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Abstract
We study the disconnected entanglement entropy (DEE) of a Kitaev chain in which the chemical
potential is periodically modulated with δ-function pulses within the framework of Floquet
theory. For this driving protocol, the DEE of a sufficiently large system with open boundary
conditions turns out to be integer-quantized, with the integer being equal to the number of
Majorana edge modes localized at each edge of the chain generated by the periodic driving,
thereby establishing the DEE as a marker for detecting Floquet Majorana edge modes.
Analyzing the DEE, we further show that these Majorana edge modes are robust against weak
spatial disorder and temporal noise. Interestingly, we find that the DEE may, in some cases, also
detect the anomalous edge modes which can be generated by periodic driving of the
nearest-neighbor hopping, even though such modes have no topological significance and not
robust against spatial disorder. We also probe the behavior of the DEE for a kicked Ising chain
in the presence of an integrability breaking interaction which has been experimentally realized.

Keywords: entanglement entropy, fermionic system, Floquet driving

(Some figures may appear in colour only in the online journal)

1. Introduction

There is a recent upsurge in studies of topological phases of
matter [1–6]. These phases are robust against weak perturba-
tions due to the existence of a bulk gap, which does not van-
ish unless the system crosses a gapless quantum critical point
(QCP). In addition, a topological phase is characterized by a
topological invariant, which remains constant under continu-
ous variations of parameters as long as the system remains in
the same phase and becomes ill-defined at QCPs which separ-
ate different phases.

∗
Author to whom any correspondence should be addressed.

In this regard, the Kitaev chain of spinless fermions (a p-
wave superconducting system in one dimension) is a paradig-
matic model that hosts symmetry protected topologically non-
trivial and topologically trivial phases separated by a QCP [7,
8]. The topological properties of a Kitaev chain with peri-
odic boundary conditions are characterized by a topological
invariant known as the winding number. The winding num-
ber assumes non-zero integer-quantized values in the topo-
logically non-trivial phase and vanishes in the topologically
trivial phase. For a system with open boundary conditions, the
topologically non-trivial phase of the model is manifested in
the existence of zero-energy Majorana modes localized at the
edges; on the contrary, the topologically trivial phase does not
host Majorana edge modes. The exact solvability of the model
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has been extensively exploited to understand its equilibrium as
well as out-of-equilibrium properties [7–17].

Concerning the non-equilibrium dynamics of closed
quantum systems, periodically driven systems have been
explored both in the context of thermalization [18–30] and
emergent topology [10, 11, 15, 17, 31–59] (for recent review
articles, see references [17, 21, 26, 29]). For a periodically
driven Kitaev chain with open boundary conditions, it has
been shown that Majorana edge modes (zero and π-modes)
can be dynamically generated [11, 15, 17] even though the
instantaneous Hamiltonian may remain topologically trivial at
all times. In fact, it is the effective Floquet Hamiltonian [60]
that determines the non-trivial topology (i.e. the existence of
Majorana edge modes) of a driven chain. It has been observed
that the number of such dynamical edge modes increases as
the drive frequency is reduced. Further, a strong (having a suf-
ficiently large amplitude) periodic modulation of the hopping
parameter can produce some ‘anomalous’ edge modes with
non-zero Floquet quasienergies [15]. However, the anomalous
edge modes are not Floquet Majorana modes. These modes
have no topological significance and topological invariants
like the winding number miss them completely. Furthermore,
as we elaborate in this work, thesemodes are not robust against
weak spatial disorder.

There have been several attempts to characterize the out-
of-equilibrium topology of one-dimensional systems (for
instance, the Kitaev chain and the Su-Schrieffer-Heeger chain)
using the dynamical winding number calculated from the
instantaneous wave function of the system [61–63]. In a peri-
odically driven Kitaev chain, the corresponding winding num-
ber [11] is calculated from the Floquet Hamiltonian (for a
review, see [17]). This winding number correctly predicts the
number of the Floquet Majorana modes (zero modes and π-
modes) for a Kitaev chain with a periodically driven chem-
ical potential. However, the dynamical winding number fails
to detect the anomalous edgemodes which arise when the hop-
ping parameter is driven strongly [15].

Recently, the notion of a disconnected entanglement
entropy (DEE) [64–66] has been introduced which plays a
role similar to a topological invariant in an equilibrium Kit-
aev chain with an open boundary condition. It is worth noting
that unlike the winding number, the DEE is not a bulk topo-
logical invariant. Rather, it extracts the entanglement between
the Majorana modes localized at the edges. Although the DEE
can take any real value by its construction, it turns out to be
integer-quantized for a short-ranged Kitaev chain in the topo-
logical phase, where the integer is the number of edge modes
localized at each edge of the chain [64].

In this paper, we explore the efficacy of the DEE in detect-
ing the dynamically generated edge modes for a periodic-
ally driven Kitaev chain. We study the variation of the DEE
with the drive frequency for a periodic modulation of the
chemical potential with δ-function pulses. Our study estab-
lishes that the DEE correctly predicts the number of Floquet
Majorana edge modes. We also investigate the applicability
of the DEE as a marker of anomalous edge modes appearing
due to a periodic modulation of the nearest-neighbor hopping
amplitude.

It is also noteworthy that the verification of topological
properties of periodically driven systems are experimentally
more viable compared to undriven systems. Recently, a peri-
odically driven Ising model in the presence of an additional
site-dependent random longitudinal field has been imple-
mented experimentally using an array of superconducting
qubits [67]. It is important to note that in the integrable
limit (when the longitudinal field is absent), a transverse
field Ising model can be mapped to a Kitaev chain through
Jordan–Wigner transformation [68]. Although the Jordan–
Wigner transformation is non-local, there is no non-local term
consisting of long string operators in the Jordan–Wigner trans-
formed Ising Hamiltonian with the open boundary conditions
(unlike with the periodic boundary conditions) and thus it
works fine with the open boundary conditions [69]. In the
present work, we not only probe how these Floquet Majorana
modes are manifested in the DEE, but also we illustrate the
robustness of these modes against weak spatial disorder and
temporal noise.

The rest of the paper is organized as follows: the conven-
tional definition of the DEE is introduced in section 2. In
section 3, we briefly recapitulate a short-ranged Kitaev chain
of spinless fermions and its topological properties. The beha-
vior of the DEE for a Kitaev chain with periodically modu-
lated chemical potential is explored in section 4. We analyze
the effects of spatial disorder and temporal noise in the peri-
odic driving on the DEE in section 5. In section 6, we study
the situation where the nearest-neighbor hopping amplitude is
periodically modulated and address the question of whether
the DEE can detect the anomalous edge modes. In section 7,
probing the DEE, we analyze the robustness of the Floquet
Majorana modes against an integrability breaking interaction
in a periodically driven Ising model, as studied experimentally
in [67]. Concluding remarks are presented in section 8. The
definition of the winding number of a short-range (static) Kit-
aev chain is given in appendix A. The methods used for com-
puting the DEE from Floquet Hamiltonian are explained in
appendix B.We then briefly compare theDEEwith the dynam-
ical winding number derived from the Floquet Hamiltonian for
a periodic variation of the chemical potential in appendix C.
In appendix D, we provide an analytical derivation of the fre-
quencies at which Floquet quasienergy gap becomes zero or
±π/T, choosing the examples of a periodic driving of the hop-
ping amplitude and an experimentally relevant driving pro-
tocol (discussed in section 7) for an Ising chain.

2. DEE

In this section, we briefly introduce the notion of DEE [64,
65]. To this end, we first consider a composite system S that
is in a pure state and is described by a density matrix ρ. The
reduced density matrix of a subsystem A is obtained by tracing
over the degrees of freedom of the rest of the system A [70]:

ρA = TrA(ρ). (1)

The entanglement entropy [71–74] of subsystem A is then
defined in terms of the eigenvalues λi of the reduced density
matrix ρA as
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Figure 1. Partitions of a chain with the disconnected partition
D= A∪B and 2 LA = 2 LB = 4 LD = L. The subsystem B consists
of two partitions A∩B and B\A, separated by the disconnected
partition D. (In this figure, each square represents a fermionic site.).

SA =−TrA(ρA ln(ρA)) =−
∑
i

λi ln(λi). (2)

As the system S is in a pure state, it can be shown that
SA = SA.

We now consider a configuration of the partitions A, B, A∩
B and A∪B of the system S , such that the subsystem B con-
sists of two partsA∩B andB\A, separated by the disconnected
partitionD= A∪B, as shown in figure 1. The DEE [64–66] is
then defined as

SD = SA+ SB− SA∪B− SA∩B. (3)

3. Short-range Kitaev chain

We recall the Hamiltonian of a Kitaev chain [7–11] with short-
ranged couplings given by

H=−γ
L−1∑
n=1

(c†ncn+1 + c†n+1cn)−µ
L∑

n=1

(2 c†ncn− 1)

+∆
L−1∑
n=1

(cncn+1 + c†n+1c
†
n), (4)

where cn (c†n) is the annihilation (creation) operator for a spin-
less fermion on the nth site, γ is the nearest-neighbor hopping
parameter, ∆ is the strength of the p-wave superconducting
pairing, and µ is the on-site chemical potential. The paramet-
ers γ, ∆ and µ will be taken to be real unless otherwise men-
tioned. Consequently, the Hamiltonian respects time-reversal
symmetry, particle-hole symmetry and sub-lattice/chiral sym-
metry and the system belongs to the BDI symmetry class [11,
12]. Definition of the winding number and topological prop-
erties of a short-range Kitaev chain are briefly discussed in
appendix A.

It is noteworthy that in a chain with short-ranged coup-
lings and open boundary conditions, the DEE, calculated in
the ground state of static Hamiltonian, is an integer multiple of
ln(2), i.e. SD = p ln(2), where p is the number of modes local-
ized at each edge of a chain with the open boundary conditions

(see [64]). Therefore, the values of the DEE in the topologic-
ally non-trivial (−1< µ < 1) and trivial (|µ|> 1) phases of a
Kitaev chain with γ= 1 and∆ ̸= 0 are ln(2) and zero, respect-
ively, and there is a discontinuous jump in the value of the DEE
at the QCP separating the two phases. Thus, the DEE plays a
role equivalent to the winding number for an open chain.

4. DEE for a Kitaev chain with periodically
modulated chemical potential

In this section, we discuss the behavior of the DEE calcu-
lated in the ground state of the effective Floquet Hamiltonian
for a Kitaev chain with a periodically modulated chemical
potential.

We consider a Kitaev chain with an open boundary con-
dition in which the chemical potential is periodically modu-
lated [11], such that µ(t) = µ(t+T), with T= 2π/ω, where
ω is the driving frequency, so that H(t) in equation (4) sat-
isfies H(t) = H(t+T). For a time-periodic Hamiltonian H(t),
the stroboscopic time-evolution operator (i.e. the Floquet oper-
ator) is defined as

UF = Texp

(
−i
ˆ T

0
H(t)dt

)
= exp(−iHFT), (5)

where HF is the Floquet Hamiltonian and T denotes time-
ordering. (We will set ℏ= 1 in this paper).

We recall that due to the unitary nature of the Floquet
operator UF, its eigenvalues are phases. Further, these appear
in complex conjugate pairs, eiθ and e−iθ (see appendix B
for details) because of particle-hole symmetry (as the sys-
tem belongs to Floquet BDI symmetry class [11]). If present,
Majorana edge modes correspond to the eigenvalues +1 and
−1 of the Floquet operator (UF). In other words, their cor-
responding Floquet quasienergies are ϵF = 0 and ϵF =±π/T,
respectively. Thus, the total number of Majorana edge modes
(twice the number of Majorana modes at each edge) is given
by the total number of eigenvalues +1 and −1 of UF.

We now consider the protocol in which the chemical poten-
tial µ is periodically modulated by the application of δ-pulses
such that [11, 17]

µ(t) = µ0 +µ1

∞∑
m=−∞

δ(t−mT), (6)

where T= 2 π/ω. Bothω andµ0 are in the units of the hopping
parameter γ, where we have set γ= 1. On the other hand, the
parameter µ1 is dimensionless.

The chemical potential µ(t) in equation (6) for a Kitaev
chain can be mapped to a transverse field in an Ising chain
through the Jordan–Wigner transformations [68]. If the trans-
verse field of an Ising chain is periodically kicked (with δ-
function kicks), then the driving protocol of the quantum Ising
chain can be mapped to the driving protocol as in equation (6).
It is noteworthy that a quantum Ising model can be simulated
with quantum circuits [75] and δ-function kicks can be exper-
imentally realized with laser pulses [76].
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Figure 2. DEE (SD) in units of ln(2) and the number of Majorana
edge modes (p) localized at each edge as functions of driving
frequency ω (in the units of the hopping parameter γ, which is set
equal to unity) for a Kitaev chain in which the chemical potential µ
is periodically modulated by δ-pulses (equation (6)) with µ0 = 2.5
and µ1 = 0.2. We have taken∆= 1, L= 200 and LD = 50. Here,
both the parameters µ0 and ∆ are in the units of γ, while the
parameter µ1 is dimensionless. The DEE assumes integer-quantized
values except at low frequencies. The number of dynamically
generated edge Majorana modes increases as ω decreases.

Wenow calculate theDEE in the ground state of the Floquet
HamiltonianHF for this driving protocol in a Kitaev chain with
open boundary conditions. The methods used to calculate the
DEE from the correlation matrix are explained in appendix B.
In this driving protocol, the DEE, calculated in the ground state
of the Floquet Hamiltonian, is equal to integer multiples of
ln(2), as can be seen fromfigure 2. Thus, SD = p ln(2), where p
is an integer. It is also interesting to note that theDEE generally
increases as the drive frequency ω decreases. Further, we have
verified that the value of SD/ ln(2) is equal to the number of
Majorana edge modes (both zero and π-modes) localized at
each edge of the chain (see figure 2) generated by the same
periodic driving of the Kitaev chain.

However, at low drive frequencies (i.e, when ω is of the
order of the hopping parameter γ), the DEE is not integer-
quantized and the value of SD/ ln(2) differs significantly from
the number of Majorana end modes. This is however a finite-
size effect, as shown in figure 3, which demonstrates that
the DEE does saturate to an integer-quantized value for large
system size L. The reason for the finite-size effect is that
at low frequencies, the decay lengths of the Majorana edge
modes increase and therefore the edge modes mix more and
more with the bulk states. In other words, the average nor-
malized participation ratio (NPR) for the edge-modes is of
the order of unity at low drive-frequencies [55], while the
NPR is of the order of 1/L when the frequency is not suffi-
ciently low [55]. (For a normalizedwave functionψj(n), where
j labels the eigenstate and n denotes the site index, the parti-
cipation ratio is defined as Rj = 1/(

∑
n |ψj(n)|4) and the aver-

age NPR [55] is defined as, NPR= ⟨Rj⟩/L, where the average
is taken over all the eigenstates. The average NPR is of the
order of unity and 1/L for extended states and localized states,
respectively [55]). When the decay length is comparable to

Figure 3. DEE (SD) in units of ln(2) as a function of the length L
(in semi-log scale) of a Kitaev chain (with LD = L/4) in which the
chemical potential µ is periodically modulated by δ-pulses
(equation (6)) with µ0 = 2.5, µ1 = 0.2, ∆= 1 and ω= 1. Here, µ0,
ω and ∆ are in the units of γ, while the parameter µ1 is
dimensionless. We observe a saturation to an integer-quantized
value as L increases, establishing that the discrepancy observed for
low ω in figure 2 is a finite-size effect.

the size L/4 of the disconnected region D, the contribution of
such end modes to the DEE deviates from integer multiples
of ln(2) (i.e. the DEE fails to detect these edge-modes cor-
rectly). This leads to the reduction in the contribution of the
edge-modes to the DEE. On the other hand, at low frequencies,
the bulk states become long-range entangled (as the effect-
ive range of couplings appearing in the Floquet Hamiltonian
increases with decreasing drive frequency) and the long-range
entangled bulk states contribute to the DEE (see [66]). This
effect leads to an increase in the DEE. For small ω, there-
fore, the deviation of the DEE from integer-quantized value
occurs due to the competition between these two contradictory
effects. As the length LD = L/4 is increased, the bulk contri-
bution to the DEE decreases [66]. Also, with the increase of L,
the dispersion of the edge modes to the bulk states decreases
(as the decay lengths of the Floquet Majorana modes are much
smaller than the system-size L, when L is sufficiently large),
even at low drive frequencies. Thus, for sufficiently large L
(and therefore sufficiently large LD = L/4), the bulk contribu-
tion becomes negligibly small and the DEE only contains the
integer-quantized contribution of the edge modes.

The DEE is found to be equivalent to the dynamical (Flo-
quet) winding number in counting the number of emergent
Floquet Majorana modes; this is discussed in appendix C.

5. DEE for periodic modulation of chemical
potential in presence of spatial disorder and
temporal noise

The Majorana edge-modes are robust against weak perturb-
ations and the robustness of the Majorana modes against
weak perturbations has been explored in several studies (see
[77–80]). In this section, we discuss the behavior of the DEE
for a periodically driven Kitaev chain in the presence of spa-
tial disorder as well as temporal noise, and we establish that
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Figure 4. DEE (SD) in units of ln(2) as a function of ω (in the units
of the hopping parameter γ, which is set equal to unity) for a driving
protocol in the presence of spatial disorder as given in equation (7).
We have chosen µ0 = 2.5, r= 0.2, ∆= 1, L= 200 and LD = 50.
Here, µ0 and ∆ are in the units of γ, while the parameter r is
dimensionless. The dimensionless parameter βn assumes a random
value in the range [0,1]. Here, SD has been calculated after
averaging over a large number of configurations of random numbers.

the Floquet Majorana modes are robust against weak spatial
and temporal disorder.

5.1. DEE for periodic driving in presence of spatial disorder

We consider a driving protocol where the on-site potentials
µn(t) for different sites are driven with δ-pulses of random
amplitudes, such that the translation symmetry of the chain is
explicitly broken. Therefore, we consider the following form
of the chemical potential,

µn(t) = µ0 + rβn

∞∑
m=−∞

δ(t−mT), (7)

where n denotes the site number in the chain, µ0 and r are inde-
pendent of n, and βn can assume a random value in the range
[0,1]. Here, both the parameters r and βn are dimensionless.

After averaging over a large number of configurations of
random numbers, we find that the value of the DEE, calcu-
lated in the ground state of the effective Floquet Hamiltonian,
remains perfectly integer-quantized even in the presence of
weak spatial disorder for high frequency (see figure 4). This
demonstrates the robustness of Floquet Majorana modes (both
zero and π-modes) against weak disorder. However, the devi-
ation of the DEE from integer-quantized value at sufficiently
low-frequency is due to the finiteness of the system, as we have
elaborated in figure 3 for the driving protocol without spatial
disorder.

5.2. DEE for periodic driving in presence of temporal noise

We now consider a driving protocol where the chemical poten-
tial µ(t) is spatially uniform, but is driven with δ-pulses in
the presence of a random noise f (t) of sufficiently small

Figure 5. DEE (SD) in units of ln(2) as a function of ω (in the units
of the hopping parameter γ, which is set equal to unity) for a driving
protocol in the presence of temporal noise as given in equation (8).
We have chosen µ0 = 2.5, µ1 = 0.2, r= 0.2, ∆= 1, L= 200 and
LD = 50. Here, µ0 and ∆ are in the units of γ, while the parameters
µ1 and r are dimensionless. f (t) assumes a random value in the
range [−1,1] in the units of γ at any time t lying in the range [0,T],
where T= 2π/ω.

amplitude r. We consider the following form of the chemical
potential,

µ(t) = µ0 +µ1

∞∑
n=−∞

δ(t− nT)+ rf(t), (8)

where T= 2π/ω and the function f (t) assumes a random value
between [−1,1] for 0< t< T. Here, r is a dimensionless para-
meter and the value of f (t) is in the units of the hopping para-
meter γ, where we have set γ= 1. However, we still consider
the function f (t) to be time-periodic with period T, i.e. f(t) =
f(t+T). The time-periodicity of the function f (t) renders the
Hamiltonian H(t) periodic in time, i.e. H(t) = H(t+T). We
compute the DEE in the ground state of the Floquet Hamilto-
nian HF for the protocol as in equation (8).

For this driving protocol with a temporal noise, we find that
the value of the DEE remains invariant as shown in figure 5.
This indicates the robustness of the dynamically generated
Floquet Majorana modes against a weak temporal noise in the
driving.

6. Detection of the anomalous edge modes with
periodically modulated hopping parameter through
DEE

We now consider the periodic driving of the hopping para-
meter γ, which may be complex in general, so that the
Hamiltonian in (4) is modified to

H(t) =−
L−1∑
n=1

(γ(t)c†ncn+1 + γ⋆(t)c†n+1cn)

−µ
L∑

n=1

(2c†ncn− 1)+
L−1∑
n=1

∆(cncn+1 + c†n+1c
†
n). (9)

5
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It has been established that for this type of driving protocol, the
modes localized at the edges with the eigenvalues of the Flo-
quet operator away from±1 (referred to as anomalous modes)
can dynamically emerge [15]. We address here the question of
whether the DEE can detect these anomalous modes.

6.1. DEE for periodic driving of the hopping parameter

We consider the following form of the hopping parameter,

γ(t) = γ0 (1+ acos(ωt)) , (10)

where ω = 2π/T. Here, ω is in the units of γ0, where we
have set γ0 = 1. The dimensionless parameter a determines
the strength of the modulation of the hopping amplitude. Since
the hopping parameter is chosen to be real, the time-reversal
symmetry of the Hamiltonian H(t) is preserved, and the peri-
odically driven chain belongs to the BDI (Floquet) symmetry
class [11, 12, 15].

To see if there are emergent anomalous modes, we plot
the Floquet quasienergies θ as a function of ω for a= 1 in
figure 6(a). Evidently, for 1.5< ω < 2.0, the extreme values
(near the top and bottom) of the Floquet quasienergies are sep-
arated by finite gaps from the other quasienergies. The modes
with these isolated values of Floquet quasienergies are known
as anomalous modes [15] since the corresponding eigenvalues
of the Floquet operator differ from ±1.

In figure 6(b), the variation of the inverse participation ratio
(IPR) is plotted against the real part of the corresponding
eigenvalues of the Floquet operator for ω= 1.7. (For a nor-
malized wave function ψj(n), where j labels the wave function
and n denotes the site index, the IPR is defined as

∑
n |ψj(n)|4.

It is known that as the system size L is taken to infinity, the
IPRs of modes which are extended in the bulk go to zero while
the IPRs of modes localized at the ends remain finite. Hence
a plot of the IPR versus j provides an easy way to identify
the edge modes). From this figure, it can clearly be seen that
the anomalous modes (which have the minimum real part
[ not equal to −1] of the eigenvalues of the Floquet operator)
have relatively large IPRs, compared to the other modes hav-
ing non-zero Floquet quasienergies.We note here that the IPRs
of the anomalous modes are almost comparable to that of the
zero-energy Majorana modes (with the eigenvalue of the Flo-
quet operator being equal to+1). Figure 6(c) further confirms
that these anomalous modes, despite having non-zero Floquet
quasienergies, are localized at the edges of the chain [15].

In figure 6(d), the DEE (SD) is plotted as a function of the
drive frequency ω to find the contribution of both the anomal-
ous modes and the zero-energy modes to the DEE. As is evid-
ent from figure 6(d), in the approximate range of frequencies
between [1.6,1.8], the non-zero and integer-quantized contri-
bution of the anomalous modes and the zero-energy modes to
the DEE enables us to detect these edge modes. In this range
of frequencies, there are two anomalous modes and one Flo-
quet zero-energy Majorana mode at each edge of the chain
(one zero-energy Majorana mode at each edge is generated
at ω= 2 for γ0 = 1; as the Floquet quasienergy gap closes at

ω= 2 for γ0 = 1, which can be seen from the analytical cal-
culation presented in appendix D.1) and the DEE is nearly
equal to 3 ln(2). Further, it can be observed from figure 6(e)
that the DEE converges to the value 3ln(2) for sufficiently
large system-size L for the drive frequency ω= 1.7. Thus, we
observe that SD/ ln(2) matches exactly with the number of
edge modes (the zero-energy Majorana modes as well as the
anomalous modes) localized at each edge for 1.6 ≲ ω ≲ 1.8.
In this range of frequency, the DEE is able to detect the anom-
alous modes and zero-energy Majorana modes. Subsequently,
we will illustrate in section 6.2 that the zero-energy Floquet
Majoranamodes are robust against weak spatial disorder while
the anomalous modes are not.

Next, we consider a driving protocol in which the hopping
parameter is complex [15], with the form

γ(t) = γ0 exp [iacos(ωt)] , (11)

where ω = 2π/T, and the parameter a determines the strength
of the modulation of the phase of the hopping parameter. The
complex hopping parameter in equation (11) explicitly breaks
the time-reversal symmetry of the Hamiltonian H(t) [12,
15]. Therefore, a chain periodically driven with this protocol
belongs to the D (Floquet) symmetry class [15]. For this driv-
ing protocol, similar to the driving protocol in equation (10),
zero-energy Floquet Majorana modes and anomalous modes
can appear. However, we find that the DEE, calculated using
the methods provided in appendix B, is not able to count the
anomalous edge modes and zero-energy Majorana modes cor-
rectly for this driving protocol. In the symmetry class D, time-
reversal symmetry is broken and theMajorana edge-modes are
not protected from hybridization. Due to the hybridization of
the edge-modes with each other (preserving particle-hole sym-
metry), we find that the value of SD/ ln(2) is different from the
total number of Majorana modes and anomalous modes local-
ized at each end of the chain for the symmetry class D.

6.2. Effect of spatial disorder on the DEE for periodic driving
of hopping parameter

In this section, we investigate whether the dynamical zero-
energy Majorana modes and the anomalous modes discussed
in section 6.1 survive in the presence of weak spatial disorder.
To this end, we explore the effects of disorder on the DEE for
a periodic driving of the nearest-neighbor hopping amplitude.

Let us consider the driving protocol where the amplitude of
the nearest-neighbor hopping parameter γn(t) for the nth site
is periodically modulated in the presence of spatial disorder.
Therefore, this is the same driving protocol as in equation (10),
but in the presence of spatial disorder. For this driving pro-
tocol, γn(t) is given by,

γn(t) = γ0(1+ aνn cos(ωt)), (12)

where γ0 and the modulation strength a are independent of site
index n, and the dimensionless parameter νn assumes random
value in the range [0,1] for each site n. From figure 7, it can

6
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Figure 6. (a) Floquet quasienergies θ as a function of the drive frequency ω (in the units of γ0, which is set equal to unity)). The two
isolated lines seen near the top and bottom in the frequency range of about [1.4,2.2] correspond to anomalous end modes. The two isolated
lines seen near the top and bottom in the frequency range of about [1.1,1.4] correspond to Majorana π modes. (b) Inverse participation ratio
(IPR) as a function of the real part of the eigenvalue of the Floquet operator UF at ω= 1.6 and for L= 200. The modes with the real part of
eigenvalue +1 of the Floquet operator are Majorana zero modes and the modes with the minimum real part of eigenvalue (if it is not equal
to −1) of the Floquet operator are anomalous modes. There are four anomalous modes (two anomalous modes at each edge) and two
zero-energy modes (one zero-energy mode at each edge). (c) Probability as a function of the site number for the two anomalous modes with
the eigenvalues −0.7412 ± 0.6713i of the Floquet operator UF at ω= 1.6. (d) DEE (SD) in units of ln(2) as a function of ω for L= 400 and
LD = 100. (e) DEE (SD) in units of ln(2) as a function of the system-size L at ω= 1.7. The DEE saturates to the value 3 ln(2) at ω= 1.7 for
sufficiently large L. For all the plots, the amplitude of the hopping parameter is periodically modulated (see equation (10)) with the
dimensionless parameter a= 1.0. We have taken µ= 0 and ∆= 0.8; both µ and ∆ are in the units of γ0, where we have set γ0 = 1.

clearly be seen that for 1.6 ≲ ω ≲ 1.8, the DEE is almost con-
stant and equal to ln(2) in the presence of spatial disorder. Fur-
ther, it can be observed from figure 7(b) that the DEE saturates
to the value ln(2) atω= 1.7 for sufficiently large system-size L
for the driving protocol in the presence of spatial disorder. On
the other hand, in the absence of disorder, the DEE is equal

to 3 ln(2) (as there are two anomalous modes and one zero-
energy mode at each edge of the chain) in the same range of ω
(see figure 6(d)). From this observation, we infer that the zero-
energy modes remain robust against spatial disorder, whereas
the anomalous edge modes disappear in the presence of spatial
disorder.

7
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Figure 7. (a) DEE (SD) in units of ln(2) as a function of drive frequency ω (in the units of γ0, where γ0 = 1.0) for periodic driving of the
amplitude of the hopping parameter in the presence of spatial disorder (see equation (12)). We have taken L= 200, LD = 50. (b) DEE (SD)
in units of ln(2) as a function of the system-size L at ω= 1.7 for periodic driving of the amplitude of the hopping parameter in the presence
of spatial disorder (see equation (12)). The DEE converges to the value ln(2) for sufficiently large L. For both the plots, we have taken
∆= 0.8, µ= 0 and a= 1.0. Here, µ and ∆ are in the units of γ0, while the parameter a is dimensionless. For this protocol, the
dimensionless parameter νn assumes a random value in the range [0,1] at each site n. The DEE has been calculated after averaging over a
large number of configurations of random numbers.

7. DEE for experimentally studied kicked Ising
model in presence of integrability breaking
interactions

In this section, we discuss a recent experimental study
(see [67]) of a kicked Ising model and we thus explore the
fate of the DEE in the presence of an integrability breaking
perturbations.

Following [67], we consider the following driving protocol
of the Hamiltonian H0(t) = H0(t+T) of an Ising chain:

H0(t) =

{
g
∑L

j=1σ
z
j for 0< t< T/2,

J
∑L−1

j=1 σ
x
j σ

x
j+1 for T/2< t< T,

(13)

where the σ’s are Pauli matrices, g is the transverse field, and J
is the coupling strength between nearest-neighbor spins. This
model is integrable and can be mapped to a Kitaev chain of
spinless fermions (with a driving protocol different from that
we have explored in the previous sections) through Jordan–
Wigner transformations [68]. The periodically driven Kitaev
chain can host Floquet Majorana edge-modes. For the par-
ticular choice of the parameters J= 0.5 and g= 0.6, the first
Floquet Majorana π-mode at each edge of the chain is gen-
erated at ω= 2.2, as the Floquet quasienergy gap becomes
±π/T at ω= 2.2 (see the analytical calculation presented in
appendix D.2). Thus, the Floquet Majorana modes exist only
for ω< 2.2 for this particular choice of the parameters.

The integrability of the model can be broken by adding a
longitudinal field term in the HamiltonianH0(t). Following the
driving protocol as in [67], we include a site-dependent, ran-
dom longitudinal field (hj) term (with δ-function kicks) in the
HamiltonianH0(t) to test the robustness of the Floquet Major-
ana modes against the integrability breaking interaction. Thus,
the time-dependence of the Hamiltonian is given by

H(t) = H0(t)+
1
2

L∑
j=1

hjσ
x
j

∞∑
n=−∞

δ(t− nT), (14)

where the longitudinal field hj for the jth site is a random vari-
able which can assume any value lying in the range [−π,π],
for all j= 1,2, . . . ,L. Thus, the Floquet operator is given by
(see also equation (1) of [67]),

UF = exp

− i
2

L∑
j=1

hjσ
x
j

exp

−i JT
2

L−1∑
j=1

σxj σ
x
j+1


× exp

−i gT
2

L∑
j=1

σzj

 . (15)

We find that at ω= 2.0 (i.e. T= 2π/ω = π), the DEE (SD) is
equal to ln(2) in the integrable limit (i.e. hj = 0) with paramet-
ers J= 0.5 and g= 0.6 (see the plot for hj = 0 in figure 8), as
there is one Floquet Majorana π-mode at each edge, namely,
there are two Floquet Majorana π-modes in total at ω= 2.0.

Using the exact diagonalization scheme for the non-
integrable case and open boundary conditions, we find that
in the presence of the random, site-dependent longitudinal
field, i.e. when hj ̸= 0 (see figure 8), the DEE for system
size L= 4LD = 12 remains close to ln(2) at ω= 2.0. This res-
ult indicates the robustness of the Floquet Majorana modes
against an integrability breaking interaction. The deviation of
the DEE from perfectly integer-quantized values at ω= 2.0 in
the presence of the longitudinal field is due to the finite size
L of the system, as elaborated in section 4. The DEE deviates
from the integer-quantized values more and more when the
frequency is decreased below ω= 2.0. It is also important to
mention here that due to numerical limitations, the maximum
size of the system for which the DEE in the non-integrable
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Figure 8. DEE (SD) in units of ln(2) as a function of the drive
frequency ω (in the units of J, where we have set J= 0.5) for the
driving protocol as given in equation (14). The plot for hj = 0
(the integrable case) corresponds to the driving protocol as in
equation (13) with the parameters J= 0.5, g= 0.6, L= 100, and
LD = L/4= 25. The non-integrable case with hj ̸= 0 corresponds to
the presence of a site-dependent, random, longitudinal field in the
driving, where the dimensionless parameter hj assumes a random
value between −π and π, for all j= 1,2, . . . ,L. Other relevant
parameters chosen (for hi ̸= 0 and ω= 2.0) are J= 0.5, g= 0.6,
L= 12, and LD = L/4= 3. Here, the parameter g is in the units of J.
At ω= 2.0 (i.e. T= π), we observe that the DEE in the presence of a
random longitudinal field and in the absence of the longitudinal field
are nearly equal and close to ln(2). The deviation of the DEE from
perfectly integer-quantized values in the presence of the longitudinal
field is due to finite system size L, as explained in section 4.

case and open boundary conditions can be computed using
the exact diagonalization scheme is given by L= 4LD = 12.
Thus, numerical limitations prohibit us from obtaining per-
fectly integer-quantized value of the DEE for the drive fre-
quencies ω ⩽ 2.0 in the presence of the integrability break-
ing interaction. Therefore, one cannot conclusively comment
on the fate of the Floquet Majorana modes in the presence of
arbitrary integrability breaking perturbations, and the results
presented in figure 8 indicate their robustness at least for some
values of the parameters.

8. Conclusions

In this paper, we have shown that for the periodic driving
protocol of the chemical potential with δ-pulses, the DEE,
calculated in the ground state of the Floquet Hamiltonian, is
integer-quantized, with the integer being equal to the num-
ber of dynamically generated Floquet Majorana edge modes
localized at each edge of the chain. Thus, it can be inferred
that similar to the static situation, the DEE can act as a marker
of Majorana edge modes even for a periodically driven Kit-
aev chain. At low frequencies, there is an apparent discrep-
ancy and the value of SD/ ln(2) differs significantly from the
number of Majorana end modes at each edge of the chain.
However, this is an artefact of the finite size of the system,
and we have established that the DEE saturates to an integer-
quantized value at large system size L, even at low drive fre-
quencies (ω of the order of the hopping amplitude γ). Thus,

in a periodically driven chain with open boundary conditions,
the DEE counts the number of edgeMajorana modes correctly
and therefore plays a role similar to that played by the wind-
ing number derived from the Floquet Hamiltonian in the cor-
responding systemwith periodic boundary conditions. Similar
results can also be obtained for other periodic driving proto-
cols (for instance, square pulse and sinusoidal modulation) of
the chemical potential. Further, by probing the DEE, we have
shown the robustness of the Floquet Majorana edge modes
(zero modes and π-modes) against weak spatial disorder and
temporal noise.

If the amplitude of the nearest-neighbor hopping in the
Kitaev chain is periodically modulated (see the protocol in
equation (10)), such that the Floquet Hamiltonian remains in
the BDI symmetry class, then ‘anomalous’ edge modes (with
Floquet quasienergies not equal to zero or π) can be dynamic-
ally generated. Although these anomalous edge modes do not
have a topological origin and are not associated with a wind-
ing number, we find that the DEE is able to detect the exist-
ence of the anomalous edge modes for certain ranges of driv-
ing frequencies. Furthermore, we illustrate that the anomalous
edge modes are not robust against weak spatial disorder, and
they disappear in that situation while the zero-energy Major-
ana modes survive.

The dynamical generation of anomalous edge modes is
also possible with the periodic modulation of the phase of
the complex hopping parameter (see the driving protocol in
equation (11), where the system belongs to Floquet D sym-
metry class). However, for this driving protocol, the DEE fails
to detect them properly. Further, we have checked that one
cannot infer conclusively the effects of disorder on both zero-
energy and anomalous modes in the presence of spatial dis-
order. In the symmetry class D, time-reversal symmetry is
broken and the Majorana edge-modes are not protected from
hybridization. Due to the hybridization of the edge-modes
with each other, we find that the value of SD/ ln(2) is differ-
ent from the total number of Majorana modes and anomal-
ous modes localized at each end of the chain for the symmetry
class D. Therefore, if the edge-modes are not protected by any
one (or more than one) of time-reversal symmetry, particle-
hole symmetry and sub-lattice symmetry, then the value of
SD/ ln(2) may differ from the number of edge-modes local-
ized at each edge. However, it might be an interesting future
work to investigate whether the DEE is able to detect the edge-
modes for other symmetry classes, especially when any one
of the above mentioned symmetries is not present. It might
also be a possible future work to compute the DEE for sys-
tems with half-integer spins in the symmetry class CII and
DIII.

We have also explored the behavior of the DEE in the
presence of an integrability breaking perturbation in a kicked
Ising chain, which has recently been realized experiment-
ally [67]. However, due to numerical limitations in calculat-
ing the DEE for a sufficiently large system size in the non-
integrable situation and open boundary conditions using the
exact diagonalization scheme, we are unable to verify the
robustness of the Floquet Majorana modes against an integ-
rability breaking perturbation by probing the DEE.

9
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We conclude by noting that recently the topological entan-
glement entropy has been measured experimentally for a two-
dimensional toric code model [81]; the quantity has been
measured experimentally using simulated anyon interfero-
metry and extracting the braiding statistics of emergent excit-
ation [81]. On the other hand, in the present work, we have
computed the DEE for one-dimensional Kitaev model where
anyons do not exist. We are also not aware of an equivalent
of the DEE in two-dimensional situations. This experiment
however provides a motivation for an experimental measure-
ment of the DEE for one-dimensional topological systems
and a possible generalization of the DEE for two-dimensional
systems.

Finally, we note that it would be interesting to investigate
out-of-equilibrium behavior of the DEE in Kitaev chains with
more complicated couplings, like next-nearest-neighbor hop-
ping, superconducting pairing [12, 82] and multicritical situ-
ations [83].
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Appendix A. Winding number and topological
properties of short-range Kitaev chain

The Hamiltonian H in equation (4) of a short-range Kitaev
chain with periodic boundary conditions can be written in
terms the fermionic creation and annihilation operators in
momentum space as

H=
∑
k

(
c†k c−k

)
Hk

(
ck
c†−k

)
, (A1)

where k lies in the range [−π,π], and the Hamiltonian Hk is
given by

Hk = (−γ cosk−µ) τz+∆sink τy, (A2)

where τ y and τ z are Pauli matrices. In the ground state of the
Hamiltonian H in equation (4), the winding number [11] is
defined as

w=
1
2 π

ˆ π

−π

dk
dϕk
dk

, (A3)

ϕk = tan−1

(
∆sink

γ cosk+µ

)
. (A4)

Setting the hopping parameter γ= 1, it is straightforward
to check that the following phases exist in the ground state of
a short-range Kitaev chain (in static situation).

(a) Topologically non-trivial phase (−1< µ < 1): this phase
consists of phase I (∆> 0) and phase II (∆< 0). The
winding numbers in phases I and phases II are given by
w=+1 and w=−1, respectively [11]. For a chain with
open boundary condition, these topologically non-trivial
phases are characterized by the existence of a zero-energy
Majorana mode localized at each edge of the chain [11].

(b) Topologically trivial phase (|µ|> 1): the winding number
is zero (w= 0) in this phase. For a chain with open bound-
ary condition, Majorana edge modes do not appear in this
phase.

Appendix B. Methods used for calculation of the
DEE from Floquet Hamiltonian

Each fermionic creation operator c†n (or annihilation operator
cn) can be written as a linear combination of two Hermitian
Majorana operators (a2n−1 and a2n) as

cn =
1
2
(a2n−1 − ia2n), (B1a)

c†n =
1
2
(a2n−1 + ia2n). (B1b)

The Hamiltonian H(t) of a Kitaev chain with generic time-
dependent parameters can be written as,

H(t) = i
2L∑
m=1

2L∑
n=1

amMmn(t)an, (B2)

whereM(t) is a 2L× 2L real, antisymmetric matrix (which fol-
lows from the fact that Majorana operators satisfy anticom-
mutation relations: {am,an}= 2δmn). The 2L× 1 column mat-
rix of the Majorana operators a(t) = (a1(t)a2(t) . . .a2L(t))

T in
Heisenberg picture can be written as,

a(t) = Texp

(
4
ˆ t

0
M(t ′)dt ′

)
a(0) = U(t)a(0). (B3)

Thus, the stroboscopic time-evolution operator (Floquet oper-
ator) is given by,

UF = U(T) = Texp

(
4
ˆ T

0
M(t ′)dt ′

)
. (B4)

As UF is unitary matrix, each of its eigenvalues λ satisfies the
property |λ|= 1. Thus, λ must be phases. Further, the mat-
rix UF is real, which ensures that the eigenvalues of UF must
appear in complex conjugate pairs, namely, eiθ and e−iθ.
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For a subsystem X with LX fermionic sites, an element of
the 2LX× 2LX correlation matrix AX , calculated in the ground
state of the Floquet Hamiltonian, can be written as

(AX)mn = ⟨aman⟩. (B5)

The von Neumann entropy SX of the subsystem X is obtained
from the eigenvalues αj of the correlation matrix AX as

SX =−
2LX∑
j=1

αj
2
ln
(αj
2

)
. (B6)

SX for X= A,B,A∩B and A∪B are calculated in the ground
state of Floquet Hamiltonian and the DEE is then computed
using equation (3).

Appendix C. Comparison of the DEE with the
dynamical winding number for periodically driven
Kitaev chain

In this section, we compare the results inferred from the beha-
vior of the DEE with the dynamical winding number for driv-
ing protocol discussed in section 4.

For a periodically driven Kitaev chain with periodic bound-
ary conditions, the winding number may be calculated from
the stroboscopic time-evolution operator (i.e. Floquet oper-
ator)

UF(k) = Texp

(
−i
ˆ T

0
Hk(t)dt

)
= exp(−ihFkT), (C1)

for momentum k lying in the range [−π,π], where hFk andHk(t)
are, respectively, the Floquet Hamiltonian and the instantan-
eousHamiltonian for themodewithmomentum k. Referring to
equation (A2), for a generic time-dependent chemical poten-
tial, we get

Hk(t) = (−γ cosk−µ(t)) τz+∆sink τy. (C2)

On the other hand, for a periodic driving, the general form of
the Floquet Hamiltonian hFk can be written as

hFk = d0(k)1+ dx(k)τx+ dy(k)τy+ dz(k)τz, (C3)

where τ x, τ y, τ z are Pauli matrices and 1 is 2 × 2 identity
matrix. SinceUF(k) is a SU(2)matrix (due to the fact thatHk(t)
can be written as the sum of Pauli matrices with appropriate
coefficients), we have d0(k) = 0 for all values of k. Thus, the
Floquet Hamiltonian hFk [11, 15] reduces to the form

hFk = dx(k)τx+ dy(k)τy+ dz(k)τz. (C4)

The coefficients dx, dy and dz assume different forms for dif-
ferent driving protocols.

If the chemical potential is periodically modulated with
δ-pulses (equation (6)), the symmetrized Floquet operator
UF(k), for k lying in the range [−π,π], is given by

UF(k) = ei
µ1
2 τze−iT[(−γ cosk−µ0) τz+∆ sink τy]ei

µ1
2 τz . (C5)

Since we have chosen the driving to satisfy µ(t) = µ(T− t)
and τxHk(t)τx =−Hk(T− t), we see that τxUF(k)τx =
[UF(k)]†) for all k. Using UF(k) = exp(−ihFkT) and
equation (C4), we find that dx(k) = 0; we can see in figure 9(a)
that this is true. We then arrive at a simplified form of the Flo-
quet Hamiltonian hFk

hFk = dy(k)τy+ dz(k)τz. (C6)

This particular form of hFk enables us to define a dynamical
winding number [11] in the following way: dz(k) is plotted
as a function of dy(k) (see figures 9(b)–(d)) and the number
of times the curve winds around the origin (located at dy = 0,
dz = 0) is counted. This gives the absolute value of the Floquet
winding number (|w|).

The Floquet winding number can also be obtained using
the following method. For a generic time-dependent µ(t), the
Hamiltonian Hk for k lying in the range [0,π] is given by

Hk(t) = (−2 γ cos(k)− 2µ(t))τz+ 2 ∆sin(k)τy. (C7)

For the periodic modulation of chemical potential µ(t) with a
sequence of δ-pulses as in equation (6) of the main text, the
Floquet operator UF(k) is given by

UF(k) = eiµ1τze−2iT[(−γ cosk−µ0) τz+∆ sink τy]eiµ1τz . (C8)

For k= 0 and k= π, the Floquet operators (UF(k)) are:

UF(k= 0) = exp(i(2 µ1 + 2 T(γ+µ0))τz), (C9a)

UF(k= π) = exp(i(2 µ1 + 2 T(µ0 − γ))τz). (C9b)

The Floquet operators UF(k= 0) and UF(k= π) can also
be written as, UF(k= 0) = exp(iπb0τz) and UF(k= π) =
exp(iπbπτz). Here, b0 and bπ are given by the following
equations:

b0 =
2µ1

π
+

4
ω
(γ+µ0), (C10a)

bπ =
2µ1

π
+

4
ω
(µ0 − γ). (C10b)

The number of Floquet Majorana modes at each end of the
chain with quasienergies zero (or eigenvalue+1 of the Floquet
operator) and ±π/T (or eigenvalue −1 of the Floquet oper-
ator) are given by, p(0) = |n>e − n<e | and p(π/T) = |n>o − n<o |
(as shown in [11]), where n>e (n>o ) is the number of even (odd)
integers lying between b0 and bπ, and greater than 2µ1/π. On
the other hand, n<e (n<o ) is the number of even (odd) integers
lying between b0 and bπ, and less than 2µ1/π. The winding
number [11] is determined by, |w|= |n>e − n<e + n>o − n<o |.
Therefore, in general, we have |w|⩽ p(0)+ p(π/T). If p=
p(0)+ p(π/T) is the total number of Floquet Majorana modes
at each end of the chain, then, in general, we have |w|⩽ p [11,
49]. However, if we choose µ0 > γ (where γ > 0 and µ0 > 0),
then for 0< 2µ1/π < 1, n<o = n<e = 0. Thus, for 0< µ1 <
π/2, we have p(0) = n>e , p(π/T) = n>o and |w|= n>e + n>o .
Therefore, |w|= p(0)+ p(π/T) = p, if 0< µ1 < π/2. In this
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Figure 9. (a) dx, dy and dz as functions of k for periodic driving of the chemical potential with a δ-pulse having µ0 = 2.5, µ1 = 0.2, and
ω= 6.0. We find that dx = 0 for all values of k. (b) dz as a function of dy for ω= 18.0. The dynamical (Floquet) winding number is zero.
(c) dz as a function of dy for ω= 10.0. The winding number is 1. (d) dz as a function of dy for ω= 4.0. The winding number is 2.

situation, the winding number counts the Floquet Majorana
modes (with quasienergies both zero and±π/T) at each end of
the chain correctly. Thus, the winding number is able to char-
acterize the topology of the Kitaev chain periodically driven
with a δ-pulse.

On the other hand, the DEE, which can assume any real
value, turns out to be an integer multiple of ln(2), namely,
SD = p ln(2) (see figure 2); here, the integer p is the num-
ber of Floquet Majorana modes localized at each edge (with
quasienergies both zero and ±π/T). Comparing with the Flo-
quet winding number w, we find that |w| ln(2)⩽ SD, in gen-
eral. However, if we choose the parameters in the follow-
ing way, γ > 0, µ0 > 0, µ0 > γ and 0< µ1 < π/2, then we
obtain |w| ln(2) = SD. This establishes the equivalence of the
DEE with the winding number in detecting the Majorana edge
modes for the periodic modulation with a δ-pulse.

Appendix D. Floquet quasienergy gap in a
periodically driven chain

D.1. For periodic driving of hopping parameter

The Floquet operator for the mode with momentum k lying in
the range [0,π] is given by

UF(k) = Texp

(
−i
ˆ T

0
Hk(t)dt

)
= exp(−ihFkT), (D1)

where hFk is the corresponding Floquet Hamiltonian. For a
time-dependent hopping amplitude γ(t), Hk(t) has the form

Hk(t) = (−2 γ(t)cosk− 2 µ) τz+ 2 ∆sink τy, (D2)

where γ(t) = γ0(1+ acos(ωt)) (see equation (10)). Using
equation (D1), we obtain the following equation for k= 0:

UF(k= 0) = e2iT(γ0+µ)τz . (D3)

For µ= 0, the conditionUF(k= 0) = 1 is satisfied at the drive
frequency ω = 2γ0/n, where n is an integer. At these frequen-
cies, the Floquet quasienergy gap closes. Thus, the generation
of zero-energy Floquet Majorana modes occurs at these spe-
cific frequencies for the driving protocol given in equation (10)
in a chain with open boundary condition. For the periodic driv-
ing of the chemical potential, an analytical derivation of the
frequencies at which the Floquet quasienergy gap closes can
also be done by proceeding in the same way as discussed in
this section (see [11]).
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D.2. For the driving protocol in equation (13) for an Ising
chain

Using the Jordan–Wigner transformation [68] and periodic
boundary conditions for the driving protocol in equation (13)
for an Ising chain, the Floquet evolution operatorUF(k) for the
mode with momentum k lying in the range [0,π] can be written
as

UF(k) = e−i T2 (2Jcos(k)τz−2J sin(k)τy)e−i T2 (2gτz), (D4)

where τ y and τ z are Pauli matrices. For the mode with
momentum k= 0, we have,

UF(k= 0) = e−iT(J+g)τz . (D5)

The Floquet quasienergy gap becomes zero and ±π/T if
UF(k= 0) = 1 andUF(k= 0) =−1, respectively. From these
two conditions, we see that the Floquet quasienergy gap
becomes zero and ±π/T at the drive frequencies ω = (J+
g)/n and ω = (2J+ 2g)/(2n+ 1), respectively, where n is an
integer. For the parameters J= 0.5 and g= 0.6 chosen for the
numerical computations in section 7, it can be seen that the
maximum values of the drive frequencies at which the Flo-
quet quasienergy gap becomes zero and±π/T are ω= 1.1 and
ω= 2.2, respectively.
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