- 

nd (computing the proximal operator) depends only on g. This is 

hy the algorithm is named as Proximal Gradient Descent. 

.3. Plug-and-play regularization 

Plug-and-play (PnP) regularization is a novel regularization 

echnique developed in the image processing community [19,20] . 

he main step in PnP is to replace the proximal operator by a 

owerful signal denoiser. As discussed in Section 2 , this is due 

o the similarity of the proximal operator with a denoising oper- 

tion. In the context of PGD, the function prox γ λg (·) is replaced by 
2 
 signal denoiser D (·) , so that the k th step now becomes x k +1 =
 

(
x k − γ∇ f ( x k ) 

)
. This algorithm is known as PnP-PGD. Essentially, 

his amounts to taking one step of gradient descent, followed by 

enoising. Note that we no longer need to choose a regularizer 

( x ) since g does not appear in the modified algorithm; the reg- 

larization is performed implicitly by the denoiser. 

PnP has yielded state-of-the-art results in many imaging prob- 

ems. However, since there is no regularizer g involved, the afore- 

entioned convergence to a minimum of f ( x ) + λg( x ) does not 

pply. 

.4. Contribution 

The contributions of this work are as follows. 

1. We introduce the PnP framework for reconstructing ECG signals 

from CS measurements. To the best of our knowledge, PnP has 

never been used for this application. Through extensive experi- 

ments, we show that the proposed method, based on PnP-PGD, 

outperforms the current state-of-the-art CS recovery methods 

for ECG signals. 

2. Even though convergence of PGD to a minimum of f + λg is not 

applicable to PnP-PGD, we show that a different form of con- 

vergence, known as fixed-point convergence , can be guaranteed 

if the ECG denoiser D (·) satisfies a condition known as contrac- 

tivity . Thus, the challenge lies in designing a contractive ECG 

denoiser. 

3. We derive a high-quality contractive ECG denoiser D (·) by mod- 

eling small patches as random vectors following a Gaussian 

Mixture Model (GMM). We experimentally show that the de- 

noising performance of the GMM denoiser is comparable or 

better than existing state-of-the-art ECG denoisers. 

The rest of this paper is organized as follows. In Section 2 , we

ive an overview of the PnP-PGD algorithm and explain the mo- 

ivation behind its development. We derive the GMM denoiser in 

ection 3 and compare its denoising quality with existing ECG sig- 

al denoisers. In Section 4 , we discuss how the this denoiser can 

e used in a way that guarantees convergence of PnP-PGD for CS 

ecovery. Numerical experiments on CS recovery of ECG signals are 

hown in Section 5 , and we conclude the paper in Section 6 . Some

f the mathematical proofs are given in the Appendix. 

. Plug-and-Play PGD 

We first state a standard convergence result for PGD and then 

ove on to discuss some convergence-related aspects of PnP. What 

akes PGD a simple yet powerful algorithm is its guarantee of 

onvergence to a minimum of f ( x ) + λg( x ) . In the following the-

rem (and the rest of the paper), we denote the largest singular 

alue of a matrix by σmax (·) . 
heorem 1 [18] . Consider the PGD algorithm for minimizing the 

unction f ( x ) + λg( x ) , where f ( x ) = 

1 
2 ‖ y − �x ‖ 2 Suppose g is con-

inuous and convex, and that 0 < γ < 2 /σmax ( �
� �) . Then the se-

uence f ( x k ) + γ g( x k ) converges to the minimum of f ( x ) + λg( x ) as

 → ∞ . 

We now turn our attention to the PnP framework. Consider the 

efinition of prox γ λg ( z ) in (4) . Note that the minimization problem 

n (4) is similar to (2) if we put � = I , the identity matrix. Hence,

rox γ λg ( z ) is essentially a regularized inverse corresponding to the 

dditive noise model z = w + n , where n is Gaussian noise. Thus, 

he proximal operator is simply an additive Gaussian denoising op- 

rator. 

It is well-known in the image processing community that spe- 

ially designed denoisers such as nonlocal means (NLM) [21] and 
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M3D [22] are superior to traditional denoisers based on regu- 

arization, e.g. � 1 or TV-regularized denoising. Motivated by this 

bservation, the work in [19] explored how the performance of 

 proximal algorithm for image recovery problems is affected if 

e replace prox γ λg (·) by some arbitrary Gaussian denoiser D (·) , 
uch as NLM or BM3D. This scheme was named as plug-and-play, 

ince the denoiser D serves as a pluggable module that replaces 

he proximal operator in an already existing numerical solver. In 

he original work [19] , the PnP scheme was explored for a differ- 

nt proximal algorithm – ADMM – but it was adapted to PGD in 

20] . The PnP-PGD algorithm is thus recursively defined by 

 k +1 = D 

(
x k − γ∇ f ( x k ) 

)
. (5) 

ote that the same denoiser D can be utilized for several kinds 

f image recovery problems using the PnP framework, since only 

he function f changes from problem to problem. For this rea- 

on, in the past few years, PnP has gained a lot of interest in the

maging community. However, the use of PnP for recovering one- 

imensional signals such as ECG signals has remained an unex- 

lored territory. 

An immediate question that arises from the PnP scheme is as 

ollows: Does the sequence ( x k ) converge to some x ∗? And if so, 

s x ∗ optimal in some sense? The latter question can be resolved if 

 (·) is expressible as the proximal operator of some function g. In 

eneral, however, an arbitrary D cannot be expressed in this way. 

s a result, the PnP-PGD algorithm cannot be interpreted as min- 

mizing an objective function of the form f + λg, and the conver- 

ence result in Theorem 1 is not generally applicable. Therefore, 

e are left with trying to determine whether at least the sequence 

 x k ) converges. It turns out that such a guarantee can indeed be 

iven under a technical condition on D . 

efinition 1. The denoiser D : R 

N → R 

N is said to be contractive if

here exists δ ∈ [0 , 1) such that for all points z 1 , z 2 ∈ R 

N , 

 D ( z 1 ) − D ( z 2 ) ‖ � δ‖ z 1 − z 2 ‖ 

We now state a theorem that guarantees the convergence of 

nP-PGD using a contractive denoiser. 

heorem 2. Consider the PnP-PGD algorithm, x k +1 = D 

(
x k −

∇ f ( x k ) 
)
, where f ( x ) = (1 / 2) ‖ �x − y ‖ 2 . Suppose 0 < γ �

 /σmax ( �
� �) . Moreover, suppose the denoiser D is contractive. 

hen, as k → ∞ , the sequence x 1 , x 2 , . . . converges linearly (at an

xponential rate) to a unique fixed point x ∗ that does not depend on 

he initialization x 0 . 

While Theorem 2 is proved in the Appendix, we mention here 

hat the proof uses the Banach Fixed Point Theorem [23, Th. 9.23] , 

rom which the linear rate of convergence follows. 

Note the difference between the types of convergence ad- 

ressed in Theorems 1 and 2 : Theorem 1 claims the conver- 

ence of the sequence of objective function values f ( x k ) + λg( x k ) ,

hereas Theorem 2 is concerned with the sequence of variables 

 k . Theorem 2 essentially claims that the PnP-PGD algorithm even- 

ually stabilizes, in the sense that two consecutive iterates x k and 

 k +1 are close to each other. This property is known as fixed-point 

onvergence [24] , and is desirable for any recovery algorithm. Thus, 

y Theorem 2 , it is sufficient for the denoiser D to be contractive,

n order to have fixed-point convergence. 

It is useful to compare our result with a similar result in a re-

ent work [25] . In [25] , the authors proved fixed-point convergence 

f PnP-PGD under a different set of assumptions than ours. The 

onvergence result in [25] is applicable to the case where the loss 

unction f ( x ) is strongly convex and D − I is Lipschitz continuous, 

here I is the identity operator. In contrast, we require D to be 

ontractive and we do not require strong convexity of f . In fact, in 
3 
ur case, f is not strongly convex since the sensing matrix � has 

 non-trivial null space. 

Various methods for Gaussian denoising of ECG signals have 

een explored in the literature; see [26] for a review. The state- 

f-the-art techniques are optimization-based, e.g. TV, multiresolu- 

ion analysis methods such as wavelets, empirical mode decompo- 

ition methods etc. A combination of these methods is sometimes 

sed [27] . Further, nonlocal means (NLM) denoising has also been 

ound to be promising [28] . However, to the best of our knowledge, 

here is no work that determines whether any of these denoisers 

re contractive. Can we design a high-quality contractive ECG sig- 

al denoiser? In the next section, we show that this can indeed 

e done. Specifically, we design a Gaussian denoiser which takes 

he form D ( z ) = W z , where W is a symmetric matrix. The resulting

nP-PGD algorithm outperforms state-of-the-art methods for ECG. 

. GMM Denoiser 

Our ECG denoiser is inspired from an observation that was 

ade in the context of images [29,30] : A small patch of some 

xed size belonging to a clean (i.e. noiseless) image can be well- 

odeled as a random vector having a Gaussian Mixture Model 

GMM) as its density. Such a density can be learned by fitting a 

MM to a large collection of patches extracted from a set of clean 

mages, usually belonging to a common class (e.g. face images). We 

pply this idea to model patches belonging to ECG signals. Specifi- 

ally, we extract a large collection of patches of length P � N from 

 set of noiseless ECG signals as our training data set. This is used 

o fit a GMM density (with a pre-determined number of compo- 

ents K) using the expectation-maximization (EM) algorithm. Es- 

entially, we model clean ECG patches of length P as random vec- 

ors v ∈ R 

P drawn from this learned GMM density, which we de- 

ote by p( v ) . For j = 1 , . . . , K, let α j � 0 be the mixture coefficient

f the jth component, μ j ∈ R 

P be the mean and � j be the positive 

efinite covariance matrix. Then p( v ) is given by 

p( v ) = 

K ∑ 

j=1 

α j N ( v ;μ j , � j ) , (6) 

here N denotes a Gaussian density function. 

How can this model be used for denoising an ECG signal cor- 

upted with Gaussian noise? Again, we borrow from a patch-based 

enoising framework that is quite popular in image processing 

29,30] . At a high level, this framework consists of the following 

teps: 

1. Extract all possible patches of length P from the noisy signal; if 

the signal length is N, then there are N such patches (we apply 

circular padding to the signal). If z denotes the noisy signal, the 

collection of patches is given by P 1 z , . . . , P N z , where P i : R 

N →
R 

P is the linear operator that extracts the patch starting at the 

i th location. This is defined as the segment (z i , z i +1 , . . . , z i + P−1 ) .

2. Denoise each patch independently by computing a Bayesian es- 

timate of its corresponding clean patch under an additive Gaus- 

sian noise model, using p( v ) as the prior distribution of clean 

patches. Letting G denote the denoising operator, the collection 

of denoised patches is given by G (P 1 z ) , . . . , G (P N z ) . 

3. Place each denoised patch back into its corresponding location 

in the signal. Each sample location i ∈ { 1 , . . . , N} belongs to P 

overlapping denoised patches; take the average of the P val- 

ues at this location as the estimate of the i th sample of the 

denoised signal. This completes the overall denoising process, 

which is given by 

D ( z ) = 

1 

P 

N ∑ 

i =1 

P 

� 
i G 

(
P i z 

)
. (7) 
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Fig. 1. Comparison of the denoising performance using various state-of-the-art signal denoisers on an ECG signal of length N = 200 . The clean signal (green) is overlaid in 

every plot for comparison. Note that the denoised signal using GMM has more structural similarity with the clean signal. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Denoising performance (SNR in dB). The signal length is N = 200 . 

Noisy TV NLM Wavelet GMM 

15 25.721 26.257 23.216 27 . 492 

20 26.901 27.023 25.861 28 . 373 

25 29.252 29.415 29.157 29 . 646 

30 33.081 33.139 31.396 33 . 819 

35 35.322 35.892 32.699 36 . 276 

40 40.391 40.455 33.681 41 . 262 
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The patch denoiser G forms the core of this framework, and the 

verall denoising performance depends on the performance of G . 

ne approach to incorporate the Bayesian prior p(·) in the patch 

enoising is to take G (·) as the maximum a-posteriori (MAP) esti- 

ator of the clean patch under a Gaussian noise model. That is, for 

 noisy patch u = v + n (where n is Gaussian noise), we can define 

 ( u ) to be the mode of the conditional density p( v | u ) . However, it

s known that this cannot be computed in closed form when the 

rior p( v ) is a GMM [29] . Instead, motivated by Teodoro et al. [30] ,

e choose G to be the minimum mean-squared-error (MMSE) es- 

imator of the clean patch: 

 ( u ) = E [ v | u ] . (8) 

he theorem below gives a closed-form expression for E [ v | u ] . 

heorem 3 [30] . Consider the additive noise model u = v + n , where 

 is zero-mean Gaussian noise having variance σ 2 . Suppose v has the 

MM density given by (6) . Then, 

 ( u ) = 

( 

K ∑ 

j=1 

β j ( u ) C j 

) 

u , 

here C j = � j ( � j + σ 2 I ) −1 and 

j ( u ) = 

α j N ( u ;μ j , � j + σ 2 I ) ∑ K 
l=1 αl N ( u ;μl , �l + σ 2 I ) 

. 

To summarize, the overall GMM denoiser D is given by 

 ( z ) = 

1 

P 

N ∑ 

i =1 

P 

� 
i 

[ ( 

K ∑ 

j=1 

β j 

(
P i z 

)
C j 

) 

P i z 

] 

. (9) 

n order to gauge the quality of the GMM denoiser, we perform 

 denoising experiment on a noisy ECG signal. Specifically, we 

ompare its performance with the following ECG signal denoising 

chemes: TV [31] , NLM [28] , and wavelet- � 1 regularization. In Fig- 

re. 1 , we show a segment of signal #115 (assumed noiseless) from 

he Physionet MIT-BIH Arrhythmia Database [32–34] . The segment 

as length N = 200 . We add white Gaussian noise such that the

ignal-to-noise ratio (SNR) of the noisy signal is 30 dB. The SNR 

or an estimated signal ˆ x (here, the denoised signal) with respect 

o a reference signal x (here, the clean signal) is defined as 

NR = 10 log 10 

( || x || 2 
|| x − ˆ x || 2 

)
. 
4 
 higher SNR value indicates a better estimation quality. The 

enoised signals obtained using the aforementioned denoising 

chemes are shown in Fig. 1 . Observe that the GMM denoiser 

ields the highest SNR of all the methods; the visual quality is con- 

iderably better compared to TV and wavelet, and comparable to 

LM. 

For a more extensive comparison, we repeat this experiment for 

ifferent SNR values of the noisy signal. The SNR values of the de- 

oised signal are noted in Table 1 . Again, it is observed that the 

MM denoiser outperforms the other denoisers, while NLM is the 

econd-best method. In fact, for high noise levels (SNR of 15 and 

0 dB), the gap in performance between GMM and NLM is quite 

igh. A possible explanation is that when the noise level is high, 

eliable computation of weights for NLM is difficult and can result 

n spikes in the denoised signal. 

. Convergence analysis 

Recall that we would like D to be contractive; however, due to 

he complexity of the expression in (9) , it is difficult to determine 

hether this is the case. Fortunately, while using it as part of the 

arger PnP-PGD framework, we can modify the denoiser to make it 

ontractive using a simple trick. Note that the coefficients β j (P i z ) 

n (9) are nonnegative and sum to 1 for each i . Consider the situ-

tion where we replace the β j (P i z ) ’s by some fixed universal con- 

tants b ji that do not depend on z , but have the same properties: 

 ji � 0 for all i, j, and 

∑ 

j b ji = 1 for all i . Then D ( z ) becomes a lin-

ar function of z . In fact, we can write D ( z ) = W z , where W ∈ R 

N×N 

s given by 

 = 

1 

P 

N ∑ 

i =1 

P 

� 
i 

( 

K ∑ 

j=1 

b ji C j 

) 

P i . (10) 
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heorem 4. Let W be defined as in (10) , where b ji � 0 for all i, j, and
 K 
j=1 b ji = 1 for all i . Suppose N is a multiple of P . Then the largest

igenvalue of W , λmax (W ) , is < 1 . Consequently, the denoiser D ( z ) =
 z is contractive, with the constant δ being λmax (W ) . 

The proof is given in the appendix. Note that the requirement 

or N to be a multiple of P is not too restrictive, since we can pad

he signal if it is not. We only need to find suitable coefficients 

 i j to replace β j (P i z ) in (9) . This can be done as follows. We first

un a small number T (say, T = 10 or 20) of PnP-PGD iterations

sing the coefficients β j (P i z ) in the denoiser, to get an interme- 

iate estimate x T . We then set b i j = β j (P i x T ) for all i and j. That

s, we fix the b i j ’s as the coefficients obtained from the intermedi- 

te point x T . The subsequent PnP-PGD iterations are run using the 

enoiser in (10) that uses these fixed coefficients. Since W is con- 

ractive, it follows from Theorem 2 that the sequence x T +1 , x T +2 , . . .

onverges to some fixed point x ∗. Consequently, the PnP-PGD iter- 

tions x 1 , x 2 , . . . converge to some fixed point x ∗. 

The idea behind fixing the coefficients after T iterations is that 

s k increases, x k is expected to become more refined (in the sense 

f looking similar to the unknown signal x ); therefore, the coeffi- 

ients β j (P i x T ) after T iterations would be good enough to use for 

ll subsequent iterates as well. In fact, this scheme has been used 

n PnP algorithms for image restoration [24,35] . 

We note that although the patch denoiser G in (8) is an MMSE 

stimator, the overall image denoiser D is not. Therefore existing 

onvergence results for PnP with MMSE denoisers, e.g. [36] , do not 

pply to our case. We make an important remark on the similarity 

nd differences of the proposed GMM denoiser with the denoiser 

n [30,37] . Indeed, the idea of our GMM denoiser is inspired by 

hat in [30,37] . However, there are a couple of subtle differences: 

• The denoiser in [30,37] is scene-adapted , in the sense that the 

GMM distribution is tailored for the specific scene being re- 

constructed. This is possible because the application considered 

there is hyperspectral image sharpening, in which a comple- 

mentary image of the same scene is available to obtain training 

data tailored for that scene. In contrast, in this work, we learn 

just one GMM distribution that is kept common for all the sig- 

nals being reconstructed. 

• The method used to replace β j (P i z ) by a fixed coefficient b i j 

is different in our paper as compared to [2]. This is because 

the approach in [2] fundamentally relies on the availability of 

a complementary image, and thus cannot be applied to com- 

pressive sensing. In particular, in our paper, we take the b i j ’s to 

be the coefficients acquired from a surrogate signal that is ob- 

tained by running a few iterations of the PnP-PGD algorithm; 

this idea was inspired by [Sreehari]. On the other hand, in [2], 

the b i j ’s are taken to the coefficients obtained from the com- 

plementary image (multispectral or panchromatic image). 

. Experimental results 

Database: To validate the proposed PnP-PGD method for ECG 

S recovery, we use a subset of the data from the Physionet MIT- 

IH Arrhythmia Database [32–34] . Every file in the database con- 

ists of two lead recordings sampled at 360Hz with 11 bits per 

ample of resolution. It contains 48 half-hour excerpts of two- 

hannel ambulatory ECG recordings, obtained from 47 subjects 

tudied by the BIH Arrhythmia Laboratory. 

Metrics: We quantify the performance of the proposal using 

ollowing metrics: SNR, which is defined in Section 3 ), and mean- 

quared error (MSE), which is defined below. 

SE = 

1 || x − ˆ x || 2 , 

N 

5 
here ˆ x and x are the reconstructed and original ECG signals, re- 

pectively. Note that here we are assuming the Physionet signals 

re the true signals x ; in reality these signals also contain noise, 

hich the metrics above neglect, though at most SNRs the (simu- 

ated) additive noise dominates [28] . 

Compared methods: We compare with the following state-of- 

he-art methods: BSBL-BO [15] , BSBL-EM [16] , sparse prior on the 

CG wavelet representation [11] , and TV regularization [13] . We 

uned the parameters of all the methods so that maximum SNR 

s obtained. The codes are used from the publicly available sites 

5,15,16] . All simulations were performed using MATLAB (R2021a) 

n a Quad core, 3.80GHz machine with 32GB RAM. 

The sensing matrix � is constructed by randomly drawing each 

ntry from the standard normal distribution N (0 , 1) , and apply- 

ng an orthonormalization step to ensure that the rows of � are 

rthonormal [12] . We trained the GMM on the set of all possible 

verlapping patches of size P = 30 extracted from signal #104 in 

he dataset [32] , which is of length 10,800. The number of GMM 

omponents K is set to be 10. The training time is found to be 

.86s. In all the experiments on CS reconstruction, we terminate 

he PnP-PGD algorithm after 150 iterations since we observed that 

he algorithm stabilizes by then. 

In addition to the denoising results reported in Section 3 , the 

esults in the subsequent sections support the claim that GMM is 

 good prior for modeling ECG signal patches. Note that the entire 

raining process can be done offline. 

.1. Goodness of GMM modeling 

In this experiment, we evaluate the goodness of GMM modeling 

y visualizing some of the eigenvectors of the covariance matrices 

rom the learned GMM distribution. This type of visualization is 

ommonly utilized in papers on image processing, e.g. [29] . In par- 

icular, in [29] it is observed that the eigenvectors corresponding 

o the largest few eigenvalues (of each covariance matrix) are rela- 

ively smooth and capture the large-scale structure of the patches, 

hereas the eigenvalues corresponding to the smallest few eigen- 

ectors contain many fluctuations and thus capture the local struc- 

ure. If the GMM is a good model, we expect to see a similar trend

or ECG signal patches. 

In our case, we fit a GMM with K = 10 components on ECG 

atches of size 30. In Fig. 3 , we plot 10 randomly selected eigen-

ectors (having unit norm) corresponding to eigenvalue indices 

 28 (i.e. largest few eigenvalues) from the fitted GMM model. In 

ig. 3 , we show similar plots but for eigenvalue indices � 3 (i.e.

mallest few eigenvalues). It is evident that the expected trend de- 

cribed in the previous paragraph holds true in practice: the rich- 

ess of textures, fluctuations and other local structures is captured 

y the signals in Fig. 3 , while most of the large-scale details are

aptured by the signals in Fig. 2 . 

.2. Recovery from noiseless measurements 

We study the signal reconstruction performance of our method 

under zero noise), especially when the number of measurements 

is much lesser than N. In Fig. 4 , we show a segment of the orig-

nal ECG signal #100 from Moody and Mark [33] and its recon- 

truction obtained using our proposed method with 10% measure- 

ents. We can see that the recovered signal using GMM as the 

enoiser produces visually similar result on comparison with the 

ther methods and also has better performance in terms of SNR. 

.3. Study of SNR for different M

We next perform an exhaustive experiment where we vary the 

umber of measurements ( M) while fixing the length of the sig- 
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Fig. 2. Ten randomly selected eigenvectors corresponding to the largest few eigenvalues of the covariance matrices from the learned GMM model. 

Fig. 3. Ten randomly selected eigenvectors corresponding to the smallest few eigenvalues of the covariance matrices from the learned GMM model. 

Fig. 4. Visual comparison of a CS recovered ECG signal with 10% measurements and no additive noise. The length of the original signal is N = 512 . The proposed method 

produces more structurally similar (with the clean signal) output even under lower number of observations. 

n  

T  

u

n

a

5

m

[

al. The signal #105 of length N = 512 is used for the experiment.

he results are reported in Fig. 6 . Each instance of the SNR val-

es shown is obtained by averaging of 500 independent trials. We 

ote that our proposed method achieves the best recovery among 

ll the methods. 
6 
.4. Study of average SNR over different signals 

In this section, we study the performace of the proposed 

ethod with that of various ECG signals from MIT-BIH database 

33] . We consider a larger dataset of 10 signals (#100 to #109), 
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Fig. 5. Different test signals from the MIT-BIH Arrhythmia database. 

Fig. 6. Average SNR vs. measurements ( M) over 500 runs, with no additive noise. 

The length of the original ECG signal is N = 512 . 

Fig. 7. Average SNR vs. measurements ( M) averaged over the 10 ECG signals in 

Fig. 5 . The measurements do not contain any additive noise. 
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Fig. 8. Average SNR vs. CR over 500 runs. The length of the original ECG signal is 

N = 512 . 

Fig. 9. Average SNR vs. MSE over 500 runs. The length of the original ECG signal is 

N = 512 . 
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hown in Fig. 5 for performance evaluation. All the signals are of 

ength N = 512 . We also compare with a more recent method, EC- 

Let [38] , in this section. We measure the average SNR (over all 

he 10 test signals) of the reconstructed signal for different values 

f M. The results are reported in Fig. 7 . Note that the proposed

ethod yields the highest SNR among all the methods considered, 

or every M. 

.5. Effect of compression ratio 

In this section we investigate the effect of compression ratio 

CR) on the quality of the reconstructed ECG signals. The CR is de- 

ned as: 

R = 

N − M × 100 (11) 

N 

7

here N is the length of the original signal and M is the length 

f the compressed signal. For each value of CR, we repeated the 

xperiment 500 times, and in each time, the sensing matrix was 

andomly generated [5] . Figure 8 , shows the variation of SNR with 

R. It is worth noting that we obtain superior performance over 

he whole range of CR values. The input signal is a segment of ECG 

ignal #105 from the MIT-BIH database [33] . 

.6. Recovery from noisy measurements 

From previous experiments we notice that the proposed 

ethod performs well when compared with the other methods in 

oiseless scenario, i.e. when n = 0 in (1) . Now we examine the re- 

overy performance of our method from noisy compressed mea- 

urements. The signal #103 of length N = 512 and M = 256 is used

or this experiment. In Fig. 9 , we plot the MSE of the recovered
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Fig. 10. Visual comparison of a CS recovered ECG signal with 50% measurements and additive Gaussian noise. The length of the original signal is N = 512 . The proposed 

method is able to capture the minute variations in the signal faithfully. 

Fig. 11. Plots of ‖ x k +1 − x k ‖ vs k in the proposed algorithm (with M = 0 . 5 N) for the test signals in Fig. 5 . 
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Fig. 12. Variation of SNR with trials for BSBL-BO (blue) and the proposed method 

(red). The length of the original ECG signal N = 512 . The proposed method exhibits 

stable recovery of the ECG signal even for a low compression ratio. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

t

i

5

d

I

ignal as a function of the noise level in the input y (specified 

n terms of the SNR of the input). The values reported are av- 

raged over 500 independent trials. To simulate the noisy mea- 

urements, we followed the approach in [28] . It is evident that 

he proposed method produces quality reconstructions under noisy 

easurements. Finally we show a reconstruction result from noisy 

easurements in Fig. 10 . In the experiment, we add random Gaus- 

ian noise to the compressed measurements. On comparison, none 

f the three methods in Fig. 10 are able to completely mitigate the 

ffect of noise. However, our method performs the best by a sig- 

ificant margin, resulting in an SNR of 24.24 dB in the recovered 

ignal, and is visually similar to the original signal. We observed 

hat in low SNR scenarios, TV acts as a better denoiser than GMM, 

hich might explain why the CS reconstruction performance is 

igher for TV as compared to the proposed method when the in- 

ut SNR is low. 

.7. Numerical convergence 

In this section, we numerically verify the convergence of the 

roposed PnP-PGD algorithm. For all the signals in Fig. 5 , we use 

nP-PGD for reconstruction from M = 0 . 5 N measurements. As ex- 

lained in Section 4 , we take the surrogate signal as the signal ob-

ained after running the algorithm for T = 10 iterations. The plots 

f ‖ x k +1 − x k ‖ as a function of k are shown in Fig. 11 for each of
8

he signals. Note that ‖ x k +1 − x k ‖ decays to 0 as k increases, which 

s a necessary condition for convergence. 

.8. Comparison with deep learning 

For completeness, we compare the proposed method with a 

eep learning method for CS reconstruction, known as SDAE [39] . 

n this experiment, we use the non-invasive Fetal ECG dataset from 
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Table 2 

Performance comparison with SDAE on FECG data, collected from Physionet 

database (patient id: ecgca154) by varying the compression ratio. 

CR 25 37.5 50 62.5 75 87.5 93.75 

SDAE 37.69 36.73 35.39 32.40 26.78 23.56 22.29 

GMM 42.85 39.56 37.18 33.29 27.16 20.57 11.44 
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hysionet, which was used in [39] . This database contains a series 

f 55 multichannel abdominal non-invasive fetal electrocardiogram 

FECG) recordings, taken from a single subject between 21 to 40 

eeks of pregnancy. We conducted an experiment on the signal 

ith patient id ecgca154. Table 2 shows the variation of SNR with 

R for the proposed method and SDAE. We note that the proposed 

ethod is able to outperform SDAE in all cases except when the 

R is very high. 

.9. Stable recovery 

We show that the proposed method produces very stable re- 

onstructions. For this experiment, we considered the signal #105 

ith 10% measurements ( N = 512 ). We ran 500 trials of the

ethod, so that its stability can be observed for different realiza- 

ions of the sensing matrix �. In Fig. 12 , we show the SNR varia-

ion for BSBL-BO (blue) and the proposed method (red). We noted 

 standard deviation of 6.90 dB in SNR for BSBL-BO and 2.70 dB 

or the proposed method. Thus, the proposed method is more sta- 

le as compared to BSBL-BO. In fact, we observed that the contrast 

n stability is more pronounced for smaller M. 

. Conclusion 

We introduced a novel framework for recovering ECG signals 

rom compressively sensed measurements. Our method is based 

n the plug-and-play (PnP) paradigm that has recently become 

opular for image restoration problems. Essentially, the recovery 

ethod consists of repeating two main steps – inverting the for- 

ard model, and denoising – until stability is attained. We de- 

igned a high-quality ECG signal denoiser to be used in the de- 

oising step. Moreover, we proved that the recovery algorithm is 

uaranteed to converge. Importantly, we showed via numerical ex- 

eriments that our proposed method is superior to current state- 

f-the-art methods used for ECG CS recovery. 
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ppendix A 

1. Proof of Theorem 2 

Since ∇ f ( x ) = �� ( �x − y ) , we can write the PnP-PGD algo- 

ithm as x k +1 = S( x k ) , where 

( x ) = D 

(
x − γ�� �x + γ�� 

y 
)
. 

t is enough to prove that the function S(·) is contractive, since 

he convergence of ( x k ) to some unique fixed point x ∗ at a linear 

ate would then follow by the Banach Fixed Point Theorem [23, 

h. 9.23] . 

Let δ < 1 be the constant in Definition 1 . Then for any z 1 , z 2 ∈
 

N , we have, 

 

S( z 1 ) − S( z 2 ) ‖ 

� δ‖ ( z 1 − γ�� �z 1 ) − ( z 2 − γ�� �z 2 ) ‖ 

= δ‖ (I − γ�� �)( z 1 − z 2 ) ‖ 

� δ · σmax (I − γ�� �) · ‖ z 1 − z 2 ‖ . 

et L = σmax ( �
� �) . Since �� � is positive semidefinite, its sin- 

ular values are also its eigenvalues. In particular, its eigenvalues 

ie in [0 , L ] . Since 0 < γ � 2 /L , the eigenvalues of I − γ�� � lie

n [ −1 , 1] . Therefore, σmax (I − γ�� �) � 1 . Thus, for all z 1 , z 2 ∈ R 

N 

e have, 

 

S( z 1 ) − S( z 2 ) ‖ 

� δ‖ z 1 − z 2 ‖ . 

ince δ < 1 , the function S(·) is contractive. 

2. Proof of Theorem 4 

A proof can be found in [ 30 , Appendix B]; for completeness, 

ere we give a different and more concise proof. Note that each C j 

s symmetric positive semidefinite (p.s.d.); hence, for each i , the 

atrix B i := 

∑ 

j b ji C j is p.s.d. (as a convex combination of p.s.d. 

atrices). By the same logic, we get that W is p.s.d. Thus, to 

how λmax (W ) < 1 , we only need to show that z � W z < ‖ z ‖ 2 for

ll z ∈ R 

N . 

To prove this, first note that λmax (C j ) < 1 for all j. Since each

 i is a convex combination of all C j ’s and since λmax (·) is a convex

unction on the set of symmetric matrices, we have λmax (B i ) < 1 

or all i = 1 , . . . , N. Let 

= max 
(
λmax (B 1 ) , . . . , λmax (B N ) 

)
. 

learly, δ < 1 . Note that for each i , we have u 

� B i u �
max (B i ) ‖ u ‖ 2 � δ‖ u ‖ 2 . Therefore, for any z ∈ R 

N , 

 

� W z = 

1 

P 

N ∑ 

i =1 

(P i z ) 
� B i (P i z ) � 

δ

P 

N ∑ 

i =1 

‖ P i z ‖ 

2 , 

ince N is a multiple of P , 
∑ N 

i =1 ‖ P i z ‖ 2 , which is the sum of all

atches of length P extracted from z (using circular padding), is 

imply equal to P ‖ z ‖ 2 . Thus, we get that z � W z � δ‖ z ‖ 2 < ‖ z ‖ 2 for

ll z ∈ R 

N . 
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