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A B S T R A C T

Reliable communication imposes an upper limit on the achievable rate, namely the Shannon capacity. Wyner's
wiretap coding ensures a security constraint and reliability, but results in a decrease of achievable rate. To
mitigate the loss in secrecy rate, we propose a coding scheme in which we use sufficiently old messages as key and
prove that multiple messages are secure with respect to all the information possessed by the eavesdropper. We
also show that we can achieve security in the strong sense. Next, we study a fading wiretap channel with full
channel state information of the eavesdropper's channel and use our coding/decoding scheme to achieve a secrecy
capacity close to the Shannon capacity of the main channel (in the ergodic sense). Finally, we study a case where
the transmitter does not have instantaneous information of the channel state of the eavesdropper, but only its
distribution.
1. Introduction

With the advent of wireless communication, the issue of security has
gained more importance due to the broadcasting nature of the wireless
channel. To implement security at the physical layer for a degraded
wiretap channel, Wyner [1] proposed a coding scheme which is inde-
pendent of the computational capacity of the adversary. The result of
Wyner's scheme was generalized into a more general broadcast channel
[2]. More recently, the growth of wireless communication systems has
intensified the interest in implementing security at the physical layer
[3-5].

There is a trade-off between the achievable rate and the level of se-
crecy to be achieved. In particular, in the coding scheme which achieves
a secrecy capacity in a discrete memoryless wiretap channel, the eaves-
dropper (Eve) is confused with random messages at a rate close to its
channel capacity, thus resulting in a loss of transmission rate [1,2].

Recently, considerable progress has been made to improve the
achievable secrecy rate of a wiretap channel. In Ref. [6] a wiretap
channel with rate-distortion has been studied, wherein the transmitter
and the receiver have access to some shared secret key before the
communication starts. Secret key agreement between the transmitter
(Alice) and the legitimate receiver (Bob) has been studied extensively in
Refs. [7,8]. Condisdering the situation in which Alice and Bob have ac-
cess to a public channel, the authors in Refs. [7,9] propose a scheme to
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agree on a secret key about which the adversary has less information
(leakage rate goes to zero asymptotically).

In Ref. [10] the authors study a wiretap channel with secure rate
limited feedback. The feedback is used to agree on a secret key, and the
overall secrecy rate is enhanced. Under some conditions, it even equals
the main channel capacity. In Ref. [11] the authors study a
modulo-additive discrete memoryless wiretap channel with feedback.
The feedback is transmitted by using a feed-forward channel only, and its
signal can be used as a secret key. The authors propose a coding scheme
which achieves a secrecy rate equal to the main channel capacity. A
wiretap channel with a shared key has been studied in Ref. [12].

The fading wiretap channel has been studied in Refs. [13-15]. In
Ref. [16], previously transmitted confidential messages are stored in a
secret key buffer and used in future slots to overcome the secrecy outage
in a fading wiretap channel. In this model, the data to be securely
transmitted is delay sensitive. In Ref. [17] the authors use previously
transmitted bits stored in a secret key buffer to leverage the secrecy ca-
pacity against deep fades in the main channel. They prove that all mes-
sages are secure w.r.t. (with regard to) all the outputs of the
eavesdropper. The secrecy rate is not enhanced but prevented from
decreasing when the main channel is worse than the eavesdropper's
channel. A multiplex coding technique has been proposed in Ref. [18] to
enhance the secrecy capacity to ordinary channel capacity. The mutual
information rate between Eve's received symbols and the (single)
mmunications Workshop on Physical Layer Security (ICC), Budapest, Hungary.
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message transmitted is shown to decrease to zero as codeword length
increases.

In most of the works cited above, the security constraint used is weak
secrecy, where if the message to be confidentially transmitted is W, and
the information that eavesdropper gets in n channel used is Zn, then
IðW ; ZnÞ � nε. From the perspective of stringent security, this notion is
proved to be vulnerable for leaking some useful information to the
eavesdropper [4]. Maurer in Ref. [9] provides a coding scheme combined
with privacy amplification and information reconciliation, which ach-
ieves a secrecy capacity (same as in the weak secrecy case) with a strong
secrecy constraint, i.e., IðW ;ZnÞ � ε. There are also other ways to achieve
strong secrecy (see chapter 21 in Refs. [19-21]).

In this paper, we propose a time slotted wiretap channel, in which the
messages transmitted in a slot are used as a key to encrypt the message in
the next slot of communication. Simultaneously, we use a wiretap
encoder for another message in the same slot, which enhances the se-
crecy rate. We ensure that in each slot the currently transmitted message
is secure w.r.t. all the output that Eve receives.

In the next part of this paper, we extend this work to a wiretap
channel with a secret key buffer, which is used to store previously
transmitted secret messages. In this scheme, we use the oldest messages
stored in the key buffer as a key in a slot and then remove those messages
from the key buffer (a previous message is used as a key only once). In
each slot this key is used along with a wiretap encoder to enhance the
secrecy rate. In this way, not only the current message but all the mes-
sages sent in recent past are jointly secure w.r.t. all the data received by
Eve till now. We also study a slow fading wiretap channel with the
proposed coding scheme. We show that the water-filling power control
and our coding scheme provide a secrecy capacity close to the Shannon
capacity.

We also show that if a resolvability-based coding scheme [21] is used
in a slot instead of a wiretap coding, a secrecy capacity equal to the main
channel capacity in the strong sense can be achieved.

The rest of the paper is organised as follows: Section 2 presents the
channel model and the problem statement; Section 3 provides our coding
and decoding scheme and shows that it can achieve the Shannon capacity
for an AWGN wiretap channel; Section 4 extends the scheme to a fading
wiretap channel with Eavesdropper's channel information at the trans-
mitter; Section 5 provides the results when this information is not
available at the transmitter; Section 6 provides the numerical results of
the AWGN wiretap channel; Section 7 concludes the paper.

A note about the notation: capital letters, e.g., W, will denote a
random variable and the corresponding small letter w denotes its reali-
zation; an n-length vector ðA1;A2;…;AnÞ will be denoted as A; infor-
mation theoretic notation will be same as in Ref. [22].

2. Channel model and problem statement

We consider a discrete time, memoryless, degraded wiretap channel
in which Alice wants to transmit messages to Bob. We want to keep Eve
(who is passively ”listening”) ignorant of the messages (Fig. 1).

Formally, Alice wants to communicate messages W 2 W ¼ f1;2;…;

2nRsg reliably via the wiretap channel to Bob while ensuring that Eve is
not able to decode them, where Rs (the secrecy capacity) is defined
Fig. 1. Wiretap channel with secret key buffer.
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below. W is distributed uniformly over W . At time i, Xi is the channel
input, and Bob and Eve receive the channel outputs Yi and Zi respectively,
where Xi 2 X ;Yi 2 Y ; Zi 2 Z . The transition probability matrix of the
channel is pðy; zjxÞ. The secrecy capacity ([1])

Rs ¼ max
pðxÞ

½IðX; YÞ � IðX; ZÞ� (1)

is assumed > 0.
We consider the system as a time slotted system, in which each slot

consists ofM þ 1 minislots and one minislot consists of n channel uses,M
being a positive large integer. We are interested in transmitting a
sequence fWm;m � 1g of iidmessages uniformly distributed overW . Let
C be the capacity of Alice-Bob channel and ½x� denote the integer part of
x. For simplicity, we take C

Rs
as an integer. The message Wk to be trans-

mitted in slot k consists of one or more messages Wm. The codeword for
messageWk is denoted by Xk. The corresponding received bits by Eve are
Zk. To increase the secrecy rate, the transmitter uses previousmessages as
keys for transmitting the messages in a later slot.

We will denote by PðnÞe the probability that any of the messages

transmitted in a slot is not properly received by Bob: PðnÞe ¼
PrðWk 6¼ cWkÞ, where cWk is the decoded message by Bob in slot k.

For secrecy we consider the leakage rate

1
n
I
�
Wk;Wk�1;…;Wk�N1 ;Z1;…; Zk

�
(2)

in slot k, where N1 is an arbitrarily positive large integer which can be
chosen as a design parameter to take into account the secrecy require-
ment of the application at hand.2 Then of course we should consider
k > N1, which means that Eve at time k is not interested in very old
messages transmitted before slot k� N1.

Definition 2.1. Rate R is achievable if there are coding-decoding

schemes for each n such that PðnÞe → 0 and 1
n IðWk;…;Wk�N1 ; Z1;…;ZkÞ →

0 as n → ∞, where N1 is an arbitrarily large fixed constant.
Our coding scheme is as following: the messageWk transmitted in slot

k is stored in a key buffer (of infinite length) for later use as a key. After
certain bits from the key buffer are used as a key for data transmission,
they are discarded from the key buffer, not to be used again. Let Bk be the
number of bits in the key buffer at the beginning of slot k. Let Rk be the
number of key bits used in slot k from the key buffer. Then,

Bkþ1 ¼ Bk þ
��Wk

��� Rk (3)

where
��Wk

�� denotes the number of bits in Wk. Now we explain the
coding-decoding scheme used in this paper.
2.1. Encoder

To transmit message Wk in slot k, the encoder has two parts

fs : W → X n; fd : W
M �K → X nM (4)

whereK is the set of secret keys generated and fs is the wiretap encoder,
as in Ref. [1]. We use the following encoder for fd: take binary version of
the message and XOR with the binary version of the key. Encode the
resulting encrypted message with an optimal usual channel encoder (e.g.,
an efficient LDPC code).

Assume B0 ¼ 0. The case of B0 > 0 can be easily handled in the same
way. In the first slot, message W1 ¼ W1, encoded by using the wiretap
coding only, is transmitted (we use only the first minislot, see Fig. 2). At
2 One motivation for this is the law in various countries where old secret
documents are declassified after a certain number of years.



Fig. 2. Coding Scheme to achieve Shannon Capacity in Wiretap Channel.
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the end of slot 1, nRs bits of this message are stored in the key buffer.
Thus, B1 ¼ Rsn. In slot 2, message W2 consisting of two messages ðW21;

W22Þ ¼ ðW2;W3Þ are transmitted. W2 is transmitted via wiretap
coding,W3 uses W1 as a key, and the encrypted message W1 �W3 is
transmitted via a usual capacity achieving channel code. At the end of
slot 2, Rsn bits ofW1 are removed from the key buffer and 2Rsn bits ofW2

are stored in the key buffer. Since Bob is able to decode W1 with a large
probability, but not Eve, W1 can be an effective key in slot 2. In slot 3,
message W3 consisting of 3 messages from the source message sequence
is transmitted: one message in the first mini slot denoted as W3;1 via
wiretap coding, and two messages denoted together as W3;2 via
encryption with messageW2 as key bits. In any mini-slot we can transmit
up to C=Rs messages via encryption with a key. This is because we cannot
transmit reliably at a rate higher than Bob's capacity C. Thus, the
maximum number of messages that can be transmitted in a slot is 1þ
I
�
Wk ;Wk�1;…;Wk�N1 ;Z1;…; Zk

� ¼ I
�
Wk;1;Wk�1;1;…;Wk�N1 ;1; Z1;…;Zk

�þ I
�
Wk;2;…;Wk�N1 ;2;Z1;…; Zk

��Wk;1;…;Wk�N1 ;1

�
(5)
C
Rs
M ≜ M1. Once we reach this limit, from then onwards M1 messages

will be transmitted in a slot providing the achievable rate RsþCM
Mþ1 , which

can be made as close to C as we wish by making M arbitrarily large.
Consequently, in slot k � M1, k messages from the source message

stream are transmitted, ðk� 1ÞRsn bits from the key buffer are removed
in the beginning of slot k, and kRsn bits are added to the key buffer at the
end of slot k. The overall message is denoted by Wk ¼ ðWk;1;Wk;2Þ, with
Wk;1 consisting of one source message transmitted via wiretap coding
and Wk;2 consisting of k� 1 messages transmitted via the secret key.
From slot M1 onwards, M1 messages are transmitted in the above
mentioned fashion.

We use the key buffer as a First In First Out (FIFO) queue, i.e., at any
time the oldest key bits in the buffer are usedfirst. Also,Bk → ∞ as k → ∞.
2.2. Decoder

We also have a secret key buffer at Bob's decoder , and it is used in the
same way as at the transmitter. The confidential messages decoded by the
decoder are stored in this buffer. For decoding at Bob, the usual wiretap
decoder (say, a joint-typicality decoder) is used in slot 1. From slot 2
onwards, we use the wiretap decoder for the first mini slot, while for the
rest of the mini-slots, we use the channel decoder (corresponding to the
channel encoder used) and then XOR the decoded message with the key
used.

The above coding-decoding schemes ensure that PðnÞe → 0 as n → ∞.
There is a small issue of error propagation due to using the previous
message as key. Let εn be the message error probability for the wiretap
encoder and let δn be the message error probability due to the channel
encoder for Wk. Then, εn → 0 and δn → 0 as n → ∞. For the kth slot, we
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have PðWk 6¼ cWkÞ � PrðError in decoding Wk1ÞError in decoding
Wk2ÞError in decoding Wk�1Þ. Thus, the error increases with k. But
restarting (as in slot 1) after some large k slots as in slot 1 (i.e., again start
with one message in the first minislot and no message in the rest of the

slot) will ensure that PðWk 6¼ cWkÞ → 0 as n → ∞.
In the rest of the paper, we will show that our coding scheme provides

an achievable rate with the above secrecy criterion as close to C as
needed, for all k large enough. We also note that the following proof is
valid for N1 > 1. The proof for N1 ¼ 1 is different from the proposed
proof and one can refer to [23] for details of the proof. We will denote the
codeword Xk ¼ ðXk;1;Xk;2Þ and Zk ¼ ðZk;1; Zk;2Þ for data received by Eve
in the first and second part of slot k.

3. Capacity of wiretap channel
Theorem 3.1. The secrecy capacity of our coding-decoding scheme is C and
it satisfies (2) for any N1 � 0, for all k large enough.

Proof: As mentioned in the last section, by using our coding-decoding
scheme, using wiretap coding and secure key, in any slot k, Bob is able to

decode the message Wk with probability PðnÞe → 0 as n → ∞.
Fix N1 � 0 and a small ε > 0. Due to wiretap coding, we can choose n

such that IðWk;1;Zk;1Þ � nε for all k � 1. Since key buffer Bk → ∞, we use
the oldest key bits in the buffer first and do not use more thanMC key bits
in any slot. After sometime (say N2 slots), for all k � N2 we use key bits
only from messages W1;W2;…;Wk�N1�1 for messages Wk; Wk�1; …;

Wk�N1 . Furthermore,
We show in Lemma 1 that

I
�
Wk;1;Wk�1;1;…;Wk�N1 ;1; Z1;…;Zk

� � ðN1 þ 1Þnε (6)

and in Lemma 2 that

I
�
Wk;2;…;Wk�N1 ;2; Z1;…;Zk

��Wk;1;…;Wk�N1 ;1

� ¼ N1ε (7)

From (5), (6) and (7)

1
n
I
�
Wk;Wk�1;…;Wk�N1 ;Z1;…; Zk

� � ð2N1 þ 1Þε (8)

By fixing N1, we can take ε small enough such that ðN1 þ 1Þε is less
than any desired value.

So far, we have been considering an infinite buffer system. Never-
thless, an actual systemwill have a finite buffer. Nowwe compute the key
buffer length needed for our system.

If we fix the probability of error for Bob and the upper bound on
equivocation, then we can get the code length n needed. Also, from the
secrecy requirement, we can fix N1. Once n and N1 are fixed, to ensure
that eventually, in slot k we will use a key from messages before time k�
N1. The key buffer size should be � CMN1n bits. Also, since the key
buffer length increases by nRs bits in each slot, the key buffer will have at
least CMN1n bits after slot CMN1

Rs
. In the finite buffer case, eventually the

key buffer will overflow.We shall loose only the latest bits arriving at any
slot (not the bits already stored).

We can obtain the Shannon capacity even with strong secrecy. For
this aim, instead of using the usual wiretap coding of Wyner in the first
minislot of each slot, we use the resolvability-based coding scheme [21].
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Then, IðWk;1; Zk;1Þ � ε, instead of IðWk;1;Zk;1Þ � nε, for n large enough.
Then from proof of Theorem 1, our coding-decoding scheme provides

I
�
Wk ;…;Wk�N1 ;Z1;…;Zk

� � ε (9)

4. AWGN slow fading channel

Nowwe consider a slow flat fading AWGN channel (Fig. 1), where the
channel gains in a slot are constant. The channel outputs are,

Yi ¼ ~HXi þ N1i (10)

Zi ¼ ~GXi þ N2i (11)

where Xi is the channel input, fN1ig and fN2ig are independent, identically
distributed ði:i:d:Þ sequences independent of each other, and fXig with
distributionsN ð0; σ21Þ andN ð0; σ22Þ respectively.N ða; bÞ denotes Gaussian
distribution with mean a and variance b. ~H and ~G are the channel gains to

Bob and Eve respectively in the given slot. Let H ¼ ��~H��2 and G ¼ ��~G��2.
The channel gains Hk and Gk in slot k are constant, and sequences

fHk; k � 0g and fGk; k � 0g are iid and independent of each other. We
assume that ðHk;GkÞ is known to the transmitter and Bob at the beginning
of slot k. The notation and assumptions are same as in Section 3. Power
PðHk;GkÞ is used in slot k for transmission. There is an average power
constraint,

lim sup
k→∞

1
k

Xk

m¼1

E ½PðHk;GkÞ� � P (12)

Given Hk;Gk; and Bk at the beginning of slot k, Alice needs to decide
on PðHk;GkÞ and Rk such that the resulting average transmission rate
lim supk→∞

1
k

Pk
l¼1rl is maximized subject to (12), (2) and Pn

e → 0, where rk
is the transmission rate in slot k. We compute this capacity for
PðHk > GkÞ > 0; otherwise, the capacity is zero. At the end of slot k,
nðM þ 1Þrk ≜ rk bits are stored in the key buffer for later use as a key
while Rk bits have been removed. Thus, the buffer size evolves as,

Bkþ1 ¼ Bk þ rk � Rk (13)

For convenience, we define

CðPðH;GÞÞ ¼ 1
2
log

�
1þ HPðH;GÞ

σ2
1

�
(14)

and

CeðPðH;GÞÞ ¼ 1
2
log

�
1þ GPðH;GÞ

σ22

�
(15)

where PðH;GÞ is the power used when the channel gains are H and G.
Unlike in Sections II and III where initial messagesW are with cardinality
2nRs , we use adaptive coding and power control. Then, we have the
following theorem.

Theorem 4.1. The secrecy rate

Cs ¼ EH ½CðPðHÞÞ� (16)

is achievable if PrðHk > GkÞ > 0, where PðHÞ ¼ PðH;GÞ is the water-
filling power policy for Alice → Bob channel.

Proof. We follow the coding-decoding scheme of Section 3 with the
following change to account for the fading.

Each slot has M þ 1 mini-slots. We fix a power control policy PðH;GÞ
to satisfy average power constraint. We transmit for the first time when
Hk > Gk, use wiretap coding in all the ðM þ 1Þ minislots, and also store
all the transmitted bits in the key buffer.

From next slot onwards, we use the first mini-slot for wiretap coding
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(if Hk > Gk) and the rest of the mini-slots for transmission via secret key
(ifHk � Gk, use onlyMminislots for transmission with secret key in slot k
and do not use the first minislot, with Rk ¼ minðBk;MCðPðHk;GkÞÞnÞ. In
every slot we remove Rk bits and add rk � Rk bits to the key buffer. Since
PrðHk > GkÞ > 0, Prðrk > RkÞ > 0. Thus Bk ↑ ∞ a:s: and eventually, in
every slot we will transmit in the first mini-slot at rate

½CðPðHk ;GkÞÞ � CeðPðHk;GkÞÞ�þ (17)

and in the rest of the mini-slots at rate CðPðHk;GkÞÞ with arbitrarily large
probability. The average rate in a slot can be made as close to
CðPðHk;GkÞÞ as we wish bymakingM large enough. Thus, the rate for this
coding scheme is maximized by water filling.

Now we want to ensure that for k large enough, for messages ðWk;

Wk�1;…;Wk�N1 Þ we use only keys from ðW1; …; Wk�N1�1Þ. It can be
ensured that if we do not use more thanM key bits in a slot and from k�
N1 onward the key queue length � MN1 bits, where the constant M can
be chosen arbitrarily large. Thus we modify the above scheme such that
we use minðBk;M; nMCðPðHkÞÞÞ key bits in a slot instead of minðBk;

nMCðPðHkÞÞÞ bits. By makingM as large as needed, we can get arbitrarily
close to the water filling rate.

Strong secrecy can be achieved as the non-fading case in Section 3.
Also, to attain the required reliability and secrecy, the key buffer length
required can be obtained as in Section 3 by usingM (defined in the proof
of Theorem 2).

5. Fading wire-tap with no CSI of eavesdropper

In this section, we assume that the transmitter knows only the channel
state of Bob at time k but not Gk, the channel state of Eve. This is more
realistic because Eve is a passive listener. Now we modify our fading
model. Instead of ðHk;GkÞ being constant during a slot (slow fading), the
coherence time of ðHk;GkÞ is much smaller than the duration n of a
minislot. Then we can use the coding-decoding scheme of [13] in the first
minislot with secrecy rate Rs and IðWk;1; Z1;…;ZkÞ � nε, where

Rs ¼ 1
2
EH;G

��
log

�
1þ HPðHÞ

σ21

�
� log

�
1þ GPðHÞ

σ2
2

�	þ

(18)

Now we have the following proposition.

Proposition 5.1. Secrecy capacity equals to the main channel capacity
without CSI of Eve at the transmitter

C ¼ 1
2
EH

�
log

�
1þ HPðHÞ

σ21

�	
(19)

is achievable subject to power constraint EH ½PðHÞ� � P, where PðHÞ is the
waterfilling policy.

Proof. Since each mini-slot is of long duration compared to the
coherence time of the fading process ðHk;GkÞ, the coding scheme of [13]
can be used without CSI of Eve in the first minislot of each slot. This can
achieve secrecy capacity

Cs ¼ EH;G

"
1
2
log

�
1þ HPðHÞ�σ21
1þ GPðHÞ=σ22

�þ#
(20)

subject to the power constraint EH;G½PðHÞ� � P, with IðWk;ZkÞ � nε: Now
we can use the coding-decoding scheme of Section 3 to achieve a secrecy
capacity equal to the main channel capacity

C ¼ 1
2
EH

�
log

�
1þ HPðHÞ

σ21

�	
(21)



Fig. 3. Comparision of proposed coding scheme with usual wiretap coding for
AWGN channel.

Fig. 4. Secrecy rate enhancement with time.
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6. Numerical results

6.1. AWGN wiretap channel

In this section we take an example of Additive White Gaussian Noise
(AWGN) wiretap channel. The input/output relation becomes a special
case of (10) and (11), by taking H ¼ G ¼ 1, i.e.,

Yi ¼ Xi þ N1i (22)

Zi ¼ Xi þ N2i (23)

In this case we know that the channel capacity from Alice to Bob
(Main channel) is given by

C ¼ 1
2
log

�
1þ P

σ21

�
(24)

and secrecy capacity is given by (assuming degraded wiretap channel,
i.e., σ21 < σ22)

Cs ¼ 1
2
log

�
1þ P

σ2
1

�
-
1
2
log

�
1þ P

σ22

�
(25)

To perform numerical evaluation, we take σ21 ¼ 1 and σ2
2 ¼ 1:7213.

Using only Wyner's wiretap coding, we can achieve a secrecy rate equal
to the secrecy capacity of channel given by (25). Now if we use the
coding/decoding scheme proposed in this paper, we can achieve a se-
crecy rate close to the Shannon capacity of Alice-to-Bob channel, i.e.,
(24). See Fig. 3.

Next we evaluate the number of slots it takes for our proposed cod-
ing/decoding scheme to achieve the secrecy rate equal to the Shannon
capacity. We note that the slot number at which the secrecy rate becomes
equal to Shannon capacity, k is

k ¼
1
2 log

�
1þ P

�
σ21
�

1
2 logð1þ P=σ21Þ � 1

2 logð1þ P=σ22Þ
¼ 5 (26)

Hence after the fifth time slot, we can always transmit messages at a
rate equal to the Shannon capacity, but the security metric will now be
(2). See Fig. 4.

7. Conclusions

In this paper we achieve a secrecy rate equal to the main channel
capacity of a wiretap channel by using the previous secret messages as a
key for transmitting the current message. We show that not only the
current message is securely transmitted, but all messages transmitted in
last N1 slots are secure w.r.t. all the outputs of the eavesdropper till now,
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where N1 can be taken arbitrarily large. We extend this result to fading
wiretap channels when CSI of Eve may or may not be available to the
transmitter. The optimal power control is water filling itself. Finally, we
provide a numerical example of AWGN wiretap channel, where we
demonstrate the effect of rate loss and how the proposed coding/
decoding scheme mitigates the rate loss.
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Appendices

Proofs of lemmas
Lemma 1. The following holds

I
�
Wk;1;Wk�1;1;…;Wk�N1 ;1; Z1; Z2;…;Zk

� � ðN1 þ 1Þnε (27)

Proof: We have,

I
�
Wk;1;Wk�1;1;…;Wk�N1 ;1; Z1; Z2;…;Zk

� ¼ I
�
Wk;1; Z1; Z2;…;Zk

�þ I
�
Wk�1;1; Z1; Z2;…;Zk

��Wk;1

�þ…þþI
�
Wk�N1 ;1;Z1;Z2;…; Zk

��Wk;1;…;Wk�N1þ1;1

�
(28)

But

I
�
Wk;1;Z1;Z2;…; Zk

� ¼ I
�
Wk;1;Zk;1

�þ I
�
Wk;1;Z1;…; Zk�1; Zk;2

��Zk;1

� � nεþ 0 (29)
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because ðZ1;…;Zk�1;Zk;2Þ?ðZk;1;Wk;1Þ, where X?Y denotes that random variable X is independent of Y.
Next consider

I
�
Wk�1;1;Z1;Z2;…; Zk

��Wk;1

� ¼ I
�
Wk�1;1; Zk�1;1

��Wk;1

�þ I
�
Wk�1;1;

�
Z1;…; Zk

�� Zk�1;1

��Wk;1; Zk�1;1

�
(30)

where ðZ1;…;ZkÞ � Zk�1;1 denotes the sequence ðZ1;…;ZkÞ without Zk�1;1. However,

I
�
Wk�1;1;Zk�1;1

��Wk;1

� ¼ I
�
Wk�1;1; Zk�1;1

� � nε (31)

Also, because ðZ1;…;Zk�2Þ is independent of ðWk�1;1;Wk;1;Zk�1;1Þ

I
�
Wk�1;1;

�
Z1;…;Zk

�� Zk�1;1

��Wk;1;Zk�1;1

� ¼ I
�
Wk�1;1; Z1;…;Zk�2

��Wk;1;Zk�1;1

�þ I
�
Wk�1;1; Zk; Zk�1;2

��Wk;1; Zk�1;1; Z1;…;Zk�2

�
(32)

¼ðaÞ 0þ I
�
Wk�1;1;Zk;1

��Wk;1; Zk�1;1; Z1;…Zk�2

�þ I
�
Wk�1;1;Zk;2; Zk�1;2

��Wk;1; Zk�1;1; Z1;…Zk�2;Zk;1

�
(33)

Furthermore, since ðWk�1;1;Wk;1;Zk;1; Zk�1;1Þ?ðZ1;…; Zk�2Þ we have

I
�
Wk�1;1;Zk;1

��Wk;1; Zk�1;1; Z1;…;Zk�2

� ¼ I
�
Wk�1;Zk;1

��Wk;1; Zk�1;1

�
(34)

Using the fact that ðWk�1; Zk�1;1Þ?ðWk;1; Zk;1Þ we can directly show that the right side equals zero.
Let A denote the indices of the slots in which messages are transmitted which are used as keys for transmitting Wk;2 and Wk�1;2. Since�

Zk;2;Zk�1;2

�
↔

�
Wk�1;1;WA

�
↔

�
Wk;1;Zk�1;1;Zk;1;Z1;…; Zk�2

�
(35)

where X↔Y ↔Z denotes that fX;Y; Zg forms a Markov chain, we have

I
�
Wk�1;1; Zk;2; Zk�1;2

��Wk;1;Zk�1;1;Z1;…;Zk�2;Zk;1

�
� I

�
Wk�1;1;WA;Zk;2;Zk�1;2

��Wk;1;Zk�1;1;Z1;…; Zk�2; Zk;1

�
�
ðaÞ
I
�
Wk�1;1;WA; Zk;2; Zk�1;2

� (36)

� I
�
Wk�1;1;Zk;2; Zk�1;2

�þ I
�
WA; Zk;2; Zk�1;2

��Wk�1;1

�¼ðbÞ 0þ I
�
WA;Zk;2; Zk�1;2

�¼ðcÞ 0 (37)

where ðaÞ follows from (35), ðbÞ follows since ðWk�1;1; Zk�1;1Þ?ðWA;Zk;2;Zk�1;2Þ and ðcÞ follows since WA?Zk;2;Zk�1;2.
From (30), (31), (34), (37),

I
�
Wk�1;1;Z1;Z2;…; Zk

��Wk;1

� � nε (38)

We can similarly show that the other terms on the right side of (5) are also upper bounded by nε. This proves the lemma.

Lemma 2. The following holds

IðWk;2;Wk�1;2;…Wk�N1 ;2; Z1;…;Zk jWk;1;…;Wk�N1 ;1Þ � N1nε (39)

Proof: We have

I
�
Wk;2;…;Wk�N1 ;2; Z1;…;Zk

��Wk;1;…;Wk�N1 ;1

� ¼ I
�
Wk;2;…;Wk�N1 ;2; Z1;…; Zk�N1�1

��Wk;1;…;Wk�N1 ;1

�
þ I

�
Wk;2;…;Wk�N1 ;2; Zk�N1 ;…;Zk

��Wk;1;…;Wk�N1 ;1; Z1;…;Zk�N1�1

�
(40)

Since Wk;1;…;Wk�N1 ;1 is independent of Wk;2;…;Wk�N1 ;2;Z1;…;Zk�N1�1, the first term on the right equals

I
�
Wk;2;Wk�1;2;…;Wk�N1 ;2; Z1;…;Zk�N1�1

� ¼ 0 (41)

The second term in the RHS of (40).

¼ IðWk;2;…;Wk�N1 ;2; Zk�N1 ;…;Zk j
Wk;1;…;Wk�N1 ;1; Z1;…;Zk�N1�1

�
¼ IðWk;2;…;Wk�N1 ;2; Zk�N1 ;1;…Zk;1j

Wk;1;…;Wk�N1 ;1; Z1;…;Zk�N1�1

�
þIðWk;2;Wk�1;2;…;Wk�N1 ;2; Zk�N1 ;2;…;Zk;2j
Wk;1;…;Wk�N1 ;1; Z1;…;Zk�N1�1; Zk�N1 ;1;…;Zk;1

�
(42)

The first term on the right is zero because ðWk;2,Wk�1;2;…;Wk�N1 ;2Þ is independent of ðZk;1,…,Zk�N1 ;1Þ, ðWk;1;…;Wk�N1 Þ and Z1,… Zk�N1�1: Also since
ðWk;1;…;Wk�N1 ;1Þ and ðZk;1;…;Zk�N1 ;1Þ are independent of the other random variables in the second term on the right side, this term equals

I
�
Wk;2;Wk�1;2;…;Wk�N1 ;2;Zk;2;…;Zk�N1 ;2

���Z1;…; Zk�N1�1


(43)

For convenience we denote it as IðcW 2; bZ2

��bZ1Þ with cW 2, bZ2, bZ1 denoting the respective sequences of random variables. Since
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I
� bW 2; bZ 1; bZ 2

� ¼ I
� bW 2; bZ 1

�þ I
� bW 2; bZ 2

��bZ 1

� ¼ I
� bW 2; bZ 2

�þ I
� bW 2; bZ 1

��bZ 2

�
(44)
and we have

I
� bW 2; bZ 1

� ¼ 0 ¼ I
� bW 2; bZ 2

�
(45)

and

bZ 1 ↔
� bW 1; bWA; bW 2

�
↔ bZ 2 (46)

where cW 1 ¼ ðWk;1;…;Wk�N1 ;1Þ, we get

I
� bW 2; bZ 2

��bZ 1

�¼ðaÞ I� bW 2; bZ 1

��bZ 2

�
� I

� bW 1; bW 2; bWA; bZ 1

��bZ 2

�
�
ðbÞ
I
� bW 1; bW 2; bWA; bZ 1

�
¼ I

� bW 1; bZ 1

�þ I
� bW 2; bWA; bZ 1

�� bW 1

�
¼ðcÞ 0þ I

� bW 2; bWA; bZ 1

�
¼ I

� bWA; bZ 1

�þ I
� bW 2; bZ 1

�� bWA

�
�
ðdÞ

N1nεþ 0 ¼ N1nε

(47)

where ðaÞ follow from (45), ðbÞ follows from (46) ðcÞ follows from cW 1?ðcW 2;cWA;bZ1Þ, ðdÞ follows fromwiretap coding and the fact that the set Awill not

have larger cardinality than N1, and cW 2?ðbZ1;cWAÞ.
Therefore

I
� bW 2; bZ 2

��bZ 1

� � N1nε (48)

From (41), (42) and (48), we get the lemma.
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