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Abstract: Estimating articulatory movements from speech acoustic representations is
known as acoustic-to-articulatory inversion (AAI). In this work, a speaker conditioned
AAI (SC AAI) is proposed using a bi-directional LSTM neural network, where training is
performed by pooling acoustic-articulatory data from multiple speakers along with their
corresponding speaker identity information. For this work, 7.24 h of multi-speaker acoustic-
articulatory data are collected from 20 speakers speaking 460 English sentences. Experiments
with 20 speakers indicate that the SC AAI model performs better than SD AAI model with
an improvement of correlation coefficient by 0.036 (absolute) between the original and esti-
mated articulatory movements. VC 2020 Acoustical Society of America
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1. Introduction

Speech articulation involves movements of articulators including tongue, lips, jaw, and velum
which form constriction in the vocal tract. The estimation of the articulatory movement from the
acoustics is known as acoustic-to-articulatory inversion (AAI). Various models were proposed in
the literature to learn AAI in a speaker dependent manner, e.g., Gaussian mixture model,1 hid-
den Markov model (HMM),2 and neural network based approaches.3 Among the neural network
based approaches, the long short term memory (LSTM), which is a recurrent neural network,
achieves the state-of-art performance.3

Articulatory inversion learned with multiple speakers’ acoustic-articulatory data have
been shown to benefit (i) unknown speaker evaluation, (ii) in terms of improving the accuracy in
a closed-set speaker condition. In unknown speaker evaluation, it has been shown that4 speaker
independent AAI benefits from transforming acoustic features of different speakers to a target
speaker acoustic space using vocal tract length normalization. In a closed-set speaker condition
(train and test with the same speakers), multi-speaker articulatory trajectory formation based on
HMM and speaker-adaptive training were proposed and showed no statistically significant differ-
ence from that for speaker-dependent models.5,6 To overcome the limitation on the amount of
acoustic-articulatory data, a low resource AAI model was proposed using transfer learning and a
generic AAI (GM AAI) model3 with the LSTM network, which is trained by pooling the data from
all speakers. It has been shown that the performance of the GM AAI is better than that of an indi-
vidual speaker dependent AAI (SD AAI) model, which is trained using acoustic-articulatory data
from a single speaker. This suggests that LSTMs can be used to learn acoustic-articulatory mappings
of multiple speakers through a single AAI model rather than building separate speaker specific
models. The GM AAI model can be further improved for a specific speaker by fine-tuning the GM
AAI model with the acoustic-articulatory data specific to a speaker.3 An alternative approach to
fine-tuning GM AAI is to provide auxiliary features, which carry speaker specific information, along
with the acoustic features for learning rich acoustic-to-articulatory mappings of multiple speakers.
We hypothesize that conditioning GM AAI with speaker specific information using auxiliary
features would be efficient and it would provide a more compact way of learning multiple AAI
mappings. In this work, we propose an AAI model using the LSTM network by conditioning
with the speaker specific information known as the speaker conditioned AAI (SC AAI)
model. Its performance is compared with SD AAI, GM AAI, and GM AAI with speaker
specific fine-tuning models.

For this work, we collected a new multi-speaker acoustic-articulatory database from 20
speakers speaking 460 English sentences, with an average duration of 21.72 (62.19) minutes per
subject. These multi-speaker acoustic-articulatory data can be used to study speaker specific artic-
ulatory signature, inter-speaker variability analysis, and learning multi-speaker AAI. In this
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work, we aim to learn a single model using the SC AAI approach with multiple speakers’ acoustic-
articulatory data that could improve the accuracy of the AAI model in a closed-set speaker evaluation.

2. Dataset

We recorded acoustic-articulatory data using an AG501 electro-magnetic articulograph (EMA).7

Acoustic-articulatory data were recorded from 20 speakers, comprising 10 male (M1–M10) and
10 female (F1–F10) speakers. All the speakers were proficient in English and reported to have no
speech disorders in the past. For speech stimuli, we chose 460 MOCHA TIMIT sentences.8

During recording, each sentence was projected on a computer screen placed in-front of the
speaker, and a slide changer was provided to the speaker to navigate through all the sentences.
We recorded simultaneous acoustic-articulatory data for each sentence.

Acoustic data were collected at a sampling rate of 48 kHz using the t.bone EM9600 shot-
gun microphone9 placed in front of the speaker. Articulatory data were collected by gluing (using
“Epiglu”7) sensors of AG501 on six articulators, namely, upper lip (UL), lower lip (LL), jaw
(Jaw), tongue tip (TT), tongue body (TB), and tongue dorsum (TD), following recommendations
by Pattem et al.10 particularly for the tongue sensors. Two additional sensors were glued on the
mastoids for head movement correction. The sensors capture the articulatory movements in hori-
zontal and vertical directions indicated by X and Y, respectively, in the midsagittal plane.3 This
results in a 12-dimensional articulatory feature vector whose elements are indicated by ULx, ULy,
LLx, LLy, Jawx, Jawy, TTx, TTy, TBx, TBy, TDx, TDy. For the recorded acoustic-articulatory
data we performed manual annotations to remove the start and end silence segments in each
sentence.

3. Proposed approach

The acoustic to articulatory mapping function is known to be non-unique and nonlinear in nature.11

Also, the articulatory movement trajectories are known to be smooth in nature.11 In order to pre-
serve the smoothness characteristics in estimated articulatory trajectories, these are further post-
processed by either low-pass filtering11 or using dynamic features with HMM2 or Kalman filtering.12

Neural networks have been shown to perform well in learning non-linear and complex functions.11

In particular, bi-directional long short term memory (BLSTM) networks are known to model the
time series data well and, hence, are used as the state-of-art modelling technique for the AAI task.
BLSTM networks have also been shown to preserve the smoothness in the estimated articulatory
trajectories.3 In this work, we propose a speaker conditioned (SC) AAI model using BLSTM
networks. We pool the acoustic-articulatory data from all speakers to train a SC AAI model
together with the corresponding speaker identity information as an auxiliary feature. Although
acoustic features implicitly carry speaker identity, we hypothesize that providing speaker identity
explicitly would enable the network to learn the acoustic-articulatory mappings better.

Figure 1 illustrates the proposed approach for SC AAI. In SC AAI, the speaker identity
information is provided as a one-hot encoded vector, the dimension of which is equal to the
number of speakers in the training set. This one-hot representation of speaker identity informa-
tion is fed to the embedding layer (indicated by “Embed layer” in Fig. 1) as an auxiliary infor-
mation, while the acoustic features are fed to the dense layer. The outputs of the embedding and
dense layers are concatenated as shown in Fig. 1. The concatenated vectors across all time
frames of a sentence, which carry acoustic and speaker identity information, are fed as an input
to the BLSTM layers. Note that the speaker identity information component remains same in
the concatenated vectors across all time frames in a sentence. The output layer (indicated as
“Regression layer” in Fig. 1) is a time distributed dense layer with linear activation function.

4. Experimental setup

The recorded acoustic-articulatory data using 460 sentences were divided into a training set 80%
(364), validation set 10% (46), and testing set 10% (46) for each speaker. The recorded speech sig-
nal was down-sampled to 16 from 48 kHz. 13-dimensional Mel-frequency cepstral coefficients
(MFCCs) were used as the acoustic features as they have been shown to be optimal for the AAI

Fig. 1. (Color online) Block diagram of the proposed SC AAI model.
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task.11 The MFCCs were computed using a window size of 20 ms and a frame shift of 10 ms. To
avoid high frequency noise, the articulatory position data were low-pass filtered with a cutoff fre-
quency of 25 Hz, since most of the energy of the articulatory data lies below 25 Hz for all the artic-
ulators. Furthermore, the articulatory data were down-sampled to 100 from 250 Hz to obtain
frame synchronization with acoustic features. For each dimension of the acoustic and articulatory
feature vector we performed mean removal and variance normalization at an utterance level.

For SC AAI experiments, we chose 200 units for the dense layer which takes 13-
dimensional MFCC as an input. As there are 20 speakers in the training set, the speaker identity
information was represented by a 20-dimensional one-hot encoded vector. Note that one-hot vec-
tor is a sparse encoding, where only one index corresponding to a speaker is represented by integer
value “one” and rest of the indices with “zero” integers. Therefore, an embedding layer was used
to map the sparse binary valued one-hot encoded vector into the 32-dimensional continuous vector
space. This also matches with the continuous vector representation of the dense layer output and
thereby appropriate for concatenation. The outputs of the dense layer and embedding layer were
concatenated and fed to the BLSTM hidden layers, comprising three hidden layers with 256-
dimensional output units in each. We grouped acoustic-articulatory features of all the frames in an
utterance to perform utterance by utterance training. In the train and test sets, we performed zero
padding to obtain a fixed length sequence of 4 s (400 samples), which allows us to use a batch size
of 50 to accelerate the speed of training. The mean squared error was chosen as the objective func-
tion to minimize the training loss and early stopping was performed based on the validation loss.

During testing of the SC AAI model, the speaker identity information may not be known.
In order to estimate this information during test time, we also trained a closed-set speaker identifi-
cation (SID) network using acoustic features, i.e., MFCCs. So, during testing, the speaker identity
information was predicted using the SID network, having two LSTM units of 150 units each fol-
lowed by a time distributed dense layer of 100 units and softmax layer. We chose categorical cross
entropy as the loss function. All the experiments were performed using Keras with Tensorflow as
back-end.

In order to compare with the performance of SC AAI, we considered baselines corre-
sponding to different AAI models. The first column of Table 1 lists different AAI models, while
the second, third, and fourth columns have yes/no entries to indicate whether pooling, fine-
tuning, and speaker-conditioning were performed while training the AAI-models, respectively.
Multiple speakers’ acoustic-articulatory data were pooled to train GM AAI and SC AAI.
Motivated from transfer learning approach, we further perform fine-tuning on GM AAI model
with speaker specific acoustic-articulatory data, which results in speaker specific models indicated
by GM-FSD. When speaker identity is unknown, SC AAI is evaluated with estimated speaker
identity (ESI) from SID network indicated by SC-ESI. The last column indicates the number of
AAI models required for all the speakers in the training set. To evaluate the performance of dif-
ferent AAI-models, we chose root mean square error (RMSE) and correlation coefficient (CC)3,11

as evaluation metrics computed for each articulator separately.

5. Results and discussions

In this section, we present the results of the experiments which compare the performance of SC
AAI with that of the baseline AAI models in a speaker specific manner, following which the
AAI performance is also presented in an articulator specific manner. Finally, we present the
results of SC AAI in the case of mismatched speaker identity information.

The accuracy of SID network used in the SC-ESI scheme is 95.54% and 95.00% on the
validation and test sets, respectively. Figure 2 shows the performance of five different AAI mod-
els using boxplots for each speaker, where each box represents the first quartile (bottom edge of
the box), median (horizontal line inside the box), and third quartile (upper edge of the box) of
the distribution of CC computed between the predicted and the original articulatory trajectories
and averaged across all the articulators. We perform a t-test on the CC values from all test sen-
tences of all speakers to examine statistical significance in the difference between the mean CC

Table 1. Different AAI models used for comparison in this work.

AAI-model Pooling Fine-tuning Speaker identity # Models

Speaker dependent (SD) no no no # speakers
Generic model (GM) yes no no single
Fine-tuning GM (GM-FSD) yes yes no # speakers
Speaker conditioned (SC) yes no yes (direct) single
SC-ESI yes no yes (estimated) single
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obtained using SC AAI and that using the baseline models. We observe that CC values improves
significantly (p< 0.05) with SC AAI compared to SD AAI, GM AAI, and GM FSD models. We
further perform t-test in a speaker specific manner. We observe that the SC AAI performs signifi-
cantly (p< 0.05) better than the SD AAI model consistently across all the speakers. Similarly,
performance improvements are observed while comparing SC AAI model with GM AAI, and
found to be statistically significant (p< 0.05) across all the speakers except for M4, M7, M8, and
F1. While comparing GM-FSD and SC AAI models in a speaker specific manner, significant
(p < 0:05) difference is observed only for three speakers, namely, M3, M5, and F12. For rest of
the subjects, the performance of SC AAI is on par with GM-FSD, which suggests that a single
SC AAI model captures the multiple speakers’ acoustic-to-articulatory mappings what 20 models
do in the case of GM-FSD. We also observe that there is no significant drop in the performance
when SC-ESI AAI used is compared to when SC AAI is used, except for F5 and F9. This could
be because individual speaker classification accuracy using SID network indicates that F5 and F9
are the subjects which yield the least classification accuracies of 80.43% and 82.61%, respectively,
followed by M6 with 89.13%. The performance of SC-ESI AAI suggests that in the absence of
speaker information, speaker identity information estimated using SID network can be utilized to
perform speaker conditioned AAI without any drop in performance.

Figure 3 reports the CC from different AAI models for individual articulator averaged
across all the speakers. There is a significant (p< 0.05) improvement in CC using SC AAI com-
pared to that using SD AAI for all articulators. An analysis of the improvements achieved by
the individual articulators reveals that the maximum relative improvement is observed for lip
articulators (in particular 9.47% for LLy) and the minimum for tongue articulators (in particular
3.15% for TDy). Similarly, a comparison of SC AAI with GM AAI reveals that there is consis-
tent improvement across all the articulators with the maximum relative improvement in CC for
ULy (2.53%) and minimum for TTy (0.65%). This implies that the prediction of lip position bene-
fits from the speaker identity information and could be because lip articulators are more speaker
dependent compared to tongue articulators. These are consistent with previous findings,3 where
lip articulators demand more speaker specific acoustic-articulatory data compared to tongue
articulators while fine-tuning the GM AAI model.

Table 2 reports the performance of different AAI models in terms of RMSE and CC
averaged across all articulators and speakers. Note that the RMSE is computed on articulatory
trajectories which are mean and variance normalized. So RMSE does not have any units. We
find that among all the AAI models, SC AAI has the best performance followed by GM-FSD
AAI model. From Table 2, we observe that instead of training a SD AAI model using the data
only from a single speaker, training a GM AAI model by pooling data from multiple speakers
results in an improvement in the AAI performance. This indicates that BLSTM networks are

Fig. 2. (Color online) CC averaged across all articulators for each of 20 speakers (male and female speakers in top and bot-
tom row, respectively).

Fig. 3. (Color online) Articulatory specific CC averaged across all speakers.
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able to learn multiple acoustic-articulatory mappings in a single model resulting in an improve-
ment in the performance compared to that using the SD AAI model. Thus, the GM AAI model
captures a rich acoustic-articulatory representation for all the speakers, which is further improved
by fine-tuning with speaker specific data, i.e., by GM-FSD AAI models. Although the GM AAI
model could learn the speaker specific information implicitly from acoustic features, thereby
speaker specific acoustic-to-articulatory mappings, there is a scope for improvement in AAI for
each speaker by doing speaker specific fine-tuning as is evident from the GM-FSD performance.
By conditioning speaker specific identity information explicitly, the proposed SC AAI model
could leverage that scope for improvement resulting in the best AAI performance using a single
model. Note that we further fine-tuned SC AAI in a speaker specific manner which resulted in a
RMSE of 1.0487 (60.084) which is similar to that using the SC AAI model reported in Table 2.
This indicates that a single SC AAI model is optimal for speaker dependent AAI without any
further need for fine-tuning, unlike the GM-FSD AAI model. All the experiments are performed
with mean and variance normalized articulatory trajectories, which minimize the morphological
variations across speakers and reduce the inter speaker variability. The magnitude of improve-
ments using SC-AAI over GM AAI could be more if we perform AAI without normalizing the
articulatory trajectories. Experiments are also performed using acoustic features from a particular
speaker fed along with speaker identity information from another speaker. This results in perfor-
mance drop in mismatched speaker identity cases compared to matched ones, which is due to the
inter-speaker variability in the articulatory motion. Although the SC AAI network performs bet-
ter than the GM AAI network in seen speaker case evaluation, the current SC AAI approach
does not generalize to the unseen speaker cases. This limitation of the current approach could be
solved by incorporating speaker embedding from the SID networks13 instead of one-hot represen-
tations of speaker identity information. These are parts of our future investigation.

6. Conclusion

In this work we proposed an SC AAI network that utilizes auxiliary information of the speaker
identity along with the acoustic features to estimate articulatory movements. Experiments with
20 speakers indicate that speaker conditioning is the key to achieving a better AAI performance
with the proposed SC AAI model compared to the baseline AAI models. Comparing the SC
AAI model with the GM AAI model results in an improvement in performance. Comparison
with the GM-FSD AAI model indicates that there is no significant difference in performance for
all subjects, but it provides a compact way of learning multiple speakers’ acoustic-articulatory
mappings within a single SC AAI model. In the future, we would investigate different approaches
to extend the SC AAI to benefit speaker independent AAI and focus on the applications includ-
ing speech recognition and synthesis tasks.
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