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The transformation theory of the Appell F2(a, b1, b2; c1, c2; x, y) double hypergeometric function is 
developed to obtain a set of series representations of F2 which provide an efficient way to evaluate 
F2 for real values of its arguments x and y and generic complex values of its parameters a, b1, b2, c1
and c2 (i.e. in the nonlogarithmic case). This study rests on a classical approach where the usual double 
series representation of F2 and other double hypergeometric series that appear in the intermediate steps 
of the calculations are written as infinite sums of one variable hypergeometric series, such as the Gauss 
2 F1 or the 3 F2, various linear transformations of the latter being then applied to derive known and new 
formulas. Use of the three well-known Euler transformations of F2 on these results allows us to obtain 
a total of 44 series which form the basis of the Mathematica package AppellF2.wl, dedicated to the 
evaluation of F2. A brief description of the package and of the numerical analysis that we have performed 
to test it is also presented.

Program summary
Program Title: AppellF2.wl
CPC Library link to program files: https://doi .org /10 .17632 /n9v6bwpsyd .1
Licensing provisions: GPLv3
Programming language: Wolfram Mathematica version 11.3 and beyond
Nature of problem: Numerical evaluation of the double hypergeometric Appell F2 function for real values 
of its variables and generic complex values of its Pochhammer parameters
Solution method: Mathematica implementation of a set of transformation formulas of the Appell F2
function

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The study of multiple hypergeometric functions, which appear in many domains of physical and mathematical sciences, mainly began 
in 1880 with Appell who introduced the famous four double hypergeometric functions F1, F2, F3 and F4 that carry his name and are 
generalizations of the Gauss hypergeometric 2 F1 function. Since then, a huge development of this field, by the extensive study of many 
classes of multiple hypergeometric functions, led it to become a classical branch of mathematics. On the other hand, the implementation 
of the automatic evaluation of these multivariable functions in softwares dedicated to mathematics is a field of investigations which is 
nearly virgin. For instance, in Mathematica [1] only the Appell F1 has been coded, and in Maple [2], the four Appell functions are the only 
hypergeometric functions of more than one variable that are in-built functions (since 2017).
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One can point out several difficulties that may be at the origin of such a lack. One of them is that the integral representations of 
multiple hypergeometric functions are not always known and, when known, they are in general not valid for all values of the parameters 
of the hypergeometric functions that they represent. They can also be hard to compute numerically.

An alternative way to handle multiple hypergeometric functions is to consider their series representations and, using transformation 
theory [3,4], to obtain other series representations converging in other regions of the space of their variables, giving thereby analytic 
continuations of the starting point series. One interest in this approach is that the convergence properties of multiple hypergeometric 
series are independent of the values of their parameters (exceptional values of the parameters being excluded). Thus, one can use these 
series representations for numerical purpose when the Euler integral representations (or other integral representations) are not defined, 
or are unknown. Another advantage is that it is often easier to numerically compute series than integrals. However, one has to point out 
that beyond the case of double series, the convergence regions of multivariable hypergeometric series can be difficult to obtain. Moreover, 
to our knowledge, there is no systematic approach to derive transformations of these series that can collectively provide an evaluation of 
the corresponding multiple hypergeometric functions for all the possible values of their variables.

In what concerns the analytic continuation of multiple hypergeometric series, a recent and important progress can be mentioned. In [5], 
two of the authors of the present paper have developed, with other collaborators, a very efficient and systematic approach to analytically 
compute multiple Mellin-Barnes (MB) integrals. It is well-known that MB integrals are intimately linked to hypergeometric functions 
[6–8]. Multiple MB integrals are in fact one of the possible starting points for the study of hypergeometric functions of several variables 
[9]. Therefore, by the study of appropriate classes of multiple MB integrals, the method of [5] opens promising horizons in the theory of 
hypergeometric functions and, in particular, for the determination of the analytic continuations of many classes of hypergeometric series, 
whatever the number of their variables is, in terms of other multivariable hypergeometric series. Obviously, a large number of applications 
can follow in physics, as already shown in the recent works [10] and [11] in the context of the study of Feynman integrals in quantum 
field theory. We add here that MB integrals have already been widely used in the latter field of high energy physics,1 although the recent 
work [5] allows now to treat cases which were not computable in the past.

Although many new results can be obtained from the powerful method developed in [5], it cannot, alone, fully solve the difficult 
problem of finding the relevant set of transformations of a multiple hypergeometric function that will allow its numerical evaluation for all 
values of its variables. Indeed, we have mentioned above some possible difficulties in the derivation of the convergence regions of the new 
series representations obtained from transformation theory. Also another problem can be that some hypergeometric functions of several 
variables do not have an obvious MB representation. Moreover, even if the latter can be obtained, the evaluation of the MB integral in 
general shows that “white regions” (as called in [13]) appear in the multivariable space, where none of the obtained analytic continuations 
converges. Although some manipulations of the MB integral can lead to transformations and, thus, to other formulas (in addition to those 
obtained by a direct application of the method of [5]), it is not clear whether a systematic approach for these manipulations can be found. 
Therefore, in order to fully solve the problem of evaluating multivariable hypergeometric functions for all values of their variables, it may 
be necessary to rely on alternative approaches, in order to complete the results obtained from the MB approach.

A well-known example of such a situation in the context of quantum field theory involves the triple hypergeometric function of 
Lauricella FC type [14]. This particular function, which is the natural extension of the Appell F4 double hypergeometric function, appears 
when one computes the two-loop sunset Feynman integral with four mass scales. It is easy to conclude from [14] that the analytic 
continuations of the FC triple series, derived from the Mellin-Barnes representation of the FC function, give access to a restricted region 
of its three variables space. Therefore, in order to obtain analytic expressions for the sunset outside this region, some transformations of 
the FC Lauricella series have been obtained in [15], using an alternative method. This method, which uses quadratic transformations of the 
Gauss 2 F1 hypergeometric series as intermediate steps in the derivation of new series representations for F4 [16] (and, as a by product, 
for FC ) can be seen as an extension of a classical work of Olsson [17] which focused on the question of the analytic continuation of the 
Appell F1 series and of its F D multivariable generalization, using linear transformations of 2 F1 (concerning F D , we refer the interested 
reader to [7] and to other more recent works, for example [18] and references therein). The approach of [15,16] can however not give the 
full answer to the problem of finding series representations that can be used to evaluate the FC function for all values of its variables.

Our aim in the present work is to explore Olsson’s approach more systematically, taking the simpler case of the Appell F2 double 
hypergeometric function as a theoretical laboratory, having in mind, among others, to come back at a later stage to the case of the 
Lauricella FC and other multivariable hypergeometric functions.

The Appell F2 double hypergeometric function is not an arbitrary choice, it has indeed a particular place in the set of the 14 complete 
double hypergeometric functions of order 2, which consist of the four Appell functions Fi, (i = 1, ..., 4) and the ten Horn functions Gi, (i =
1, .., 3) and Hi, (i = 1, ..., 7). Indeed, it has been noticed in [19] that, with the exception of F4, H1 and H5, the Appell F2 function 
can be related to any of the other Horn and Appell functions. These links can be obtained from the transformation theory of F2 and 
are summarized in Chapter 5 of [3]. Hence, in the present work, by studying the linear transformations of F2 and by building the
AppellF2.wl Mathematica package based on the obtained formulas and dedicated to its numerical evaluation, we provide the basis of 
a future Mathematica package for the evaluation of all the double series above, with the exception of F4, H1 and H5. These three lacking 
series will be considered separately in subsequent publications. Let us mention that the numerical evaluation of F1 for real values of its 
arguments has been considered in [20].

It should be noted that several authors have already studied the transformation theory and analytic continuation properties2 of F2. One 
can for instance mention the remarkable analysis of [22], the recent references [23–26] (see also references therein), or the more classical 
works [27,28]. For particular values of the parameters of F2 we refer the reader to [29–31].

The plan of the paper is as follows. In Section 2, we briefly list some of the well-known properties of the Appell F2 function. In 
Section 3, we perform a first analytic continuation study of the Appell F2 series from the Mellin-Barnes approach [5], which is completed 
in Section 4 following Olsson’s method. This analysis, which yields 11 series representations of F2, can be extended with the use of the 

1 We refer the reader to the list of references of [5] and [12] for some of the corresponding works.
2 Some work has even been performed by Olsson long ago on the study of the partial differential equations system of F2 [21], whose solutions have been exhibited. 

However, the transformation formulas needed for the present work have not been derived in this reference.
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Fig. 1. Left: Region of convergence (ROC) of the Appell F2 series for real values of its variables x and y. Right: Singular curves of Eq. (8).

three Euler transformations of F2, allowing us to obtain a total set of 43 linear transformations of F2 , out of which 17 are needed, in 
addition to the usual series definition of F2, to cover the (x, y) space of the F2 variables for real values of the latter, with the exception 
of the singular curves shown in Fig. 1 (Right). This subset of 18 series representations of F2 are recapitulated in the appendix along 
with the figures showing their corresponding regions of convergence for real values of the arguments. The mathematical expressions and 
convergence regions of the remaining 26 series can be obtained from our AppellF2.wl package. These additional series increase the 
efficiency of the package from the convergence perspective by enlarging the possible ways to compute F2. Section 5 is dedicated to the 
description of the AppellF2.wl package. In addition to the presentation of the main commands of the code, a detailed explanation of 
how to deal with exceptional Pochhammer parameters is given, as well as numerical tests of the package where we make a comparison 
with the in-built Appell F2 function of Maple. The latter are followed by the conclusions and the appendix.

2. The Appell F2 function

The Appell F2 double hypergeometric series is defined as [6]

F2(a,b1,b2; c1, c2; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n

(c1)m(c2)n

xm

m!
yn

n! (1)

where (a)m = �(a+m)
�(a)

is the Pochhammer symbol. As it is a Gaussian series [4], F2 is reduced, when one of its arguments is zero, to the 
celebrated Gauss 2 F1 hypergeometric series.

The series in the RHS of Eq. (1) converges for |x| + |y| < 1 which is the region, shown in Fig. 1 (Left), where the F2 series coincides 
with the Appell F2 function. Outside of this region, the Appell F2 function can be defined by the integral representation of the Euler type

F2(a,b1,b2; c1, c2; x, y) =

�(c1)�(c2)

�(b1)�(b2)�(c1 − b1)�(c2 − b2)

1∫
0

du

1∫
0

dv ub1−1 vb2−1(1 − u)c1−b1−1(1 − v)c2−b2−1(1 − ux − v y)−a (2)

subject to the constraints that Re(b1), Re(b2), Re(c1 − b1) and Re(c2 − b2) are positive numbers, or by

F2(a,b1,b2; c1, c2; x, y) = �(c2)

�(b2)�(c2 − b2)

1∫
0

dv vb2−1(1 − v y)−a(1 − v)−b2+c2−1
2 F1

(
a,b1; c1; x

1 − v y

)
(3)

Another well-known integral representation of F2 is of the Mellin-Barnes type

F2(a,b1,b2;c1, c2; x, y) =

�(c1)�(c2)

�(a)�(b1)�(b2)

+i∞∫
−i∞

ds

+i∞∫
−i∞

dt (−x)s(−y)t�(−s)�(−t)
�(a + s + t)�(b1 + s)�(b2 + t)

�(c1 + s)�(c2 + t)
(4)

where the integration contours are such that they separate the poles of �(−s) and �(−t) from those of �(a + s + t), �(b1 + s) and 
�(b2 + t).
3
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Another interesting representation of F2 is due to Burchnall and Chaundy [32,33] and reads3

F2 (a,b1,b2; c1, c2; x, y)

=
∞∑

r=0

(a)r(b1)r (b2)r

r!(c1)r (c2)r
xr yr

2 F1(a + r,b1 + r; c1 + r; x)2 F1 (a + r,b2 + r; c2 + r; y) (5)

F2 has the following symmetry

F2(a,b1,b2; c1, c2; x, y) = F2(a,b2,b1; c2, c1; y, x) (6)

and by suitable changes of variables in Eq. (2), one can obtain its well-known Euler transformations [6]

F2(a,b1,b2; c1, c2; x, y) = (1 − x)−a F2

(
a, c1 − b1,b2; c1, c2; x

x − 1
,

y

1 − x

)

= (1 − y)−a F2

(
a,b1, c2 − b2; c1, c2; x

1 − y
,

y

y − 1

)

= (1 − x − y)−a F2

(
a, c1 − b1, c2 − b2; c1, c2; x

x + y − 1
,

y

x + y − 1

)
(7)

which will be useful in the following.
The system of partial differential equations satisfied by (z =)F2 is given by [6]

x(1 − x)r − xys + [c1 − (a + b1 + 1)x]p − b1 yq − ab1z = 0

y(1 − y)t − xys + [c2 − (a + b2 + 1)y]q − b2xp − ab2z = 0 (8)

where r = zxx , t = zyy , s = zxy , p = zx , q = zy .
The singular curves of the above system are x = 0, y = 0, x = 1, y = 1, x + y = 1. They are shown in Fig. 1 (Right).
We will now consider analytic continuations of the Appell F2 series with the aim to evaluate it for generic complex values of its 

parameters a, b1, b2, c1, c2 and for all possible real values of x and y except on these singular curves.

3. A first analytic continuation study based on the Mellin-Barnes representation of F2

It is straightforward to derive two well-known analytic continuation formulas (and two related symmetrical expressions) of the Appell 
F2 series from the Mellin-Barnes representation presented in Eq. (4). For this, one can use the method of [5] or, equivalently, of [34,35,9], 
which give

F2(a,b1,b2; c1, c2; x, y) = �(c2)�(b2 − a)

�(b2)�(c2 − a)
(−y)−a F 2:1;0

1:1;0

[
a,a − c2 + 1 : b1;−
a − b2 + 1 : c1;−−

∣∣∣∣∣ − x

y
,

1

y

]
(9)

+�(c2)�(a − b2)

�(a)�(c2 − b2)
(−y)−b2 H2

(
a − b2,b1,b2,b2 − c2 + 1; c1; x,− 1

y

)
and

F2(a,b1,b2; c1, c2; x, y) = �(c2)�(b2 − a)

�(b2)�(c2 − a)
(−y)−a F 2:1;0

1:1;0

[
a,a − c2 + 1 : b1;−−
a − b2 + 1 : c1;−−

∣∣∣∣∣ − x

y
,

1

y

]

+ �(c2)�(a − b2)�(c1)�(b1 + b2 − a)

�(a)�(c2 − b2)�(b1)�(c1 + b2 − a)
(−x)b2−a(−y)−b2 F̃ 2:0;2

1:0;0

[
a − b2,a − b2 − c1 + 1 : −−;b2,b2 − c2 + 1

a − b1 − b2 + 1 : −; −

∣∣∣∣∣ 1

x
,

x

y

]

+ �(c1)�(c2)�(a − b1 − b2)

�(a)�(c2 − b2)�(c1 − b1)
(−x)−b1(−y)−b2 F3

(
b1,b2,b1 − c1 + 1,b2 − c2 + 1,b1 + b2 − a + 1; 1

x
,

1

y

)
(10)

where a commonly used notation for the Kampé de Fériet series is, with (ap) .= a1, ..., ap , [4]

F p:q;k
l:m;n

[
(ap) : (bq) ; (ck)

(αl) : (βm); (γn)

∣∣∣∣∣ x, y

]
.=

∞∑
r=0

∞∑
s=0

∏p
j1=1(a j1)r+s

∏q
j2=1(b j2)r

∏k
j3=1(c j3)s∏l

j4=1(α j4)r+s
∏m

j5=1(β j5)r
∏n

j6=1(γ j6)s

xr

r!
ys

s! (11)

and where the F̃ double series is defined as

F̃ p:q;k
l:m;n

[
(ap) : (bq) ; (ck)

(αl) : (βm); (γn)

∣∣∣∣∣ x, y

]
.=

∞∑
r=0

∞∑
s=0

∏p
j1=1(a j1)r−s

∏q
j2=1(b j2)r

∏k
j3=1(c j3)s∏l

j4=1(α j4)r−s
∏m

j5=1(β j5)r
∏n

j6=1(γ j6)s

xr

r!
ys

s! (12)

3 In principle, one can apply the transformation theory of the Gauss 2 F1 function on this representation in order to derive triple series representations of F2. However this 
approach is more complicated than the one followed in this paper.
4
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Fig. 2. Left: Regions of convergence of the analytic continuations of the Appell F2 series given in Eqs. (9) (in red) and (10) (in blue) and of the symmetrical relations obtained 
from them (in green and yellow respectively). Right: Same figure when one adds the ROC of Fig. 1 (Left) and when one applies the Euler transforms of F2 given in Eq. (7) on 
all these results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

One will note that, as performed in Appendix C-2 of [36], F̃ can be transformed in terms of Kampé de Fériet series if necessary.
Eqs. (9) and (10) respectively match with Eq. (64) p. 294 and Eq. (66) p. 295 of [4].
It is easy to derive the convergence regions of these analytic continuations from the well-known convergence properties of the Appell 

F3, Horn H2 and Kampé de Fériet series, and by noting that, from the property of cancellation of opposite elements in the characteristic 
list of a hypergeometric series,4 F̃ in Eq. (10) has the same convergence properties as H2 with the same arguments.

One then obtains for Eq. (9) the convergence region |x| < 1 ∧ | − 1
y | < 1 ∧ | − 1

y |(1 + |x|) < 1 shown in red in Fig. 2 (Left), for real values 
of x and y. As for Eq. (10), the convergence region is | 1

x | < 1 ∧ | x
y | < 1 ∧ | x

y |(1 + | 1
x |) < 1, and it is shown in blue in the same figure.

As mentioned above, two symmetrical relations can be computed from the Mellin-Barnes representation, which can also be obtained 
using the symmetry property of Eq. (6) applied to Eq. (9) and Eq. (10). These symmetrical analytic continuations converge in the green 
and yellow regions of Fig. 2 (Left).

With no further transformation of the MB integral one cannot obtain, from the latter, other series representations than those presented 
above. However, using the three Euler transformations shown in Eq. (7), it is possible to derive 12 other formulas, that we do not list here 
and which, alltogether, allow us to obtain the total convergence region of Fig. 2 (Right).

When added to the usual F2 series definition and its three Euler transformations, these 16 linear transformations show that a good 
part of the (x, y) real plane can be reached, but one can see on the plot that several regions, shown in white, are still missed. One has 
to find other transformations of F2 to reach them. The aim of the rest of this paper is to fill this gap, following an alternative method of 
analytic continuation.

4. Analytic continuation from Olsson’s method

In [17], Olsson obtained solutions of the Appell F1 system of partial differential equations, as well as the relations that connect them, 
thereby obtaining linear transformations of F1. His method rests on the application of various transformations and analytic continuations 
of the 2 F1 Gauss hypergeometric series on the Appell F1 series written as an infinite sum of 2 F1. We follow this procedure below to 
derive analytic continuation formulas for F2.

One will note that, except for the results of Section 3, which are briefly rederived following Olsson’s method in the beginning of 
subsection 4.2, the regions of convergence of all the analytic continuation formulas presented in Section 4 are trivial. They can be straight-
forwardly obtained as the intersections of the regions defined by the modulus, smaller than unity, of each of the arguments of the series 
involved in these formulas. This is due to the simple form of these series, as it is explicitly shown in one example in Section 4.1.1.

4.1. Analytic continuation around (0,1)

We begin our study by the derivation of analytic continuations of the Appell F2 series around the point (0, 1). Note that, still by the 
symmetry shown in Eq. (6), the final expressions can be used to obtain analytic continuations around the point (1, 0). Several different 
formulas will be necessary to cover the whole neighborhood of these points as they are at the intersection of three singular lines (see 
Fig. 1 (Right)) [37,17].

4.1.1. A first analytic continuation
Rewriting F2 as an infinite sum of 2 F1, one gets

F2(a,b1,b2; c1, c2; x, y) =
∞∑

m=0

(a)m(b1)m

(c1)mm! xm
2 F1(a + m,b2; c2; y) (13)

4 See Section 4.1.1 for a brief reminder about this fact.
5
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Fig. 3. Left: ROC of F 1:2;1
1:1;0 in Eq. (15). Right: ROC of F̃ in Eq. (15).

where one can now use the well-known analytic continuation of 2 F1(a, b; c; z) around z = 1 given by [3]

2 F1(a,b; c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
2 F1(a,b;a + b − c + 1;1 − z)

+ �(c)�(a + b − c)

�(a)�(b)
(1 − z)c−a−b

2 F1(c − a, c − b; c − a − b + 1;1 − z) (14)

Substituting and simplifying, one obtains

F2(a,b1,b2; c1, c2; x, y) = �(c2)�(c2 − b2 − a)

�(c2 − a)�(c2 − b2)
F 1:2;1

1:1;0

[
a : b1,1 + a − c2;b2

a + b2 − c2 + 1 : c1 ;−−

∣∣∣∣∣ x,1 − y

]

+�(c2)�(a + b2 − c2)

�(a)�(b2)
(1 − y)c2−b2−a F̃ 1:1;2

1:0;1

[
c2 − a : c2 − b2;b1,1 + a − c2

1 + c2 − b2 − a : −−−−−; c1

∣∣∣∣∣ 1 − y,
x

1 − y

]
(15)

where we have used, for the Kampé de Fériet and F̃ series, the notation presented in the previous section.
As mentioned above, a simple look at the particular form of these series allows to straightforwardly conclude that the F 1:2;1

1:1;0 series 
converges for |x| < 1 ∧ |1 − y| < 1 (see Fig. 3 (Left)) and the F̃ 1:1;2

1:0;1 series converges for | x
1−y | < 1 ∧ |1 − y| < 1 (see Fig. 3 (Right)). This is 

due to the fact that the convergence region of a hypergeometric series is independent of its parameters (exceptional values of the latter 
being excluded) which implies, in particular, that the cancellation of opposite elements in the characteristic list of this series does not 
affect its region of convergence [4]. In our present case of study, since the characteristic lists of the Kampé de Fériet and F̃ 1:1;2

1:0;1 series are 
respectively {m + n, m, m, n, −(m + n), −m} and {m − n, m, n, n, −(m − n), −n}, the cancellation property leads to a factorization of these 
double series into single series whose convergence regions are trivial.
Therefore, from Fig. 3 one concludes that, for real values of x and y, the ROC of the RHS of Eq. (15) is restricted to the region shown in 
Fig. 3 (Right).
Using Eq. (6) we get the analytic continuation around (1,0) as

F2(a,b1,b2; c1, c2; x, y) = �(c1)�(c1 − b1 − a)

�(c1 − a)�(c1 − b1)
F 1:2;1

1:1;0

[
a : b2,1 + a − c1;b1

a + b1 − c1 + 1 : c2 ;−−

∣∣∣∣∣ y,1 − x

]

+ �(c1)�(a + b1 − c1)

�(a)�(b1)
(1 − x)c1−b1−a F̃ 1:1;2

1:0;1

[
c1 − a : c1 − b1;b2,1 + a − c1

1 + c1 − b1 − a : −−−−−; c2

∣∣∣∣∣ 1 − x,
y

1 − x

]
(16)

which now converges, still for real values of x and y, in the region shown in Fig. 4. One will note here that the regions shown in Fig. 3
(Right) and Fig. 4 are already covered by the formulas presented in Section 3. Looking at the ROC plots it is clear that the F̃ series 
prevents the analytic continuation in Eq. (15) (respectively Eq. (16)) to converge around the whole neighborhood of (0, 1) (respectively 
(1, 0)). More precisely, the constraint | x

1−y | < 1 (respectively | y
1−x | < 1) is responsible for that, which means that by going on with the 

analytic continuation process on its associated sum, one can probably derive another more interesting formula. This will be done in the 
next section where the obtained formula, in addition to reach the missing region around (0,1), will also be the starting point of another 
analytic continuation which is presented in Section 4.3.

4.1.2. A second analytic continuation
Since we have

F̃ 1:1;2
1:0;1

[
c2 − a : c2 − b2;b1,1 + a − c2

1 + c − b − a : −−−−−; c

∣∣∣∣∣ 1 − y,
x

1 − y

]
=

2 2 1

6
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Fig. 4. ROC of the RHS of Eq. (16).

∞∑
m=0

∞∑
n=0

(c2 − a)m−n(b1)n(1 + a − c2)n(c2 − b2)m

(1 + c2 − b2 − a)m−n(c1)nm!n! (1 − y)m
( x

1 − y

)n
(17)

which can be rewritten as

F̃ 1:1;2
1:0;1

[
c2 − a : c2 − b2;b1,1 + a − c2

1 + c2 − b2 − a : −−−−−; c1

∣∣∣∣∣ 1 − y,
x

1 − y

]
=

∞∑
m=0

(c2 − a)m(c2 − b2)m

(1 + c2 − b2 − a)mm! (1 − y)m
3 F2

(
a + b2 − c2 − m, b1, 1 + a − c2

1 + a − c2 − m, c1

∣∣∣∣∣ x

1 − y

)
(18)

one can use the standard analytic continuation formula of 3 F2 [3]

3 F2

(
a1, a2, a3

b1, b2

∣∣∣∣∣z
)

= �(b1)�(b2)�(a2 − a1)�(a3 − a1)

�(a2)�(a3)�(b1 − a1)�(b2 − a1)
(−z)−a1

3 F2

(
a1, 1 + a1 − b1, 1 + a1 − b2

1 + a1 − a2, 1 + a1 − a3

∣∣∣∣∣1

z

)

+ �(b1)�(b2)�(a1 − a2)�(a3 − a2)

�(a1)�(a3)�(b1 − a2)�(b2 − a2)
(−z)−a2

3 F2

(
a2, 1 + a2 − b1, 1 + a2 − b2

1 + a2 − a1, 1 + a2 − a3

∣∣∣∣∣1

z

)

+ �(b1)�(b2)�(a1 − a3)�(a2 − a3)

�(a1)�(a2)�(b1 − a3)�(b2 − a3)
(−z)−a3

3 F2

(
a3, 1 + a3 − b1, 1 + a3 − b2

1 + a3 − a1, 1 + a3 − a2

∣∣∣∣∣1

z

)
(19)

which allows us to derive, since one of the terms cancels,

F̃ 1:1;2
1:0;1

[
c2 − a : c2 − b2;b1,1 + a − c2

1 + c2 − b2 − a : −−−−−; c1

∣∣∣∣∣ 1 − y,
x

1 − y

]
=

(
x

y − 1

)−a−b2+c2 �(c1)� (−a + b1 − b2 + c2)

� (b1)� (−a − b2 + c1 + c2)
F̃ 2:1;1

2:0;0

[
1 − b2,−a + b1 − b2 + c2 : c2 − b2;b2

−a − b2 + c2 + 1,−a − b2 + c1 + c2 : −−−−−;−−

∣∣∣∣∣ x,
1 − y

x

]

+
(

x

y − 1

)−b1 �(c1)� (a − b1 + b2 − c2)

� (c1 − b1)� (a + b2 − c2)
F 1:1;2

1:0;1

[ −a + b1 + c2 : c2 − b2;b1 − c1 + 1,b1

−a + b1 − b2 + c2 + 1 : −−−−−; −a + b1 + c2

∣∣∣∣∣ 1 − y,
1 − y

x

]
(20)

Substituting this result back in Eq. (15) one gets

F2(a,b1,b2; c1, c2; x, y) =�(c2)�(−a − b2 + c2)

�(c2 − a)�(c2 − b2)
F 1:2;1

1:1;0

[
a : a − c2 + 1,b1;b2

a + b2 − c2 + 1 : c1 ; −

∣∣∣∣∣ x,1 − y

]

+ (1 − y)−a−b2+c2

(
x

y − 1

)−a−b2+c2 �(c1)�(c2)�(a + b2 − c2)�(−a + b1 − b2 + c2)

�(a)�(b1)�(b2)�(−a − b2 + c1 + c2)

× F̃ 2:1;1
2:0;0

[
a + b2 − c2,a + b2 − c2 − c1 + 1 : b2; c2 − b2

b2,a − b1 + b2 − c2 + 1 : −; −

∣∣∣∣∣ 1 − y

x
, x

]

+
(

x
)−b1

(1 − y)−a−b2+c2
�(c1)�(c2)�(a − b1 + b2 − c2)
y − 1 �(a)�(b2)�(c1 − b1)

7
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Fig. 5. Left: ROC of the RHS of Eq. (21), Middle: Reached region around (0,1), Right: Corresponding reached region around (1,0).

× F 1:2;1
1:1;0

[ −a + b1 + c2 : b1,b1 − c1 + 1; c2 − b2

−a + b1 − b2 + c2 + 1 : −a + b1 + c2 ; −

∣∣∣∣∣ 1 − y

x
,1 − y

]
(21)

which, trivially, converges in | 1−y
x | < 1 ∧ |x| < 1 ∧ |1 − y| < 1 (see, for real values of x and y, Fig. 5 (Left)).

Therefore, taking into account the results of Section 4.1.1, we are now able to reach the whole neighborhood of (0, 1) (see Fig. 5
(Middle)) with the exception of the boundaries of the ROCs which will be considered later.

As before we can now straightforwardly get the corresponding continuation around (1, 0) using Eq. (6). Together with the previous 
symmetrical analytic continuation given in Eq. (16) we can then reach the whole neighborhood of (1, 0), except on the boundaries of the 
ROCs (see Fig. 5 (Right)).

4.2. Analytic continuation around (0, ∞) and (∞, ∞)

Next we turn to the analytic continuation around the singular point (0, ∞). This analytic continuation will then be used to find the 
analytic continuation around the singular point (∞, ∞). Moreover, as before, symmetry will give us the (∞, 0) case. The corresponding 
formulas and their convergence regions have already been derived in Section 3, from the Mellin-Barnes representation of F2, but for 
completeness we briefly show here how they can also be obtained from Olsson’s method (see also Chapter 9 of [4]).

To find the continuation around (0, ∞) we start again with Eq. (13) and use the standard analytic continuation formula for 2 F1 given 
by [3]

2 F1(a,b; c; z) = �(c)�(b − a)

�(b)�(c − a)
(−z)−a

2 F1

(
a,a − c + 1;a − b + 1; 1

z

)

+ �(c)�(a − b)

�(a)�(c − b)
(−z)−b

2 F1

(
b,b − c + 1;b − a + 1; 1

z

)
(22)

This directly gives Eq. (9).
Then, in order to find the analytic continuation around (∞, ∞), we observe that we just need to continue the Horn H2 series in Eq. (9), 

as the other series already converges around (∞, ∞). So, writing

H2

(
a − b2,b1,b2,b2 − c2 + 1; c1; x,− 1

y

)
=

∞∑
n=0

(a − b2)−n(b2)n(b2 − c2 + 1)n

n!
(

− 1

y

)n

2 F1(a − b2 − n;b1, c1; x) (23)

and using once more Eq. (22) we get

H2

(
a − b2,b1,b2,b2 − c2 + 1; c1; x,− 1

y

)
=

�(c1)�(b1 + b2 − a)

�(b1)�(c1 + b2 − a)
(−x)b2−a F̃ 2:0;2

1:0;0

[
a − b2,a − b2 − c1 + 1 : −−;b2,b2 − c2 + 1

a − b2 − b1 + 1 : −−;−−−−−−−−−−−

∣∣∣∣∣ 1

x
,

x

y

]

+ �(c1)�(a − b1 − b2)

�(a − b2)�(c1 − b1)
(−x)−b1 F3

(
b1,b2,b1 − c1 + 1,b2 − c2 + 1,b1 + b2 − a + 1; 1

x
,

1

y

)
(24)

Substituting the above back in Eq. (9) we get Eq. (10).
The regions of convergence of Eqs. (9) and (10) are plotted in Fig. 2 (Left).
8
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4.3. Analytic continuation around (∞, 1)

Looking at the ROC of the second continuation around (0,1), Eq. (21), we note that F 1:2;1
1:1;0(...; 1−y

x , 1 − y) converges in the entire 
neighborhood of (∞, 1). Therefore, in order to derive an analytic continuation valid in this region, we only need to analytically continue 
the remaining two series of Eq. (21). Let us consider the first series which reads

F 1:2;1
1:1;0

[
a : b1,1 + a − c2;b2

a + b2 − c2 + 1 : c1 ;−−

∣∣∣∣∣ x,1 − y

]
=

∞∑
n=0

(a)n(b2)n

(a + b2 − c2 + 1)nn! (1 − y)n
3 F2

(
a + n, b1, 1 + a − c2

a + b2 − c2 + 1 + n, c1

∣∣∣∣∣x
)

(25)

Applying Eq. (19) and simplifying we get

F 1:2;1
1:1;0

[
a : b1,1 + a − c2;b2

a + b2 − c2 + 1 : c1 ;−−

∣∣∣∣∣ x,1 − y

]
=

�(1 + a − c2 − b1)�(c1)�(a − b1)�(a + b2 − c2 + 1)

�(1 + a − c2)�(c1 − b1)�(a)�(a + b2 − b1 − c2 + 1)
(−x)b1 F̃ 1:2;1

1:1;0

[
b1 + c2 − a − b2 : 1 + b1 − c1,b1;b2

1 − a + b1 : b1 + c2 − a ;−−

∣∣∣∣∣ 1

x
,1 − y

]

+ �(b1 + c2 − a − 1)�(c1)�(c2 − 1)�(a + b2 − c2 + 1)

�(b1)�(c1 + c2 − a − 1)�(a)�(b2)
(−x)c2−a−1

× F̃ 1:2;1
1:1;0

[
1 − b2 : 2 + a − c2 − c1,1 + a − c2;b2

2 − c2 : a − c2 − b1 + 2 ;−−

∣∣∣∣∣ 1

x
,1 − y

]

+ �(c1)�(b1 − a)�(1 − c2)�(1 + a + b2 − c2)

�(b1)�(1 + a − c2)�(1 + b2 − c2)�(c1 − a)
(−x)−a F 2:1;1

2:0;0

[
a,1 + a − c1 : c2 − b2;b2

c2,1 + a − b1 : −−−−−;−−

∣∣∣∣∣ 1

x
,

1 − y

x

]
(26)

This is sufficient for this series. Now, taking the third series in Eq. (21), which can also be written as an infinite sum of 3 F2 hypergeometric 
functions:

F̃ 2:1;0
2:0;0

[
a + b2 − c2,1 + b2 + a − c1 − c2 : b2, c2 − b2;−−

1 + a + b2 − b1 − c2,b2 : −−−−−−−−;−−

∣∣∣∣∣ 1 − y

x
, x

]
=

∞∑
m=0

(a + b2 − c2)m(1 + b2 + a − c2 − c1)m

(1 + a + b2 − b1 − c2)mm!
(

1 − y

x

)m

× 3 F2

(
c2 − b2,1 − b2 − m, c2 + b1 − b2 − a − m
1 + c2 − b2 − a − m, c1 + c2 − a − b2 − m

∣∣∣∣∣x
)

(27)

one has, using Eq. (19) once more,

F̃ 2:1;0
2:0;0

[
a + b2 − c2,1 + b2 + a − c1 − c2 : b2, c2 − b2;−−

1 + a + b2 − b1 − c2,b2 : −−−−−−−−;−−

∣∣∣∣∣ 1 − y

x
, x

]
=

(−x)b2−c2
�(1 − c2)� (b1 − a)� (−a − b2 + c2 + 1)� (−a − b2 + c1 + c2)

�(1 − a)� (1 − b2)� (c1 − a)� (−a + b1 − b2 + c2)

× F 2:1;1
2:0;0

[
a,a − c1 + 1 : c2 − b2;b2

c2,a − b1 + 1 : −−−−−;−−

∣∣∣∣∣ 1

x
,

1 − y

x

]

+ �(b1 + c2 − a − 1)�(1 + c2 − b2 − a)�(c1 + c2 − a − b2)�(c2 − 1)

�(c2 − a)�(c2 − b2)�(c1 + c2 − a − 1)�(b1 + c2 − a − b2)
(−x)−1+b2

× F̃ 1:2;1
1:1;0

[
1 − b2 : 2 + a − c2 − c1,1 + a − c2;b2

2 − c2 : a − c2 − b1 + 2 ;−−

∣∣∣∣∣ 1

x
,1 − y

]

+ (−x)a−b1+b2−c2
�(a − b1)� (a − b1 − c2 + 1)� (−a − b2 + c2 + 1)� (−a − b2 + c1 + c2)

� (1 − b1)� (1 − b2)� (c1 − b1)� (c2 − b2)

× F̃ 1:2;1
1:1;0

[−a + b1 − b2 + c2 : b1,b1 − c1 + 1;b2

−a + b1 + 1 : −a + b1 + c2 ;−−

∣∣∣∣∣ 1

x
,1 − y

]
(28)
9
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Fig. 6. Left: ROC of F̃ (...; 1
x ,1 − y). Middle: ROC of F 2:1;1

2:0;0 (...; 1
x ,

1−y
x ). Right: ROC of F 1:2;1

1:1;0 (...; 1−y
x ,1 − y).

Fig. 7. Left: See the text. Right: Regions covered using all the so far obtained analytic continuations.

Substituting the above two results in Eq. (21) and simplifying we get

F2(a,b1,b2; c1, c2; x, y) =
�(c1)�(c2)�(a − b1)�(−a + b1 − b2 + c2)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b1 + c2)
(−x)−b1

× F̃ 1:2;1
1:1;0

[
b1 + c2 − a − b2 : 1 + b1 − c1,b1;b2

1 − a + b1 : b1 + c2 − a ;−−

∣∣∣∣∣ 1

x
,1 − y

]

+ �(c1)� (b1 − a)

� (b1)� (c1 − a)
(−x)−a F 2:1;1

2:0;0

[
a,1 + a − c1 : c2 − b2;b2

c2,1 + a − b1 : −−−−−;−−

∣∣∣∣∣ 1

x
,

1 − y

x

]

+ �(c1)� (c2)� (a − b1 + b2 − c2)

�(a)� (b2)� (c1 − b1)
(−x)−b1 (1 − y)−a+b1−b2+c2

× F 1:2;1
1:1;0

[
c2 − a + b1 : b1,1 + b1 − c1; c2 − b2

1 + b1 + c2 − b2 − a : c2 − a + b1 ;−−−−−

∣∣∣∣∣ 1 − y

x
,1 − y

]
(29)

where F̃ (...; 1x , 1 − y) converges for | 1
x | < 1 ∧ |1 − y| < 1 (see Fig. 6 (Left)), F 2:1;1

2:0;0(...; 1x , 1−y
x ) converges for 

∣∣∣ 1
x

∣∣∣ < 1 ∧ | 1−y
x | < 1 (see Fig. 6

(Middle)) and F 1:2;1
1:1;0 (...; 1−y

x , 1 − y) converges for |1 − y| < 1 ∧ | 1−y
x | < 1 (see Fig. 6 (Right)).

It is therefore clear that the analytic continuation in Eq. (29) converges in the region shown in Fig. 6 (Left), for real values of x and y.
Using Eq. (6) we get another analytic continuation around (1, ∞) which converges in the region | 1

y | < 1 ∧ |1 − x| < 1 ∧ | 1−x
y | < 1, for 

real values of x and y, see Fig. 7 (Left).

4.4. Using Euler transformations

In the previous sections, we presented 10 different linear transformations of the Appell F2 double hypergeometric series which analyt-
ically continue the latter in various regions of the (x, y) space (see Fig. 7 (Right)). Now, using these results, it is possible to derive many 
10
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other analytic continuations. Indeed, if, instead of starting from the series definition of F2, Eq. (1), one starts from the alternative series 
representation given by any of the three Euler transformations shown in Eq. (7), one can use the 10 formulas above to try 30 different 
ways to derive other analytic continuations. In the final list of the various series representations that can be obtained by this exercise 
(which amounts to 44 if one includes the series definition of F2 and its three Euler transformations), we noticed that 18 are sufficient to 
cover the whole (x, y) space, except on some particular points, namely (1, 0), (0, 1), (1, 1), (−1, 1), (1, −1), and ( 1

2 , 12 ). Adding the other 
analytic continuations does not help to reach the missing points. One should emphasize here that although the series that are involved 
in these 18 series representations are in principle collectively converging for all other real values of the (x, y) space, the AppellF2.wl
Mathematica package presented in this paper cannot evaluate F2 on the singular lines of Fig. 1 without a proper limiting procedure, similar 
as the one presented in Section 5.3.

The 18 formulas are listed in the Appendix with plots of their convergence regions, and they form, with the remaining 26 series 
representations whose expressions are not given explicitly here to lighten the paper, the basis of the package,5 presented in Section 5 and 
dedicated to the numerical evaluation of the Appell F2 function.

5. The AppellF2.wl Mathematica package

Based on the 44 series representations of the Appell F2 function discussed above, the AppellF2.wl package can find the numer-
ical value of the Appell F2 function, in nonlogarithmic situations (i.e. for generic values of the Pochhammer parameters, see however 
Section 5.3), for arbitrary real values of x and y with the exception of the points that belong to the singular curves of Fig. 1 (Right).

One will note here that, due to their various combinations of prefactors, the series representations are in most cases multivalued 
and, although they are in principle valid for any complex x and y that belong to their regions of convergence, one cannot in general 
straightforwardly apply them for numerical purpose. Indeed, careful considerations about the possible values of the prefactors have to be 
taken into account.

For instance, the numerical evaluation of Eq. (21), for real values of x and y, asks to rewrite it as in Eq. (58). Similarly, many of the 
other formulas also have to be rewritten, as explicitly detailed in the Appendix.

In the complex case, things become more involved. In the first version of the AppellF2.wl package presented in this paper, we focus 
on real values of x and y, leaving the case of their complex values to a subsequent version of the package.

Let us now demonstrate the working principle of the package AppellF2.wl below and apply it to some examples later in this 
section. AppellF2.wl can be used on Mathematica v11.3 and beyond.

5.1. Algorithm of AppellF2.wl

The AppellF2.wl package works as follows:

1. Except if the given (x, y) point of evaluation is any of the six special points mentioned above in Section 4.4, all the series representa-
tions of F2 that are converging at the given point are found by the package.

2. Although the same numerical result, for a given precision, will be obtained with any of these series if one sums enough terms, some 
series will converge faster than others (for instance if the point is not close to the boundary of their convergence region). Therefore, 
in order to improve the speed of the package, an experimental criterion has been implemented in the code in such a way that the 
“best” series representation, from the convergence point of view, is selected. The criterion is defined as follows.
A typical series representation of F2 consists of more than one series.

F2(a,b1,b2; c1, c2; x, y) =
∑

i

U i

Ui =
∞∑

m,n=0

V i(a,b1,b2, c1, c2, x, y,m,n)

For each Ui , the package calculates ri and si as written below, for the given values of Pochhammer parameters and x, y (for readability
we have suppressed the dependence of V i on the Pochhammer parameters and on x and y):

si =
∣∣∣∣ V i(m + 1,n)

V i(m,n)

∣∣∣∣
m,n=100

, ti =
∣∣∣∣ V i(m,n + 1)

V i(m,n)

∣∣∣∣
m,n=100

The values of m and n have been experimentally chosen to be 100 here but some other values can be used.

The rate of convergence for a series Ui is chosen as ri =
√

s2
i + t2

i . In general, all the series of a given series representation have 
different rates of convergence. We thus define the rate of convergence of that series representation to be the maximum of the rates 
of convergence of all of its involved series. Therefore, the rate of convergence of a series representation is

R = Max{ri}
Thus, when comparing the various series representations that are valid at the same (x, y) point, the one that has the smallest R is 
selected.

3. The numerical evaluation is then performed using partial sums of the best series, for the chosen values of Pochhammer parameters 
and x and y, up to a given number of terms. The output is returned at a given precision.

5 The interested reader can obtain the mathematical expression of each of the 44 series representations of F2 directly from this package, using the F2expose[] command 
described in Section 5.2.
11
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5.2. Demonstration

We now demonstrate the usage of the package AppellF2.wl. After downloading the package in the same directory as the notebook, 
it is called as follows

In[]:SetDirectory[NotebookDirectory[]];
In[]:=<<AppellF2.wl
AppellF2.wl v1.0
Authors : Souvik Bera & Tanay Pathak

The command AppellF2, computing the numerical value of the F2 function, can be called as,

In[]:=AppellF2[a, b1, b2, c1, c2, x, y, p, terms, F2show->True]

Here, a,b1,b2,c1,c2 are the Pochhammer values given by the user,6 x,y is the point of evaluation, p is the required precision of 
the output (it gives the number of desired significant digits) and terms is the number of terms in the numerical summation for each 
summation index. F2show is an option with default value False. When it is made True, one can see the evaluation of the summation 
in real time.

As an example, the below command finds the value of F2 up to 4 significant digits at the point (−2.311, 5.322) with Pochhammer val-
ues a = 2.2345, b1 = 3.363, b2 = 0.242, c1 = 8.3452 and c2 = 0.657 by evaluating the summation up to 100 terms for both the summation 
indices.

In[]:=AppellF2[2.2345, 3.363, 0.242, 8.3452, 0.657,-2.311, 5.322, 4, 100, F2show->False]

For this call, the package gives

valid series:{{10},{15},{18},{26},{29},{43}}
convergence rates:{{0.59,10},{0.66,26},{0.68,18},{0.94,29},{0.95,43},{1.09,15}}
selected series: 10

Out[]=0.09334 - 0.06847 I

One can see that there are 6 series representations valid at the point (−2.311, 5.322) and that series #10 is the best converging series, so 
that it is chosen for the evaluation.

One will note that the specific command F2findall can be directly called to find all series which are valid at a given point. For the 
example above,

In[]:=F2findall[{-2.311, 5.322}]

Out[]={10, 15, 18, 26, 29, 43}

In order to see the expression of any of the 44 series representations used in the package, and its region of convergence, the command
F2expose can be used.

In[]:=F2expose[15]

Out[]= {Abs[(-1 + x + y)/x]< 1&&Abs[x/(-1 + x)]<1,(1/(m! n!))((1-x)^(-a)) Gamma[c2]...}

The output above, which, due to its length, has been partly suppressed here, is a list containing the ROC of the series representation 
followed by the expression of the corresponding series (here series #15 which, from the correspondence Table 3 of the appendix, is S7, 
see Eq. (59)).

The command F2ROC gives the plot of the ROC of the series representation #, along with the point (x,y), for a given range.

F2ROC[{x,y}, #, range]

6 If the user gives non-positive integer values for c1 and/or c2, the code explicitly returns that this is a singular case.
12
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Fig. 8. Output of F2ROC[{-2.311, 5.322}, 15, {-6, 6}]. The red dot is (x, y) = (−2.311,5.322).

For instance, the call F2ROC[{-2.311, 5.322}, 15, {-6, 6}] gives the output shown in Fig. 8.
Finally, the user can choose which series representation he wants for the evaluation at a given point, using the command F2evaluate. 

For example,

In[]:=F2evaluate[10, {2.2345, 3.363, 0.242, 8.3452, 0.657, -2.311, 5.322}, 10, 100]

Out[]=0.09333639793 - 0.06847416686 I

gives the values of F2(2.2345, 3.363, 0.242; 8.3452, 0.657; −2.311, 5.322) evaluated from the series representation #10 at 10 precision 
with 100 terms for each summation index.

5.3. Exceptional values of the Pochhammer parameters

Although we have chosen to restrict our analysis in this paper to the case of generic values of the Pochhammer parameters, in this 
section we discuss different situations that can happen when one tries to evaluate F2 with our package for some exceptional values of the 
parameters, i.e. non-generic ones. These sets of exceptional parameters can arise in various physical situations, such as Feynman diagrams 
calculations where (possibly identical) integer values of the parameters, or values of the latter differing by an integer, often appear, which 
can lead to logarithmic series representations of F2. Therefore it may be interesting for the reader to know what to do when facing these 
cases for which our package can give indeterminate results. In the following, we show on some examples how to get numerical values of 
F2 in these particular cases.

5.3.1. A first example
It can happen that some or all series representations of F2 that are valid at a given (x, y) point of interest, being meaningless due to 

the choice of exceptional Pochhammer parameters, lead to indeterminate results. If some of the series representations stay well-defined, 
the package still gives the desired result by using those series. Otherwise, it is possible to obtain a numerical result from the meaningless 
series, by using a limiting procedure.

Let us illustrate this situation with a particular case, by considering the relation [38]

F1

(
1,1,

1

2
;2; r3

r123
,

r3

r23

)
= x2

√
1 − y2

1 − x2

[
ln

(
1 + √

1 − y2

1 − √
1 − y2

)
+ ln

(
x − √

x2 − y2

x + √
x2 − y2

)]
(30)

which appears in the course of the derivation of the mathematical expression of the one-loop 3-point scalar Feynman integral with 
arbitrary masses and external momenta, using the functional reduction method of [38] (see Eq. (5.21) of this reference).

In Eq. (30), x =
√

r123
r123−r3

and y =
√

r123
r123−r23

, and we refer the reader to [38] for the definitions of the ri variables. It is mentioned in 
[38] that Eq. (30) has been checked to a precision of at least 200 digits and, as F1 can be computed from F2 [6,4], we would like to test 
this relation with our package.

For this purpose we first convert F1 into F2 [6,4], obtaining

F1

(
1,1,

1

2
;2; r3

r123
,

r3

r23

)
=

√
r23

r123
F2

(
3

2
,1,

1

2
;2,

3

2
; r3

r123
,1 − r23

r123

)
(31)

As one can see, in the RHS of Eq. (31) appear integer and half-integer parameters in F2, some of them also having the same value or 
differing by one.

We then proceed on to evaluate the above F2 function using our package, with the chosen values r3 = 1.2, r123 = 1 and r23 = −1.3. 
The LHS expression of Eq. (30) (using Mathematica’s in-built F1 function) and its RHS both give 1.20074 − 1.96823i for these values, 
13
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which is also confirmed by evaluating the LHS and RHS of Eq. (31) using Maple’s in-built F1 and F2 functions. Let us now see what our
AppellF2 package gives. For this, one inputs the following command in a Mathematica notebook, after compiling our package as shown 
in Section 5.2:

In[]:=Block[{r3=1.2,r123=1,r23=-1.3},
Sqrt[r23/r123]AppellF2[3/2,1,1/2,2,3/2,r3/r123,1-r23/r123,10,150]]

Running this code, we get

valid series : {{7},{10},{21},{26},{37},{38}}
convergence rates :{{0.472,7},{0.500,37},{0.539,21},{0.972,10},{1.069,38},{1.22,26}}
selected series : 38

Out[]: 1.20074 -1.96823 I

One sees in the first line of the output that, in the set of our 44 series representations of F2, six different series can in principle be used 
for the evaluation of F2 at this point. These series have series number 7, 10, 21, 26, 37 and 38 (see Table 3 in the appendix). The next 
line of the output gives the convergence rate of these series, from fastest to slowest, while the third line gives the series that has been 
selected for the numerical evaluation of F2. It is thus surprising that the package has selected series # 38, one of the slowest of all series, 
although the package has been coded in order to choose the fastest ones (see Section 5.1). A further analysis reveals that this is due to 
the fact that all the other faster converging series give indeterminate results, due to the exceptional values of the parameters.

Indeed, if for instance one tries to explicitly evaluate series # 7 one obtains

In[]:=Block[{r3=1.2,r123=1,r23=-1.3},
Sqrt[r23/r123]F2evaluate[7,{3/2, 1, 1/2, 2, 3/2,r3/r123,1-r23/r123},25,110]]
Out[]: Indeterminate

In order to see from where the problem comes, we reproduce below the expression of this series (we refer the reader to Eq. (66)
where series # 7 has been denoted S14, see also Table 3) which, as shown in Section 5.2, can also be extracted from the package using 
the F2expose[] command:

S14 = (−y)−a �(c2)�(b2 − a)

�(b2)�(c2 − a)
F 2:1;1

2:0;0

[
a,a − c2 + 1 : b1; c1 − b1

c1,a − b2 + 1 : −; −

∣∣∣∣∣ 1 − x

y
,

1

y

]

+ (−y)−b2
�(c1)�(c2)�(a − b2)�(−a − b1 + b2 + c1)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b2 + c1)

× F̃ 1:1;2
1:0;1

[
a − b2 : b1;b2,b2 − c2 + 1

a + b1 − b2 − c1 + 1 : −; −a + b2 + c1

∣∣∣∣∣ 1 − x,
1

y

]

+ (−y)−b2(1 − x)−a−b1+b2+c1
�(c1)�(c2)�(a + b1 − b2 − c1)

�(a)�(b1)�(c2 − b2)

× F 1:1;2
1:0;1

[ −a + b2 + c1 : c1 − b1;b2,b2 − c2 + 1

−a − b1 + b2 + c1 + 1 : − ; −a + b2 + c1

∣∣∣∣∣ 1 − x,
1 − x

y

]
(32)

It is clear that the overall factors of the second and third terms of S14 have gamma functions which will blow up because a +b1 −b2 −c1 =
0 for our particular choice of parameters (in the first term this also happens but there is a cancellation between the numerator and the 
denominator which, therefore, gives a finite contribution).

In order to get a proper result from the above series, one has to use a limiting procedure while doing the numerical evaluation, by 
adding a small regularization parameter ε to one of the problematic Pochhammer parameters. Indeed the correct result can then be 
obtained by computing the limit when ε goes to 0.

On the case of series # 7 (S14), this can be done in the following simple way with the package (where for convenience ε is written 
as e):

In[]:=Block[{e=.000000001,r3=1.2,r123=1,r23=-1.3},
Sqrt[r23/r123]F2evaluate[7,{3/2 + e, 1, 1/2, 2, 3/2,r3/r123,1-r23/r123},25,110]]
Out[]: 1.20074 - 1.96823 I

By adding smaller and smaller values of ε , one can get a result at the desired precision level. An alternative analytic approach can also be 
performed, as shown in the next section.
14
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5.3.2. A second example
Let us consider another example, again related to the one-loop 3-point Feynman integral, but studied in another reference [39]. There, 

the authors expressed a particular case of this Feynman integral as (see Eq. (3.23) of [39])

I D
3

(
ν1, ν2, ν3; Q 2

1 ,0,0, M2
1, M2

2,0
)

= I{m1,q1}
3 + I{p2,q1}

3 (33)

where

I{m1,q1}
3 =(−1)

D
2

(
−M2

2

) D
2 −ν1−ν2−ν3 �

(
ν1 + ν2 + ν3 − D

2

)
�

( D
2 − ν1 − ν3

)
�(ν2)�

( D
2

)
× F2

(
ν1 + ν2 + ν3 − D

2
, ν1, ν3;1 + ν1 + ν3 − D

2
,

D

2
; M2

1

M2
2

,
Q 2

1

M2
2

)
(34)

I{p2,q1}
3 =(−1)

D
2

(
−M2

1

) D
2 −ν1−ν3

(
−M2

2

)−ν2 �
(
ν1 + ν3 − D

2

)
�

( D
2 − ν3

)
�(ν1)�

( D
2

)
× F2

(
ν2,

D

2
− ν3, ν3;1 + D

2
− ν1 − ν3,

D

2
; M2

1

M2
2

,
Q 2

1

M2
2

)
. (35)

Therefore, this Feyman integral is a linear combination of two Appell F2 functions. Let us compute it for D = 4 −2ε and for the powers 
of the propagators ν1 = ν2 = ν3 = 1.

After substituting these values, the F2 function in I{m1,q1}
3 reads

F2(ε + 1,1,1;ε + 1,2 − ε; x, y) (36)

while the F2 function in I{p2,q1}
3 has the slightly different form

F2(1,1 − ε,1;1 − ε,2 − ε; x, y) (37)

where we have replaced the original arguments of these functions by x and y.
Computing the expansion of the two above F2 functions in powers of the dimensional regularization parameter ε , one obtains [40]

F2(ε + 1,1;1, ε + 1,2 − ε; x, y) =
∞∑

m,n=0

(1)m+n(1)n

(2)n

xm yn

m!n!

+ ε

[
−

∞∑
m,n,p=0

(1)m(1)n(1)p(1)p(2)m+n+p

(2)n(2)p(2)m+p

xm+p+1 yn

m!n!p!

+
∞∑

m,n,p=0

(1)m(1)n(1)p(1)n+p(2)m+n+p

(2)n(2)m+p(2)n+p

xm+p+1 yn

m!n!p!

+
∞∑

m,n,p=0

(1)n(1)p(1)p(2)m+n+p

2(2)p(3)n+p

xm yn+p+1

m!n!p!

+
∞∑

m,n,p=0

(1)n(1)p(2)p(2)m+n+p

4(3)p(3)n+p

xm yn+p+1

m!n!p!

]
+ O (ε2) (38)

and

F2(1,1 − ε,1;1 − ε,2 − ε; x, y) =
∞∑

m,n=0

(1)m+n(1)n

(2)n

xm yn

m!n!

+ ε

∞∑
m,n,p=0

(1)n(1)p(2)p(2)m+n+p

4(3)p(3)n+p

xm yn+p+1

m!n!p! + O (ε2) (39)

where the first terms of both expansions can be written as F2(1, 1, 1; 1, 2; x, y) (note that, in Eqs. (38) and (39), the higher order terms 
in ε contain higher fold series).

Now, in order to find the value of the Appell F2 function using our package, with these exceptional parameters and for the same 
values of the arguments as in the example of the previous section, i.e. x = 1.2 and y = 2.3, one has to perform a suitable limiting 
procedure, because with this new set of Pochhammer parameters, all the series of our package that converge at this particular point are 
now meaningless.

This can indeed be seen from the command

In[]:=Block[{x=1.2,y=2.3},AppellF2[{1,1,1,1,2,x,y},10,150]]
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which gives

valid series : {{7},{10},{21},{26},{37},{38}}
convergence rates : {{0.472,7},{0.500,37},{0.539,21},{0.972,10},{1.069,38},{1.22,26}}
selected series :
Out[]: Indeterminate

As in the previous section, in order to solve this problem one can simply add a small regularization parameter (that we call ε ′ to avoid 
any confusion with the usual dimensional regularization ε) to one of the Pochhammer parameters. However, this time we show how the 
limiting procedure, when ε′ → 0, can be performed analytically. Let us see this explicitly on the examples of two series that are valid 
at our point of interest, namely series # 7 (denoted S14 in Table 3 and shown above in Eq. (32)) and series # 10 (this series has no 
denomination in Table 3 and its expression is not explicitly given in our paper: it has to be downloaded from the AppellF2.wl package 
using the F2expose[] command) where we substitute the first coefficient 1 by 1 + ε ′ . After the substitution in Eq. (32), only two of the 
three series of Eq. (32) survive, and series # 7 reads

S14
.= S14(1 + ε′,1,1,1,2, x, y) = −�(ε′)(1 − x)−ε′

y�(ε′ + 1)

∞∑
m,n=0

(0)m(0)n(1)n

m!n!(1 − ε′)n
(1 − x)m

(
1 − x

y

)n

+ (−y)−ε′−1�(−ε′)
�(1 − ε′)

∞∑
m,n=0

(1)m(0)n(ε
′)m+n

m!n!(1)m+n

(
1 − x

y

)m (
1

y

)n

(40)

At this point we use the fact that (0)m = δm,0, i.e. the Pochhammer parameter (0)m vanishes unless m = 0: (0)0 = 1. After using some 
identities of the gamma functions, the above expression simplifies to

S14 = − (1 − x)−ε′

ε′ y
− (−y)−ε′−1

ε′
∞∑

m=0

(ε′)m

m!
(

1 − x

y

)m

(41)

= − (1 − x)−ε′

ε′ y
+

(−y)−ε′ ( x+y−1
y

)−ε′

ε′ y
(42)

Expanding the above expression in powers of ε′ and taking the ε′ → 0 limit gives

S14 =
− log

(
x+y−1

y

)
+ log(1 − x) − log(−y)

y
(43)

This last result, when evaluated with x = 1.2, y = 2.3, yields −1.09814289, in agreement with what can be derived from the naive 
numerical approach presented in the previous section:

In[]:=Block[{ee=0.000000001,x=1.2,y=2.3},
F2evaluate[7,{1+ ee,1,1,1,2,x,y},25,110]]
Out[]: -1.0981428926

where ε′ (denoted ee in the above box for convenience) is gradually decreased in order that the numerical evaluation gets closer and 
closer to the value that one obtains from the analytic logarithmic analysis.

A similar treatment on series # 10 (denoted as S#10 below) confirms these results. Indeed,

S#10
.= S#10(1 + ε′,1,1,1,2, x, y) = − (−x)−ε′

�(ε′)
y�(ε′ + 1)

∞∑
m,n=0

(0)n(1)n(ε
′)m−n

m!n! y−nxn−m (44)

+
∞∑

m,n=0

�(−ε′)(−y)−ε′−1

�(1 − ε′)
(ε′)m+n

m!n! xm y−n(−y)−m (45)

which can be simplified further as

S#10 =
(−y)−ε′ ( x+y−1

y

)−ε′

ε′ y
−

( x−1
x

)−ε′
(−x)−ε′

ε′ y
(46)

Now, expanding in powers of ε′ and taking its limit to zero, one finds

S#10 =
− log

(
x+y−1

y

)
+ log

( x−1
x

) + log(−x) − log(−y)

y
(47)
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which matches with the result obtained from the series # 7 above.
Once again, we can take a small value of ε′ for the evaluation of the Appell F2 function from the package, by using series # 10. One 

obtains

In[]:=Block[{ee=.000000001,x=1.2,y=2.3},
F2evaluate[10,{1+ ee,1,1,1,2,x,y},25,200]]
Out[]=-1.098142889+3.44991792*10^-9 I

where a tiny spurious imaginary part appears as a numerical artifact.
At last, the whole analysis above can be checked by using the reduction formula [4]

F2(a,b,b2;b, c2; x, y) = (1 − x)−a
2 F1

(
a,b2; c2; y

1 − x

)
(48)

and the fact that [4]

2 F1 (1,1;2; z) = − log(1 − z)

z
(49)

This indeed allows to write

F2(1,1,1;1,2; x, y) = −
log

(
y

x−1 + 1
)

y
(50)

which can be recast into the other logarithmic expressions obtained in Eqs. (43) and (47). This result is also confirmed by the direct 
numerical evaluation of the Gauss hypergeometric function as well as by using the F2 in-built function of Maple.

Hence this clearly validates the correctness of the limiting procedure prescribed above.

5.4. Numerical tests

We have tested the AppellF2.wl package by computing 200 randomly generated points: 100 points with the ranges of random 
values of the Pochhammer parameters a, b1, b2, c1 and c2 and of the x and y variables being [−7, 7], and 100 points with random 
complex values of the Pochhammer parameters (with real and imaginary parts in the range [−7, 7]).

For each of these 200 points, the series representations that are valid there all match numerically. As some of the series converge faster 
than others at a given point, it is sometimes necessary to increase the number of terms in the partial sums for those series that converge 
slowly.

We have also compared these results to the Maple inbuilt AppellF2 function (2022 version). There is a very good agreement for 168 
points. In the 32 remaining points there are 16 points for which Maple does not give a numerical result, and 16 points for which there is a 
discrepancy between Maple’s results and those obtained from the series of AppellF2.wl that are valid at those points. The problematic 
points with real values of the Pochhammer parameters are shown in Table 1 (we do not show the points with complex Pochhammer 
parameters for lack of space). It is obvious that for points #2, #8 and #17 in this table, Maple gives incorrect results, as the numerical 
evaluation of F2 at these points should be real, whereas Maple gives a nonzero imaginary part. Indeed, points #2, #8 and #17 lie in the 
convergence region of the third Euler transformation of F2 (Eq. (55)) which asks for an evaluation of F2 in the convergence region of its 
usual series definition, which has to be real. Furthermore, the prefactor of this Euler transformation is not evaluated on its branch cut 
for the corresponding x and y values and therefore does not yield an imaginary part. This analysis is corroborated for point #2 by the 
numerical evaluation of the Euler integral representation of F2 given in Eq. (2), which confirms the result obtained from AppellF2.wl. 
For points #8 and #17 the integral does not converge, therefore, as a further step, we have chosen to explore the points around point #2, 
for which the Euler integral representation can be used as a cross-check. By putting for instance x = −6.6 (which is closed to the x value 
of point #2) and changing y values while keeping the values of the Pochhammer parameters identical to those of point #2, we find that 
many points are incorrectly evaluated by Maple. For instance, we have tested 25 points in the range −9 < y < −6.7 (inside the ROC of the 
third Euler transform) which all have a non-zero imaginary part when evaluated with Maple, thus differing from the results given by both 
our package and the Euler integral representation, the latter two being in agreement for these 25 points.

Further investigation is needed to better understand the discrepancies for the other points.

6. Conclusions

The Appell F2 function is an important hypergeometric function of two variables, which can be linked to ten of the fourteen complete 
double hypergeometric functions of order two. One of the early needs of evaluating this function numerically, for physical applications, 
can be traced back to [41] (see p. 12 and 13), nearly 60 years ago. Indeed, as recalled in [42] (see references therein for some examples), 
F2 is the most commonly used Appell function in applications.

In this work, we have carried out a comprehensive analysis of this function and built its implementation for Mathematica in the form 
of the AppellF2.wl package which allows one to compute F2 numerically. This package was presented in Section 5 and provided as 
an ancillary file to this paper. Our method starts from the original series definition of F2(a, b1, b2; c1, c2; x, y), which has a limited range 
of validity, on which we apply the transformation theory following Olsson’s approach [17]. In this way, we derived a set of 43 linear 
transformations for F2. These formulas, which are valid for generic (i.e. for nonlogarithmic cases) complex values of the a, b1, b2, c1, c2
parameters, can collectively cover the entire real (x, y) space, as concluded from the study of their regions of convergence, except on a 
few particular points.
B. Ananthanarayan, S. Bera, S. Friot et al. Computer Physics Communications 284 (2023) 108589
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Table 1
In the set of 100 randomly generated real points that we have carefully tested, these are those, with real values 
of the Pochhammer parameters, for which there is a discrepancy between Maple and AppellF2.wl (or no result 
from Maple). Each example, in the table below, is described by a set of values for (a, b1, b2, c1, c2, x, y). The results 
from the package at these points are obtained from partial sums with 300 terms for each summation index m and 
n, with precision of 15 significant digits (the results are however truncated with less significant digits in the table 
to improve its readability). It should also be noted that the order in which the series in the last column are given 
corresponds to the decreasing order of convergence rate. The numerical result is independent of which of the series 
is chosen to evaluate F2, in the sets of the last column.

Serial 
no

Pochhammer parameters 
and x, y

Maple output AppellF2.wl output Series 
number

1

a = −4.49158729455734
b1 = 4.69491717746224

b2 = −2.67898515537678
c1 = 2.54939072003598
c2 = 1.89372308769086

x = −0.657865707164980
y = 1.11972469394233

183.83 − 0.00072i 183.83

40
32
4

15
16

2

a = −5.87056003391116
b1 = 4.33993527730256
b2 = 1.44218908732163
c1 = 3.12652020729955
c2 = 1.52984418542146
x = −6.55177221618387
y = −6.79935054310963

1.171 × 107 + 0.019i 1.171 × 107

34
26
16
35
36

3

a = 3.72583256450429
b1 = 2.11602255447865

b2 = −3.02238392715598
c1 = −4.73946336645648
c2 = 6.30095725032474
x = −2.59888480330968
y = 3.17343904351674

- −0.46 − 0.018i

29
15
43
16
28

4

a = −2.88936562201761
b1 = 3.45488861254925

b2 = −5.90441801674065
c1 = 2.41900748028973

c2 = −4.22539504741494
x = 5.41515683798479

y = −3.96256437728474

- −0.25 − 0.055i

44
11
27
17
16
28

5

a = 3.91112960454197
b1 = 0.943419234377764

b2 = −0.939723628477704
c1 = −6.05906265997090
c2 = −6.10615861109657
x = −2.12080578449250
y = 2.86626245522156

- 5.99 × 1020 + 4.67 × 1018 i

29
15
43
16
28

6

a = 6.31031029746575
b1 = −4.81608319937911
b2 = 0.134215670834948
c1 = −2.75396269319432
c2 = −3.75042638259086
x = −4.08388732316032
y = 1.81702135884373

2.03 × 1013 + 6.45 × 1013 i 3.17 × 1012 − 1.10 × 1011 i

33
16
38
11
6

15

7

a = 4.14277514262421
b1 = −6.43436403118499
b2 = 1.60386793716277

c1 = −6.87730424656771
c2 = −5.67535554477487
x = −0.646110168140300
y = 0.817740014591525

4.05 × 1019 + 5.93 × 1012 i 4.05 × 1019

12
4

13
38
14

8

a = 3.35171139159466
b1 = −0.509725596574174
b2 = −0.913836915342344
c1 = −3.32588271257136
c2 = 0.168816510623319
x = −2.29531801533183
y = −6.06415712186627

−61.36 + 0.01i −61.38

26
10
18
34
35
19
36

9

a = −5.01240784115629
b1 = −4.94200818581766
b2 = 6.99477562102917
c1 = 6.65313744284692

c2 = −1.96099117581162
x = 2.92126097205082

y = −1.31245113310376

6.00 × 106 − 0.00032i 6.00 × 106

44
27
17
28
11
16
18
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Table 1 (continued)

Serial 
no

Pochhammer parameters 
and x, y

Maple output AppellF2.wl output Series 
number

10

a = −0.981118466281753
b1 = 4.55280800772390
b2 = 1.43404196228123
c1 = 2.84087159624645
c2 = 6.00107528411102
x = −5.36758744763326
y = 6.61806381273987

- 7.72 + 0.000027i

43
15
29
10
26
18

11

a = 1.04079628966533
b1 = 0.999310189508378
b2 = 3.59329558885096

c1 = −6.25832679000047
c2 = −4.02905455852754

x = 1.81023829524087
y = 2.00777521482951

−7.72 × 1016 + 1.23 × 1018 i −122497.46 − 140113.63i

37
38
7

28

12

a = −3.26985266196408
b1 = 0.380743118208180
b2 = 2.02474976684470

c1 = −1.31514385444273
c2 = .83951473440144
x = 5.35725173812456

y = −4.07499617412362

- 304.17 + 38.11i

44
27
17
11
16
28

13

a = −6.17654955276504
b1 = 3.21556912170448

b2 = −2.26411156484076
c1 = 5.34290089035759

c2 = −2.32233932454304
x = 3.61217179206409

y = −2.53790197142651

- 158.84 + 62.05i

44
27
17
11
28
16

14

a = 2.31197860013321
b1 = −0.666975465151342
b2 = −5.24476192259412
c1 = −3.16508771091695
c2 = 6.55592102157901
x = 6.31953155096413

y = −6.36985521062664

- 7322.40 − 12654.38i

18
26
17
27

15

a = 1.16647934045583
b1 = −2.56252103706461
b2 = 5.52623207935986
c1 = 6.58905357119552
c2 = 5.53232577263389
x = −2.05715925643916
y = 3.15407000645672

- −0.23 + 0.13i

43
15
29
10
18
26

16

a = 4.26170736723804
b1 = 2.41512776824820

b2 = −3.60520211982802
c1 = −2.44037707125234
c2 = −3.72147640617149
x = −2.08902304321602
y = 4.40568570030866

−7.46 × 1013 + 7.54 × 1013 i −13729.68 + 34149.43i

10
43
18
26
29
15

17

a = −3.36021432698409
b1 = 6.63749440272489

b2 = −6.58339249087694
c1 = −2.02579013838810
c2 = 6.18081281041145
x = −4.71272838790961
y = −6.11479355971970

6.03 × 109 + 2.74 × 109 i −3.20 × 106

34
26
10
18
35
36

In fact, 18 formulas in this set of 44 series representations of F2 are sufficient for this covering, but we have incorporated all the 44 in 
the AppellF2.wl package in order to improve its convergence efficiency. We have also carefully studied the behavior of these formulas 
on their branch cuts and we have given their expressions there in a consistent way.

The usage of the package has been explained in Section 5 where the numerical checks have also been carried out, as described in 
Section 5.4, to confirm the consistency of our results, internally and also by a comparison with the existing AppellF2 inbuilt function of 
Maple with which we find disagreement at several instances, as shown in Table 1.

Let us note here that the AppellF2.wl package can be used to develop a Mathematica realization of the ten second order complete 
hypergeometric functions in two variables which F2 is linked to, which is left for future work. As another extension of the present study, 
it would be natural to consider, in a subsequent version of the AppellF2.wl package, the logarithmic situation where some of the 
Pochhammer parameters can be identical (although these can be dealt with already in the present version, but not always in a direct way, 
see Section 5.3), as well as the case were x and y can take complex values.
19
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Table 2
Conditions of rewriting of the possible prefactors 
that appear in the 44 series representations of F2

used in the AppellF2.wl package.

Argument of the prefactor Condition

x
y−1 , x+y−1

y−1 x − y + 1 > 0

− y
x+y−1 , x−1

x+y−1 x − y − 1 > 0
y

x−1 , x+y−1
x−1 −x + y + 1 > 0

− x
x+y−1 , y−1

x+y−1 −x + y − 1 > 0
1

1−x , 1
1−y , − x

x−1 , − y
y−1 False
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Appendix A. Series representations of the Appell F2 function

We list in this Appendix the 18 series representations Si, (i = 1, ..., 18) of F2 that can collectively cover the (x, y) real space and we 
plot their regions of convergence. The remaining 26 series used in the package can be obtained from the latter by calling the F2expose[]
command, as explained in Section 5.2. We refer the reader to Eqs. (11) and (12) for the notation of Kampé de Fériet series and their mirror 
partners used in the expressions presented in this appendix.

In the following 18 formulas (whose corresponding denomination in the AppellF2.wl package are listed in Table 3), which can also 
be seen as functional relations, the involved series appear in general multiplied by prefactors which have the form of powers of linear 
rational functions of x and y whose exponent can be fractional. It thus happens in general that these prefactors are multivalued and, if not 
carefully considered, this can lead to inconsistencies between the different formulas that are valid at the same points. Therefore, to obtain 
a matching it is necessary to proceed to the rewriting of some of the prefactors (as this has been performed for the Gauss 2 F1 case in 
[43]) in a way which is equivalent everywhere except on the branch cuts where the rewriting gives the expected behavior, in agreement 
with the conventions of Mathematica.

To perform this rewriting of the prefactors, which allows to select their “right” values, we have defined a piecewise function, denoted 
by brackets, as follows:

〈
( f (x, y))a〉 =

{
( f (x, y))a if Condition(

1
f (x,y)

)−a
else

(51)

where a is any linear combination of Pochhammer parameters. The conditions for all the prefactors that appear in the expressions of the 
44 series representations used in the AppellF2.wl package are summarized in Table 2.

As an example,

〈(
x

y − 1

)−a−b2+c2
〉

=

⎧⎪⎨
⎪⎩

(
x

y−1

)−a−b2+c2
if x − y + 1 > 0(

y−1
x

)a+b2−c2
else

(52)

Series representation S1

S1 is the original series

S1 = F2(a,b1,b2; c1, c2; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n

(c1)m(c2)n

xm

m!
yn

n! (53)

whose region of convergence is |x| + |y| < 1 (see Fig. 9 (Left)).

Series representation S2

S2 is one of the Euler transformations of F2.

S2 = (1 − y)−a F2

(
a,b1, c2 − b2; c1, c2; x

1 − y
,

y

y − 1

)
(54)
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Table 3
Denomination of the 18 series representations of the appendix in the AppellF2.wl package. The 
remaining 26 series representations used in the package can be obtained by using the F2Expose[]
command shown in Section 5.2, using the series numbers in (1,...,44) that are not given in the right 
column of this table.

Series representations in the appendix Series representations # in the AppellF2.wl package

S1 1
S2 23
S3 34

S4 14
S5 25
S6 4

S7 15
S8 37
S9 5

S10 27
S11 38
S12 6

S13 17
S14 7
S15 29

S16 40
S17 8
S18 9

Fig. 9. Convergence regions of S1 (Left), S2 (Middle) and S3 (Right) for real values of x and y.

Region of convergence: | x
1−y | + | y

y−1 | < 1 (see Fig. 9 (Middle)).

Series representation S3

S3 is another Euler transformation of F2.

S3 = (1 − x − y)−a F2

(
a, c1 − b1, c2 − b2; c1, c2; x

x + y − 1
,

y

x + y − 1

)
(55)

Region of convergence: | x
x+y−1 | + | y

x+y−1 | < 1 (see Fig. 9 (Right)).

Series representation S4

S4 is obtained by applying Eq. (16) on the first Euler transformation of F2 (first line of Eq. (7), i.e. S2).

S4 = (1 − x)−a

〈(
1

1 − x

)−a+b1
〉

�(c1)�(a − b1)

�(a)�(c1 − b1)
F̃ 1:1;2

1:0;1

[
c1 − a : b1;b2,a − c1 + 1

b1 − a + 1 : −; c2

∣∣∣∣∣ 1

1 − x
, y

]

+ (1 − x)−a �(c1)�(b1 − a)

�(b1)�(c1 − a)
F 1:1;2

1:0;1

[
a : c1 − b1;b2,a − c1 + 1

a − b1 + 1 : − ; c2

∣∣∣∣∣ 1

1 − x
,

y

1 − x

]
(56)

Region of convergence: |1 − x| > 1 ∧ |y| < 1 (see Fig. 10 (Left)).
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Fig. 10. Convergence regions of S4 (Left), S5 (Middle) and S6 (Right) for real values of x and y.

Series representation S5

S5 is obtained by applying Eq. (16) on the second Euler transformation of F2 (second line of Eq. (7)).

S5 = (1 − y)−a �(c1)�(−a − b1 + c1)

�(c1 − a)�(c1 − b1)
F 1:1;2

1:0;1

[
a : b1; c2 − b2,a − c1 + 1

a + b1 − c1 + 1 : −; c2

∣∣∣∣∣ x + y − 1

y − 1
,

y

y − 1

]

+ (1 − y)−a

〈(
x + y − 1

y − 1

)−a−b1+c1
〉

�(c1)�(a + b1 − c1)

�(a)�(b1)

× F̃ 1:1;2
1:0;1

[
c1 − a : c1 − b1; c2 − b2,a − c1 + 1

−a − b1 + c1 + 1 : − ; c2

∣∣∣∣∣ x + y − 1

y − 1
,

y

x + y − 1

]
(57)

Region of convergence: | y
x+y−1 | < 1 ∧ | x+y−1

y−1 | < 1 (see Fig. 10 (Middle)).

Series representation S6

S6 is Eq. (21).

S6 = �(c2)�(−a − b2 + c2)

�(c2 − a)�(c2 − b2)
F 1:2;1

1:1;0

[
a : a − c2 + 1,b1;b2

a + b2 − c2 + 1 : c1 ; −

∣∣∣∣∣ x,1 − y

]

+ (1 − y)−a−b2+c2

〈(
x

y − 1

)−a−b2+c2
〉

�(c1)�(c2)�(a + b2 − c2)�(−a + b1 − b2 + c2)

�(a)�(b1)�(b2)�(−a − b2 + c1 + c2)

× F̃ 2:1;1
2:0;0

[
a + b2 − c2,a + b2 − c2 − c1 + 1 : b2; c2 − b2

b2,a − b1 + b2 − c2 + 1 : −; −

∣∣∣∣∣ 1 − y

x
, x

]

+
〈(

x

y − 1

)−b1
〉

(1 − y)−a−b2+c2
�(c1)�(c2)�(a − b1 + b2 − c2)

�(a)�(b2)�(c1 − b1)

× F 1:2;1
1:1;0

[ −a + b1 + c2 : b1,b1 − c1 + 1; c2 − b2

−a + b1 − b2 + c2 + 1 : −a + b1 + c2 ; −

∣∣∣∣∣ 1 − y

x
,1 − y

]
(58)

Region of convergence: | 1−y
x | < 1 ∧ |x| < 1 (see Fig. 10 (Right)).

Series representation S7

S7 is obtained by applying Eq. (21), i.e. S6, on the first Euler transformation of F2 (first line of Eq. (7), i.e. S2).

S7 = (1 − x)−a �(c2)�(−a − b2 + c2)

�(c2 − a)�(c2 − b2)
F 1:2;1

1:1;0

[
a : a − c2 + 1, c1 − b1;b2

a + b2 − c2 + 1 : c1 ; −

∣∣∣∣∣ x

x − 1
,

x + y − 1

x − 1

]

+ (1 − x)−a

〈(
− x

x + y − 1

)−a−b2+c2
〉〈(

x + y − 1

x − 1

)−a−b2+c2
〉

�(c1)�(c2)�(a + b2 − c2)

�(a)�(b2)�(c1 − b1)
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× �(−a − b1 − b2 + c1 + c2)

�(−a − b2 + c1 + c2)
F̃ 2:1;1

2:0;0

[
a + b2 − c2,a + b2 − c1 − c2 + 1 : b2; c2 − b2

a + b1 + b2 − c1 − c2 + 1,b2 : −; −

∣∣∣∣∣ x + y − 1

x
,

x

x − 1

]

+ (1 − x)−a

〈(
x + y − 1

x − 1

)−a−b2+c2
〉〈(

− x

x + y − 1

)b1−c1
〉

�(c1)�(c2)�(a + b1 + b2 − c1 − c2)

�(a)�(b1)�(b2)

× F 1:2;1
1:1;0

[ −a − b1 + c1 + c2 : 1 − b1, c1 − b1 ; c2 − b2

−a − b1 − b2 + c1 + c2 + 1 : −a − b1 + c1 + c2; −

∣∣∣∣∣ x + y − 1

x
,

x + y − 1

x − 1

]
(59)

Region of convergence: | x+y−1
x | < 1 ∧ | x

x−1 | < 1 (see Fig. 11 (Left)).

Series representation S8

S8 is obtained by applying Eq. (21), i.e. S6, on the third Euler transformation of F2 (third line of Eq. (7), i.e. S3).

S8 = (−x − y + 1)−a

〈(
− x

x − 1

)b2−a
〉〈(

x − 1

x + y − 1

)b2−a
〉

�(c1)�(c2)�(a − b2)�(−a − b1 + b2 + c1)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b2 + c1)

× F̃ 2:1;1
2:0;0

[
a − b2,a − b2 − c1 + 1 : c2 − b2;b2

c2 − b2,a + b1 − b2 − c1 + 1 : − ; −

∣∣∣∣∣ x − 1

x
,

x

x + y − 1

]

+ (−x − y + 1)−a �(c2)�(b2 − a)

�(b2)�(c2 − a)
F 1:2;1

1:1;0

[
a : a − c2 + 1, c1 − b1; c2 − b2

a − b2 + 1 : c1 ; −

∣∣∣∣∣ x

x + y − 1
,

x − 1

x + y − 1

]

+ (−x − y + 1)−a

〈(
− x

x − 1

)b1−c1
〉〈(

x − 1

x + y − 1

)b2−a
〉

�(c1)�(c2)�(a + b1 − b2 − c1)

�(a)�(b1)�(c2 − b2)

× F 1:2;1
1:1;0

[ −a − b1 + c1 + c2 : 1 − b1, c1 − b1 ;b2

−a − b1 + b2 + c1 + 1 : −a − b1 + c1 + c2; −

∣∣∣∣∣ x − 1

x
,

x − 1

x + y − 1

]
(60)

Region of convergence: | x−1
x | < 1 ∧ | x

x+y−1 | < 1 (see Fig. 11 (Middle)).

Series representation S9

S9 is the symmetrical partner of Eq. (21) obtained from Eq. (6).

S9 = (1 − x)−a−b1+c1

〈(
y

x − 1

)−b2
〉

�(c1)�(c2)�(a + b1 − b2 − c1)

�(a)�(b1)�(c2 − b2)

× F 1:1;2
1:0;1

[ −a + b2 + c1 : c1 − b1;b2,b2 − c2 + 1

−a − b1 + b2 + c1 + 1 : − ; −a + b2 + c1

∣∣∣∣∣ 1 − x,
1 − x

y

]

+ (1 − x)−a−b1+c1

〈(
y

x − 1

)−a−b1+c1
〉

�(c1)�(c2)�(a + b1 − c1)�(−a − b1 + b2 + c1)

�(a)�(b1)�(b2)�(−a − b1 + c1 + c2)

× F̃ 2:1;1
2:0;0

[
1 − b1,−a − b1 + b2 + c1 : c1 − b1;b1

−a − b1 + c1 + 1,−a − b1 + c1 + c2 : − ; −

∣∣∣∣∣ y,
1 − x

y

]

+ �(c1)�(−a − b1 + c1)

�(c1 − a)�(c1 − b1)
F 1:1;2

1:0;1

[
a : b1;b2,a − c1 + 1

a + b1 − c1 + 1 : −; c2

∣∣∣∣∣ 1 − x, y

]
(61)

Region of convergence: | 1−x
y | < 1 ∧ |y| < 1 (see Fig. 11 (Right)).

Series representation S10

S10 is obtained by applying the symmetrical partner Eq. (21), i.e. S9, on the second Euler transformation of F2 (second line of Eq. (7)).

S10 = (1 − y)−a

〈(
− y

x + y − 1

)−a−b1+c1
〉〈(

x + y − 1

y − 1

)−a−b1+c1
〉

�(c1)�(c2)�(a + b1 − c1)

�(a)�(b1)�(c2 − b2)

× �(−a − b1 − b2 + c1 + c2)

�(−a − b1 + c1 + c2)
F̃ 2:1;1

2:0;0

[
1 − b1,−a − b1 − b2 + c1 + c2 : c1 − b1;b1

−a − b1 + c1 + 1,−a − b1 + c1 + c2 : − ; −

∣∣∣∣∣ y

y − 1
,

x + y − 1

y

]

+ (1 − y)−a �(c1)�(−a − b1 + c1)

�(c1 − a)�(c1 − b1)
F 1:1;2

1:0;1

[
a : b1;a − c1 + 1, c2 − b2

a + b − c + 1 : −; c

∣∣∣∣∣ x + y − 1

y − 1
,

y

y − 1

]

1 1 2
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Fig. 11. Convergence regions of S7 (Left), S8 (Middle) and S9 (Right) for real values of x and y.

+ (1 − y)−a

〈(
x + y − 1

y − 1

)−a−b1+c1
〉〈(

− y

x + y − 1

)b2−c2
〉

�(c1)�(c2)�(a + b1 + b2 − c1 − c2)

�(a)�(b1)�(b2)

× F 1:1;2
1:0;1

[ −a − b2 + c1 + c2 : c1 − b1; 1 − b2, c2 − b2

−a − b1 − b2 + c1 + c2 + 1 : − ;−a − b2 + c1 + c2

∣∣∣∣∣ x + y − 1

y − 1
,

x + y − 1

y

]
(62)

Region of convergence: | x+y−1
y | < 1 ∧ | y

y−1 | < 1 (see Fig. 12 (Left)).

Series representation S11

S11 is obtained by applying the symmetrical partner Eq. (21), i.e. S9, on the third Euler transformation of F2 (third line of Eq. (7), 
i.e. S3).

S11 = (−x − y + 1)−a

〈(
y

1 − y

)b1−a
〉〈(

y − 1

x + y − 1

)b1−a
〉

�(c1)�(c2)�(a − b1)�(−a + b1 − b2 + c2)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b1 + c2)

× F̃ 2:1;1
2:0;0

[
b1 − c1 + 1,−a + b1 − b2 + c2 : b1; c1 − b1

−a + b1 + 1,−a + b1 + c2 : −; −

∣∣∣∣∣ y

x + y − 1
,

y − 1

y

]

+ (−x − y + 1)−a �(c1)�(b1 − a)

�(b1)�(c1 − a)
F 1:1;2

1:0;1

[
a : c1 − b1;a − c1 + 1, c2 − b2

a − b1 + 1 : − ; c2

∣∣∣∣∣ y − 1

x + y − 1
,

y

x + y − 1

]

+ (−x − y + 1)−a

〈(
y

1 − y

)b2−c2
〉〈(

y − 1

x + y − 1

)b1−a
〉

�(c1)�(c2)�(a − b1 + b2 − c2)

�(a)�(b2)�(c1 − b1)

× F 1:1;2
1:0;1

[ −a − b2 + c1 + c2 : b1; 1 − b2, c2 − b2

−a + b1 − b2 + c2 + 1 : −;−a − b2 + c1 + c2

∣∣∣∣∣ y − 1

x + y − 1
,

y − 1

y

]
(63)

Region of convergence: | y−1
y | < 1 ∧ | y

x+y−1 | < 1 (see Fig. 12 (Middle)).

Series representation S12

S12 is Eq. (29).

S12 = (−x)−a �(c1)�(b1 − a)

�(b1)�(c1 − a)
F 2:1;1

2:0;0

[
a,a − c1 + 1 : c2 − b2;b2

c2,a − b1 + 1 : − ; −

∣∣∣∣∣ 1

x
,

1 − y

x

]

+ (−x)−b1
�(c1)�(c2)�(a − b1)�(−a + b1 − b2 + c2)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b1 + c2)
F̃ 1:2;1

1:1;0

[−a + b1 − b2 + c2 : b1,b1 − c1 + 1;b2

−a + b1 + 1 : −a + b1 + c2 ; −

∣∣∣∣∣ 1

x
,1 − y

]

+ (−x)−b1(1 − y)−a+b1−b2+c2
�(c1)�(c2)�(a − b1 + b2 − c2)

�(a)�(b2)�(c1 − b1)

× F 1:2;1
1:1;0

[ −a + b1 + c2 : b1,b1 − c1 + 1; c2 − b2

−a + b1 − b2 + c2 + 1 : −a + b1 + c2 ; −

∣∣∣∣∣ 1 − y

x
,1 − y

]
(64)

Region of convergence: | 1 | < 1 ∧ |1 − y| < 1 (see Fig. 12 (Right)).
x

24



B. Ananthanarayan, S. Bera, S. Friot et al. Computer Physics Communications 284 (2023) 108589
Fig. 12. Convergence regions of S10 (Left), S11 (Middle) and S12 (Right) for real values of x and y.

Series representation S13

S13 is obtained by applying Eq. (29), i.e. S12, on the first Euler transformation of F2 (first line of Eq. (7), i.e. S2).

S13 = (1 − x)−a

〈(
− x

x − 1

)−a
〉

�(c1)�(−a − b1 + c1)

�(c1 − a)�(c1 − b1)
F 2:1;1

2:0;0

[
a,a − c1 + 1 : c2 − b2;b2

c2,a + b1 − c1 + 1 : − ; −

∣∣∣∣∣ x − 1

x
,

x + y − 1

x

]

+ (1 − x)−a

〈(
− x

x − 1

)b1−c1
〉

�(c1)�(c2)�(a + b1 − c1)�(−a − b1 − b2 + c1 + c2)

�(a)�(b1)�(c2 − b2)�(−a − b1 + c1 + c2)

× F̃ 1:2;1
1:1;0

[−a − b1 − b2 + c1 + c2 : 1 − b1, c1 − b1 ;b2

−a − b1 + c1 + 1 : −a − b1 + c1 + c2; −

∣∣∣∣∣ x − 1

x
,

x + y − 1

x − 1

]

+ (1 − x)−a

〈(
− x

x − 1

)b1−c1
〉〈(

x + y − 1

x − 1

)−a−b1−b2+c1+c2
〉

�(c1)�(c2)�(a + b1 + b2 − c1 − c2)

�(a)�(b1)�(b2)

× F 1:2;1
1:1;0

[ −a − b1 + c1 + c2 : 1 − b1, c1 − b1 ; c2 − b2

−a − b1 − b2 + c1 + c2 + 1 : −a − b1 + c1 + c2; −

∣∣∣∣∣ x + y − 1

x
,

x + y − 1

x − 1

]
(65)

Region of convergence: | x−1
x | < 1 ∧ | x+y−1

x−1 | < 1 (see Fig. 13 (Left)).

Series representation S14

S14 is the symmetrical partner of Eq. (29) obtained from Eq. (6).

S14 = (−y)−a �(c2)�(b2 − a)

�(b2)�(c2 − a)
F 2:1;1

2:0;0

[
a,a − c2 + 1 : b1; c1 − b1

c1,a − b2 + 1 : −; −

∣∣∣∣∣ 1 − x

y
,

1

y

]

+ (−y)−b2
�(c1)�(c2)�(a − b2)�(−a − b1 + b2 + c1)

�(a)�(c1 − b1)�(c2 − b2)�(−a + b2 + c1)
F̃ 1:1;2

1:0;1

[
a − b2 : b1;b2,b2 − c2 + 1

a + b1 − b2 − c1 + 1 : −; −a + b2 + c1

∣∣∣∣∣ 1 − x,
1

y

]

+ (−y)−b2(1 − x)−a−b1+b2+c1
�(c1)�(c2)�(a + b1 − b2 − c1)

�(a)�(b1)�(c2 − b2)

× F 1:1;2
1:0;1

[ −a + b2 + c1 : c1 − b1;b2,b2 − c2 + 1

−a − b1 + b2 + c1 + 1 : − ; −a + b2 + c1

∣∣∣∣∣ 1 − x,
1 − x

y

]
(66)

Region of convergence: |1 − x| < 1 ∧ |y| > 1 (see Fig. 13 (Middle)).

Series representation S15

S15 is obtained by applying the symmetrical partner of Eq. (29), i.e. S14, on the second Euler transformation of F2 (second line of 
Eq. (7)).

S15 = (1 − y)−a

〈(
− y

y − 1

)−a
〉

�(c2)�(−a − b2 + c2)

�(c2 − a)�(c2 − b2)
F 2:1;1

2:0;0

[
a,a − c2 + 1 : b1; c1 − b1

c ,a + b − c + 1 : −; −

∣∣∣∣∣ x + y − 1

y
,

y − 1

y

]

1 2 2
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Fig. 13. Convergence regions of S13 (Left), S14 (Middle) and S15 (Right) for real values of x and y.

+ (1 − y)−a

〈(
− y

y − 1

)b2−c2
〉

�(c1)�(c2)�(a + b2 − c2)�(−a − b1 − b2 + c1 + c2)

�(a)�(b2)�(c1 − b1)�(−a − b2 + c1 + c2)

× F̃ 1:1;2
1:0;1

[
a + b2 − c2 : b1; 1 − b2, c2 − b2

a + b1 + b2 − c1 − c2 + 1 : −;−a − b2 + c1 + c2

∣∣∣∣∣ x + y − 1

y − 1
,

y − 1

y

]

+ (1 − y)−a

〈(
− y

y − 1

)b2−c2
〉〈(

y − 1

x + y − 1

)a+b1+b2−c1−c2
〉

�(c1)�(c2)�(a + b1 + b2 − c1 − c2)

�(a)�(b1)�(b2)

× F 1:1;2
1:0;1

[ −a − b2 + c1 + c2 : c1 − b1; 1 − b2, c2 − b2

−a − b1 − b2 + c1 + c2 + 1 : − ;−a − b2 + c1 + c2

∣∣∣∣∣ x + y − 1

y − 1
,

x + y − 1

y

]
(67)

Region of convergence: | y−1
y | < 1 ∧ | x+y−1

y−1 | < 1 (see Fig. 13 (Right)).

Series representation S16

S16 is obtained by applying the symmetrical partner of Eq. (29), i.e. S14, on the third Euler transformation of F2 (third line of Eq. (7), 
i.e. S3).

S16 = (−x − y + 1)−a

〈(
− y

x + y − 1

)−a
〉

�(c2)�(−a − b2 + c2)

�(c2 − a)�(c2 − b2)

× F 2:1;1
2:0;0

[
a,a − c2 + 1 : c1 − b1;b1

c1,a + b2 − c2 + 1 : − ; −

∣∣∣∣∣ y − 1

y
,

x + y − 1

y

]

+ (−x − y + 1)−a

〈(
− y

x + y − 1

)b2−c2
〉

�(c1)�(c2)�(a + b2 − c2)�(−a + b1 − b2 + c2)

�(a)�(b1)�(b2)�(−a − b2 + c1 + c2)

× F̃ 1:1;2
1:0;1

[
a + b2 − c2 : c1 − b1; 1 − b2, c2 − b2

a − b1 + b2 − c2 + 1 : − ;−a − b2 + c1 + c2

∣∣∣∣∣ y − 1

x + y − 1
,

x + y − 1

y

]

+ (−x − y + 1)−a

〈(
− y

x + y − 1

)b2−c2
〉〈(

y − 1

x + y − 1

)−a+b1−b2+c2
〉

�(c1)�(c2)�(a − b1 + b2 − c2)

�(a)�(b2)�(c1 − b1)

× F 1:1;2
1:0;1

[ −a − b2 + c1 + c2 : b1; 1 − b2, c2 − b2

−a + b1 − b2 + c2 + 1 : −;−a − b2 + c1 + c2

∣∣∣∣∣ y − 1

x + y − 1
,

y − 1

y

]
(68)

Region of convergence: | x+y−1
y | < 1 ∧ | y−1

x+y−1 | < 1 (see Fig. 14 (Left)).

Series representation S17

S17 is Eq. (9).

S17 = (−y)−a �(c2)�(b2 − a)

�(b2)�(c2 − a)
F 2:1;0

1:1;0

[
a,a − c2 + 1 : b1;−
a − b + 1 : c ;−−

∣∣∣∣∣ − x

y
,

1

y

]

2 1
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Fig. 14. Convergence regions of S16 (Left), S17 (Middle) and S18 (Right) for real values of x and y.

+ (−y)−b2
�(c2)�(a − b2)

�(a)�(c2 − b2)
H2

(
a − b2,b1,b2,b2 − c2 + 1; c1; x,− 1

y

)
(69)

Region of convergence: |x| < 1 ∧ | − 1
y | < 1 ∧ (|x| + 1)| − 1

y | < 1 (see Fig. 14 (Middle)).

Series representation S18

S18 is the symmetrical partner of Eq. (9) obtained from Eq. (6).

S18 = (−x)−a �(c1)�(b1 − a)

�(b1)�(c1 − a)
F 2:1;0

1:1;0

[
a,a − c1 + 1 : b2;−
a − b1 + 1 : c2;−−

∣∣∣∣∣ − y

x
,

1

x

]

+ (−x)−b1
�(c1)�(a − b1)

�(a)�(c1 − b1)
H2

(
a − b1,b2,b1,b1 − c1 + 1; c2; y,−1

x

)
(70)

Region of convergence: |y| < 1 ∧ 1
|x| < 1 ∧ |y|+1

|x| < 1 (see Fig. 14 (Right)).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cpc .2022 .108589.
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