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Abstract: Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture
(SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth
(VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using
dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this
regard typically use the τ-ω types of models, which consist of two third-order polynomial equations
and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to
the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM
retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is
presented, along with two widely used existing analytical solutions. All three solutions are applied
to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that,
with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an
era where the sensitivity of retrieval algorithms is still being researched, we believe the structural
indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.

Keywords: soil moisture; equifinality; uncertainty; VOD; passive microwave; retrieval algorithm;
AMSR-E; radiative transfer model

1. Introduction

Passive microwave satellite sensors measure the thermal emissions from the Earth’s surface in
the form of brightness temperatures (TB). At appropriate frequencies (in general, L-, C-, X-bands),
these sensors assist in obtaining the soil moisture (SM) on a global scale [1]. The retrieval of SM using
passive microwave satellite sensors requires an algorithm, which can be used to convert the TB into
SM. Given that a body naturally emits radiation, a landmass covered with a canopy would release
thermal emissions primarily from the soil surface, canopy, atmosphere, and cosmic background. These
effects are modeled using a radiative transfer model (RTM), which acts as a core component of the
retrieval algorithm. Ideally, a retrieval algorithm should be able to decompose the total TB measured
by a satellite into contributions from the components described above.

In general, a radiative transfer model (RTM) forms a core component of a retrieval algorithm.
The premise of an RTM is that the brightness temperatures are directly proportional to the dielectric
properties of the soil–water medium. The emissions from surface soil are initially attenuated by the soil
roughness, which enhances the emissions and, at the same time, mixes them across the polarizations.
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These roughness effects are, in general, quantified primarily using two parameters, roughness parameter
(h), and polarization mixing ratio (Q), among others [2,3]. In the lower frequencies (which are sensitive
to SM variations), the atmosphere is generally considered to be transparent [4], resulting in the omission
of attenuations due to the atmosphere and cosmic background. Apart from these factors, the vegetation
attenuation is found to have a significant impact on the observed TB value [5].

The most widely used RTM is the τ-ω vegetation model proposed by [6]. The τ-ω model is a
zeroth-order RTM, which omits the multiple scattering effects that occur in the canopy structure. The
model has two parameters, the vegetation optical depth (VOD) (τ) and the single scattering albedo
(ω). The VOD quantifies the water content in the foliage and woody components of the above-ground
biomass [7]. Since emissions from the vegetation are directly influenced by the canopy water content,
several works have attempted to derive vegetation information that complements the corresponding
information obtained from optical indices such as the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), etc. [8–10]. On the other hand, ω determines the scattering effects of
the canopy layer, expressed as a ratio of the scattering efficiency to the total extinction efficiency.

VOD is an important parameter required to retrieve SM using the RTM. In general, the VOD is
estimated in two ways; one way is to use ancillary data, such as the NDVI, and empirical relationships
that estimate the VOD [11]. Such methods can use only a single-channel algorithm (SCA) (such as
in the case of the soil moisture active passive (SMAP) SM algorithm, which uses V-polarization) to
estimate soil moisture. The other way is to use the RTM equations available through either single
or multi-angular dual-polarized (such as in the case of the soil moisture ocean salinity (SMOS) SM
algorithm) brightness temperature observations and estimate the VOD simultaneously with the
SM [12–14]. The focus of this study lies in the latter method, i.e., estimating VOD and SM concurrently.

The soil moisture retrievals obtained from microwave observations are prone to uncertainties
from various sources. If we consider the input data, the dual-polarized TB observations (used in the
retrieval algorithm) are highly correlated by nature, due to which there can be a certain redundancy in
terms of representing the Earth’s surface characteristics between these two observations. As pointed
out by [15], this correlated nature can result in the under-determined problem of estimating two
unknowns of SM and VOD. This issue leads to compensating errors between SM and VOD, which
lead to an observation that the dual-channel algorithms are prone to greater errors in SM than the
single-channel algorithm [16,17]. Recently, this problem has been tackled by using TB observations
from multiple overpasses [18–20], and by using TB observations from multiple incidence angles [12,21].
Attempts have also been made to fuse microwave and optical satellite data to estimate SM and VOD
concurrently, along with surface roughness information [22].

Further, the RTM also consists of parameters that characterize the surface roughness, and the
scattering nature of vegetation. These parameters are necessary to accurately simulate the emissivity
from soil and vegetation. For instance, reference [3] calibrated the surface roughness and single
scattering albedo parameters by considering a set of candidate parameters and an optimization scheme
to improve the quality of SMOS soil moisture retrievals. Although attempts are made to assess the
uncertainties due to RTM parameterization [23], to the best of our knowledge, there are no studies that
focused on model structural uncertainties on soil moisture retrievals.

In terms of using dual-polarized TB observations, the τ-ω vegetation model in the two polarizations
can be used to estimate SM and VOD simultaneously. The equations are, primarily, the nonlinear
functions of VOD and SM, along with other variables and parameters, i.e., two third-order polynomial
equations of VOD and soil emissivity (a nonlinear function of SM). Given the mathematical nature
of these equations, there exists an inherent structural indeterminacy leading to the possibility of the
existence of multiple ways by which SM and VOD can be estimated. The study in [13] analytically
solved the τ-ω model in the context of the land parameter retrieval algorithm (LPRM). Further,
reference [14] obtained another unique solution in the context of the land surface microwave emission
model (LSMEM). These works attempted to concurrently estimate VOD and SM using a snapshot of
dual-polarized TB observations. In addition, reference [10] proposed a similar solution in the context of
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the University of Montana (UMT) retrieval algorithm. However, the UMT algorithm also involves the
retrieval of additional parameters, such as the water fraction and surface temperature. Although the
analytical solutions in these works are intended for the same purpose (for SM estimation), each of their
solutions’ structures are mathematically unique, which can result in a unique value of SM retrieval
for the same input and parameter configurations of RTM. This model structural indeterminacy can
also be called the problem of equifinality in the τ-ω model. Equifinality is defined as the possibility of
reaching an acceptable model outcome through different model structures or parameterizations within
a model framework [24].

With this background, we attempted to address the following objectives through this work:
(1) investigate if structural indeterminacy can alter the outcome of soil moisture retrievals and (2)
assess the sensitivity of RTM parameterization on the problem of equifinality. To depict the structural
indeterminacy, we present a new solution that simultaneously estimates the VOD and SM using
dual-polarized TB information from the RTM scheme. The analysis is carried out using advanced
microwave scanning radiometer (AMSR)-E X-band TB data on a global scale. Currently, attempts are
being made to obtain a consistent long record of satellite-based SM retrievals [25,26], by including
data from the operational satellite SM sensors soil moisture ocean salinity (SMOS) and soil moisture
active passive (SMAP). Evidently, there is a growing need to assess the uncertainty due to the problem
of equifinality (structural indeterminacy), which has not been identified before this study. Section 2
presents the RTM scheme and discusses the problem of equifinality. Section 3 presents the data and the
experimental setup. Section 4 presents the results and discussion. Section 5 presents the important
conclusions drawn from this study.

2. RTM Model Setup

The following equations present the zeroth-order τ-ω radiative transfer model [6]:

TBH = TSεrHΓC + TC(1−ω)(1− ΓC) + TC(1−ω)(1− ΓC)(1− εrH)ΓC (1)

TBV = TSεrVΓC + TC(1−ω)(1− ΓC) + TC(1−ω)(1− ΓC)(1− εrV)ΓC (2)

where, H and V indicate the horizontal and vertical polarizations, respectively, TS and TC are the
soil and canopy temperatures, respectively, εr is the emissivity of a rough soil surface, and ΓC is the
vegetation transmissivity. These equations simulate the brightness temperatures of (1) direct emission
from the soil, (2) upward emission from the canopy, and (3) ground-reflected downward emission
from the canopy. The vegetation transmissivity is obtained from the following equation.

ΓC = exp(−τ secθ) (3)

where, τ is the VOD, and θ is the angle of incidence. The emissivity of a rough soil is estimated from the
smooth soil emissivity upon accounting for the soil roughness effects using the h–Q model [2,27]. h and
Q, which are the roughness parameter and the polarization mixing ratio, respectively, are computed
using the following equations.

h = 4h2
rms(2π f /(c× 100))2 (4)

Q = 0.35×
(
1− exp

(
−0.6 · hrms · f · 10−9

))
(5)

where, hrms is the root mean square height, which is assumed to be a global constant value of 0.3 cm [27];
f is the frequency of channel in Hz; c is the speed of light (= 3× 108 m/s). Upon calculating values of h
and Q, the rough soil emissivity is estimated using:

εrH = 1− [(1−Q)(1− εsH) + Q(1− εsV)] exp(−h cosn θ)

εrV = 1− [(1−Q)(1− εsV) + Q(1− εsH)] exp(−h cosn θ)
(6)
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where, εsV and εsH are the vertically and horizontally polarized smooth soil emissivities, respectively,
n is assigned a constant global value of 2 [2]. The smooth soil emissivity is estimated primarily from
the soil dielectric constant (using Fresnel equations, [28]), which in turn is estimated from SM content
using a dielectric mixing model. Further information on the retrieval algorithms and the associated
developments can be obtained from [28,29]. The RTM equations are inverted analytically using a new
procedure, which is presented below, to retrieve VOD and SM. The inversion involves the following
assumptions, (1) TS ≈ TC, (2) ω is polarization independent and is assigned a global constant value of
0.07 [30,31], (3) ΓC is polarization independent, and (4) the roughness parameter (h) used in the h−Q
model is polarization independent.

Under the above model conditions, the following equations present the ΓC solution proposed
by [13,14], which are termed as ΓC,Pan and ΓC,Meesters, respectively.

ΓC,Pan =
1

2(1−ω)


√
ω2 +

4(1−ω)(TBV − TBH)

TS(εrV − εrH)
−ω

 (7)

1
ΓC,Meesters

= ad +
√
(ad)2 + a + 1, where

a = 1
2

{
εrV−εrH
MPDI − (εrV + εrH)

}
d = 1

2
ω

1−ω
(8)

where, MPDI is the microwave polarization difference index, which is calculated as MPDI =

(TBV − TBH)/(TBV + TBH).

Analytical Derivation—New Solution

Under the above model setup, adding and subtracting Equations (1) and (2) results in the
following equations.

TBH + TBV = TSΓC(εrH + εrV)(1− (1−ω)(1− ΓC)) + 2TS(1−ω)
(
1− Γ2

C

)
(9)

TBH − TBV = TSΓC(εrH − εrV)(1− (1−ω)(1− ΓC)) (10)

Equation (10) can be rewritten in the following form.

(1− (1−ω)(1− ΓC)) =
TBH − TBV

TSΓC(εrH − εrV)
(11)

Substituting Equation (11) in Equation (9) results in

TBH + TBV = (εrH + εrV)
TBH − TBV

(εrH − εrV)
+ 2TS(1−ω)

(
1− Γ2

C

)
(12)

Simplifying the above final equation results in the new analytical solution of ΓC termed as ΓC,New.
The complete derivation for ΓC,New is provided in Supplementary Material S1 (Figure S1).

ΓC,New =

√
(εrHTBV − εrVTBH)

TS(1−ω)(εrV − εrH)
+ 1 (13)

The following iterative procedure describes the manner by which the SM is retrieved using ΓC.
(1) Start with an initial guess of SM and estimate soil dielectric constant using Dobson dielectric mixing
model [32]. (2) Estimate the smooth soil emissivity in horizontal and vertical polarizations, εsH and εsV ,
respectively, using Fresnel’s equations [28]. (3) Estimate the rough soil emissivity in horizontal and
vertical polarizations, εrH and εrV , respectively, using roughness equations (Equation (6)). (4) Estimate
ΓC by substituting εrH and εrV , along with TBH, TBV , TS and ω, in either Equation (7) or Equation (8) or
Equation (13). It may be noted that satellite observed brightness temperature values are used in these
equations to compute ΓC. VOD (τ) can be estimated from ΓC by inverting Equation (3). (5) Simulate TBH
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and TBV using Equations (1) and (2), respectively with ΓC, εrH, εrV, TS and ω as inputs. (6) Calculate
SM by minimizing the root mean square between observed and simulated TBH and TBV , using bisection
algorithm. (7) Repeat steps two to six until the error value is at the minimum or the iterations converge.
The outcomes of the SM and VOD (computed from ΓC) obtained at the end of iterations are considered
the final retrievals that correspond to the observed TBH and TBV for an overpass.

The prime difference among the solutions lies in the fact that, while the Pan and Meesters solutions
solve the positive roots of the quadratic equations of ΓC to result in ΓC,Pan and ΓC,Meesters, respectively, the
new solution involves a pure quadratic equation of ΓC (Equation (13); with no linear term of ΓC), which
is directly solved to result in ΓC,New. It can be noticed from Equations (7), (8) and (13) that there exist
multiple ways by which ΓC can be derived by solving the RTM equations (Equations (1) and (2)). As the
formulation of ΓC varies according to the type of solution, the VOD varies, which ultimately alters the
SM retrieval. So, given a set of dual-polarized satellite measures TB on a particular day, there are multiple
sets of optimized retrieval pairs of VOD and SM that exist in their respective physical ranges. This
structural indeterminacy, which translates to the problem of equifinality in the SM retrieval algorithm, is
illustrated in Figure 1. With this finding, we speculate that there is also a possibility of the existence
of some more solutions to this problem. In this regard, attempts are made to solve the equations by
deriving from them a fourth-order polynomial of ΓC, from which four solutions could be derived. After
discarding the two negative roots, the two positive roots are initially thought of as plausible solutions.
However, they are found to be unstable as the iterative procedure does not converge.
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Figure 1. The problem of equifinality (structural indeterminacy) in the concurrent retrieval of soil moisture
(SM) and vegetation optical depth (τ). The three axes represent brightness temperatures (TB), SM and τ.
The two planes shaded in orange and blue correspond to observed satellite measurements TBVObs and
TBHObs at a timestep, respectively (in V and H polarizations, respectively). The thick curves shown in
orange and blue on these planes represent the RTM equations in V and H, respectively (Equations (1)
and (2)), which are primarily the functions of SM and τ. The dashed lines on the SM–τ plane are the
projections of the solid curves. The points where these dashed lines intersect (black squares) on the SM–τ
plane are the possible solutions to both RTM equations. Using the Pan solution results in (SMPan, τPan),
the New solution results in (SMNew, τNew), and the Meesters solution results in (SMMeesters, τMeesters). The
problem of equifinality arises with the fact that all three solutions lead to the similar TBV and TBH values.
The existence of more solution(s) is also possible (‘More Solutions?’ in the SM–τ plane).
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3. Data and Application

Since the formulation of RTM equations is independent of microwave frequency and sensors, the
associated ΓC solutions apply to any satellite sensor, which has the SM sensitive frequencies onboard.
In order to assess the problem of equifinality caused by the three ΓC solutions, in this letter, AMSR-E
X-band (10.65 GHz) frequency Level 3 TB data are used to retrieve SM at the global scale. The TB used
is of Level 3 type (version 3) [33], having a grid resolution of 0.25◦ × 0.25◦, available at daily scale for
two passes (ascending and descending) with an angle of incidence of 55◦. The data are available from
19 June 2002 to 27 September 2011. The surface temperature (TS), an input required in the retrieval
process, is estimated from the linear regression relationships developed by [34] that take vertical
polarization Ka-band (36.5 GHz) TB data as the input (TBVKa). The following equations are used for
computing TS for the two passes.

TS = 0.898× TBVKa + 44.2→ Ascending Pass
TS = 0.893× TBVKa + 44.8→ Descending Pass

(14)

The RTM equations presented here correspond to the emissions from a landmass. So, it is necessary
that the total TB observed at a grid location should be decomposed into the individual contributions
from land and water in the following way:

TBObs = fLand·TBLand + fWater·TBWater. (15)

The fraction of vegetation (translated as the land here; in the case of bare soil, the vegetation
properties would be nullified) is obtained from moderate resolution imaging spectroradiometer
(MODIS) vegetation index data product MOD12Q1 [35,36]. This parameter varied according to
monthly climatology. On the other hand, the fraction of water ( fWater) is considered to be a static
parameter, which is obtained from MODIS land cover classification product MOD13A2 [37]. TBWater is
estimated using the equations of bare soil RTM (consisting of the only first term in Equations (1) and (2))
where the rough soil emissivity (εr) is replaced with that of water, and the soil temperature is replaced
with water temperature. The open water emissivity values of 0.5791 (V-pol) and 0.2827 (H-pol) are
assumed. It is reasonable to assume constant values of open water emissivities for inland water bodies
at low microwave frequencies (<18 GHz) [10]. Once fLand, fWater, and TBWater are known, TBLand can be
estimated based on TBObs by inverting Equation (15). The conversion of SM to soil dielectric constant
is carried out using the Dobson model [32]. SM of the AMSR-E X-band TB data are retrieved at the
global scale through the three analytical solutions (thus forming three SM products) using the RTM
framework mentioned above. Since the RTM scheme remains constant across the three SM products,
all the attributable changes in the SM correspond to the change in analytical solution.

4. Results and Discussion

Figure 2 presents the scatter density plots between temporal mean SM values of the three products
computed at all land locations of the globe. The numbers in each plot indicate the spatial mean
of the temporal coefficient of determination (R2) and the spatial mean of temporal bias (estimated
as E[SMX−axis] − E[SMY−axis], expressed in m3/m3). The plots depict that ΓC,New has a tendency to
overestimate the SM compared to that of the other two solutions. This overestimation is prominent
for the wetter soils. Relatively higher VOD retrievals are obtained through the usage of ΓC,New
compared to the other two solutions (results presented in Supplementary Material S2), resulting in
low transmissivity values (Equation (3)), which means that this solution models vegetation much
more thickly than the other two solutions. Low values of transmissivity can lead to colder estimates
of TB, which ultimately results in higher values of retrieved SM (much wetter soils). The SM from
ΓC,Meesters is found to be lowest in terms of magnitude compared to the other two products. In terms
of R2, values as low as 0.812 (ascending pass, between SM obtained from ΓC,Pan and ΓC,Meesters) and
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0.841 (descending pass, between SM obtained from ΓC,New and ΓC,Pan) are obtained, which indicate
that, approximately, between 19% and 16% of unexplained variances, respectively, are caused due to
changes in the analytical vegetation transmissivity solution. In the case of the spatial mean of temporal
bias, a positive bias of 0.098 m3/m3 and 0.122 m3/m3 are obtained for ascending and descending
passes, respectively, between SM retrieved using ΓC,Pan and ΓC,Meesters. These numbers indicate that
there is a significant effect of equifinality on the SM retrievals when simultaneously estimating VOD
and SM in the passive microwave SM retrieval algorithm.
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Figure 2. Scatter density plots of mean advanced microwave scanning radiometer (AMSR)-E SM of
the retrievals obtained by employing three analytical solutions in the RTM framework. Retrievals
corresponding to ascending and descending passes are plotted in the first and second columns of the
figure, respectively. The thick and the dotted lines in each plot represent the normal line (45◦ line) and
best fit line, respectively.

The uncertainty in SM retrievals caused due to structural indeterminacy is assessed further by
computing the unbiased root mean squared difference (ubRMSD) between the three SM products
for ascending and descending passes. Figure 3 presents the maps of ubRMSD. Each of these maps
also contain the global average of ubRMSD computed between corresponding SM products. Results
indicate that the errors between SM retrieved using ΓC,New and ΓC,Meesters are highest followed by the
errors between SM retrieved using ΓC,Pan and ΓC,Meesters. High uncertainty exists among the retrievals
in the boreal landscapes in higher latitudes, portions of Southeast Asia, Bolivia, and Eastern USA. Since
these regions are dominated by vegetation cover, the effects of alteration between the three solutions
of ΓC are much more prominent. Noticeable uncertainties are also found in the croplands of Brazil
and Southern Africa, the tropical savanna region between the Sahara Desert and the Congo basin in
Africa and Central India. The global average of ubRMSD indicates that the errors range from 0.0367 to
0.0642 m3/m3. Since these results now depict that equifinality can be one of the contributing factors
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to the total uncertainty in passive microwave SM retrievals (which are retrieved along with VOD),
we speculate that these errors could have contributed towards the total error obtained by validating
the AMSR-E LSMEM and AMSR-E LPRM SM products over the Contiguous United States (CONUS)
region using the in situ observations [38].
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Figure 3. Unbiased root mean squared difference (ubRMSD) between the SM products obtained using
the three solutions ΓC,New (indicated as SMNew), ΓC,Pan (indicated as SMPan) and ΓC,Meesters (indicated as
SMMeesters) for ascending and descending passes. The number in bold in each tile indicate the global
average of ubRMSD computed between corresponding SM products.

We carried out a sensitivity analysis to assess the extent of the parameterization of the retrieval
algorithm on the retrievals of VOD and SM. In this experiment, eight locations are randomly selected
(Table S1) across the globe and considered against the effects of three parameters h, Q, and ω. The
ranges of these three parameters are presented in Table 1. We obtained 50,000 unique combinations of
the three-parameter sets using Latin hypercube sampling (LHS). We retrieved VOD and SM pertaining
to these parameter sets across the eight sites for fixed values of TBH, TBV, TBVKa (which is used to
compute the surface temperature TS) corresponding to June 21, 2002 (presented in Table S2).

Table 1. Parameters and their ranges considered for the sensitivity analysis.

Parameter Range

h 0–3.2
Q 0–0.2
ω 0–0.1

Figure 4 presents the scatter plots of VOD and SM retrievals, pertaining to the 50,000 parameter
sets, obtained by altering the analytical solutions at Site 1. Scatter plots for the rest of the sites are
presented in Supplementary Material S3 (Figures S2–S8). Results from the experiment indicated that
the three solutions retrieved the VOD and SM with noticeable differences, irrespective of the changes
in the parameterization of the retrieval algorithm. This further corroborates our hypothesis that the
structural indeterminacy (equifinality) in the passive microwave soil moisture retrieval algorithm
indeed has a significant impact on the VOD and SM retrievals.
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5. Conclusions

The objective of this work is to present the problem of structural indeterminacy (equifinality) in
the passive microwave soil moisture retrieval algorithm and showcase the extent to which an analytical
solution can affect the SM retrievals. In this process, a new analytical solution is presented to derive
vegetation transmissivity, which is estimated, along with SM, using the zeroth-order radiative transfer
scheme. This solution, along with two of the existing solutions (proposed by [14] and [13]), is used
in a fixed framework of RTM to retrieve SM from AMSR-E TB data. Results indicated the three soil
moisture products to have noticeable differences in terms of bias, unexplained variance (through R2),
and ubRMSD. Equifinality is found to persist independent of the RTM parameterizations.

It is necessary to note that validating these soil moisture products may not be straightforward.
This is because there cannot be “one” solution that can outperform the other two solutions in terms of
soil moisture retrievals, irrespective of land cover or meteorological or soil conditions. As a result,
attributing the performance of the soil moisture product to the mathematical structure of the ΓC
solution embedded in RTM is a challenging task. Since attempts are now being made to apply a
retrieval algorithm to new sensor data (for example, applying the LPRM to advanced microwave
scanning radiometer 2 (AMSR2) data [39] and to SMOS data [40]), it would be interesting to interpret
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the problem of structural indeterminacy on AMSR2, SMOS and SMAP datasets. In light of these
new findings, there is a need to rethink the tradeoff between model complexity/physicality versus the
retrieval uncertainties, which aid a comprehensive evaluation of the quality of resulting SM retrievals
in the future.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1424-8220/
20/4/1225/s1.
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