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Neural architecture search (NAS), which aims at automatically seeking proper neural

architectures given a specific task, has attracted extensive attention recently in

supervised learning applications. In most real-world situations, the class labels provided

in the training data would be noisy due to many reasons, such as subjective judgments,

inadequate information, and random human errors. Existing work has demonstrated the

adverse effects of label noise on the learning of weights of neural networks. These effects

could become more critical in NAS since the architectures are not only trained with noisy

labels but are also compared based on their performances on noisy validation sets.

In this paper, we systematically explore the robustness of NAS under label noise. We

show that label noise in the training and/or validation data can lead to various degrees of

performance variations. Through empirical experiments, using robust loss functions can

mitigate the performance degradation under symmetric label noise as well as under a

simple model of class conditional label noise. We also provide a theoretical justification

for this. Both empirical and theoretical results provide a strong argument in favor of

employing the robust loss function in NAS under high-level noise.

Keywords: deep learning, automated machine learning, neural architecture search, label noise, robust loss

function

1. INTRODUCTION

Label noise, which corrupts the labels of training instances, has been widely investigated due to
its unavoidability in real-world situations and harmfulness to classifier learning algorithms (Frénay
and Verleysen, 2013). Many recent studies have presented both empirical and analytical insights on
learning of neural networks under label noise. Specifically, in the context of riskminimization, there
are many recent studies on robust loss functions for learning classifiers under label noise (Ghosh
et al., 2017; Patrini et al., 2017; Zhang and Sabuncu, 2018).

The neural architecture search (NAS) seeks to learn an appropriate architecture also for a neural
network in addition to learning the appropriate weights for the chosen architecture. It has the
potential to revolutionize the deployment of neural network classifiers in a variety of applications.
One requirement for such learning is a large number of training instances with correct labels.
However, generating large sets of labeled instances is often difficult, and the process for labeling
(e.g., crowdsourcing) has to contend with many random labeling errors. As mentioned above,
label noise can adversely affect the learning of weights of a neural network. For NAS, the problem
is compounded because we need to search for architecture as well. Since different architectures
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are learned using training data and compared based on
their validation performance, label noise in training and
validation (hold-out) data may cause a wrong assessment of
architecture during the search process. Thus label noise can
result in undesirable architectures being preferred by the search
algorithm, leading to the loss of performance. In this paper, we
systematically investigate the effect of label noise on NAS. We
show that label noise in the training or validation data can lead
to different degrees of performance variation. Recently, some
robust loss functions are suggested for learning the weights of
a network under label noise (Ghosh et al., 2017; Zhang and
Sabuncu, 2018). The standard NAS algorithms use the categorical
cross entropy (CCE) loss function. We demonstrate through
simulations that the use of a robust loss function (in place of
CCE) in NAS can mitigate the effect of harsh label noise. We
provide a theoretical justification for this observed performance:
for a class of loss functions that satisfies a robustness condition,
we show that, under symmetric label noise, the relative risks of
different classifiers are the same regardless of whether or not the
data are corrupted with label noise.

The main contributions of the paper can be summarized as
follows. We provide, for the first time, a systematic investigation
of the effects of label noise on NAS. We provide the theoretical
and empirical justification for using loss functions that satisfy
a robustness criterion. We show that the use of robust loss
functions is attractive because of the better performance under
high-degree noise than that under the standard CCE loss.

2. BACKGROUND

2.1. Robust Risk Minimization
In the context of multi-class classification, the feature vector is
represented as x ∈ X ⊆ R

d, and the corresponding class label
denotes yx ∈ [c] = {1 . . . c} = Y . A classifier f :X → R

c is
learned tomap each feature vector to a vector of scores, which are
later used to decide a class. We assume f would be a DNN with
the softmax output in this paper. Ideally, we could have a clean
labeled dataset D = {(xi, yxi )}

n
i=1 drawn i.i.d. from an unknown

joint distribution D over (X × Y).
In the presence of label noise, the noisy dataset is represented

as Dη = {(xi, ỹxi )}
n
i=1 sampled i.i.d. from the noisy distribution

Dη, where ỹx is the noisy label. A noise model could capture the
relationship between D and Dη by:

ηx,jk = Pr(ỹx = k|yx = j, x);
∑

k

ηx,jk = 1, ∀j, x.

The problem of robust learning of classifiers under label noise can
be informally summed up as follows. We get noisy data drawn
from Dη and use it to learn a classifier; however, the learned
classifier has to perform well on clean data drawn according toD.

One can consider different label noise models based on what
we assume regarding ηx,jk (Frénay and Verleysen, 2013; Manwani
and Sastry, 2013; Ghosh et al., 2017; Patrini et al., 2017). In this
paper, we consider only symmetric noise and hierarchical (class
conditional) noise. If ηx,jk = 1 − η for j = k, ηjk =

η
c−1 for

j 6= k, then the noise is said to be symmetric or uniform. If ηx,jk

is a function of (j, k) and independent of x, then it is called class
conditional noise. We consider a particular case where the set of
class labels can be partitioned into some subsets, and label noise
is symmetric within each subset. We call this hierarchical noise.
This is more realistic because, for example, when the labels are
obtained through crowdsourcing, it is likely that different breeds
of dogs may be confused with each other, although a dog may
never be mislabeled as a car.

Here we define the robustness of risk minimization
algorithms (Manwani and Sastry, 2013). Given a classifier f , its
risk under loss function L is defined as RL = ED[L(f (x), yx)]
and f ∗ denotes the minimizer of RL(·). This is often referred to as
L-risk to distinguish it from the usual Bayes risk, but we will call it
risk here. Similarly, under noisy distribution the risk of f is given
by R

η

L
(f ) = EDη [L(f (x), ỹx)] and the corresponding minimizer

of R
η

L
(·) is f ∗η . We say the loss function L is noise-tolerant or

robust if:

PrD[Pred ◦ f ∗(x) = yx] = PrD[Pred ◦ f ∗η (x) = yx],

where Pred ◦ f (x) denotes the decision on classification
scores f (x) and PrD denotes probability under the clean data
distribution. Essentially, the above equation indicates that the
classifiers learned with clean and noisy data both have the same
generalization error under the noise-free distribution.

Robustness of risk minimization, as defined above, depends
on the specific loss function employed. It has been proved
that symmetric loss functions are robust to the symmetric
noise (Ghosh et al., 2017; Zhang and Sabuncu, 2018). A loss
function L is symmetric if it satisfies Equation 1 (Ghosh et al.,
2017).

∑

j

L(f (x), j) = C, ∀x, f . (1)

That is, for any example x and classifier f , the loss summation
over all classes will be equal to a constant C. However, the above
robustness is defined for finding the minimizer of true risk. One
can show that the consistency of empirical risk minimization
holds under symmetric noise (Ghosh et al., 2017). Hence, given a
sufficient number of examples, empirical risk minimization also
would be robust if we use a symmetric loss function.

2.2. Robustness of NAS
In this paper, our focus is on NAS. Normally in learning a
neural network classifier, one learns only the weights with the
architecture chosen beforehand. However, in the context of NAS,
one needs to learn both architecture and the weights. Let us
denote now by f the architecture and by θ the weights of
the architecture. Then, the risk minimization can involve two
different loss functions as below.

f ∗ = argmin
f∈F

EDval
[L1(f (x; θ

∗), yx)],

θ
∗ = argmin

θ

EDtrain [L2(f (x; θ), yx)].
(2)

We employ the loss L1 for learning architecture while we use
L2 for learning weights of any specific architecture. Notice from
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the above that we use the training data to learn the appropriate
weights for any given architecture while we use the validation
data for learning the best architecture.

The corresponding quantities under the noisy distribution
would be:

f ∗η = argmin
fη∈F

ED
η

val
[L1(fη(x; θ

∗
η), ỹx)],

θ
∗
η = argmin

θη

ED
η
train

[L2(fη(x; θη), ỹx)].
(3)

For the robustness of NAS, as earlier, we want the final
performance to be unaffected by whether or not there is label
noise. Thus, we still need that the test error, under noise-free
distribution, of f ∗ and f ∗η be the same. However, there are some
crucial issues to be noted here.

The parameters θ of each f in the search space can be
optimized by the empirical risk of L2 with Dtrain, and then the
best-optimized f is selected by the empirical risk of L1 with Dval.
Thus, in NAS, label noise in training data and validation data
may have different effects on the final learned classifier. Also,
during the architecture search phase, each architecture is trained
only for a few epochs, and then we compare the risks of different
architectures. Hence, in addition to having the same minimizers
of risk under noisy and noise-free distributions, relative risks of
any two different classifiers should remain the same irrespective
of the label noise.

In NAS, the most common choice for L1 is 0–1 loss (i.e.,
accuracy), while for L2 it is categorical cross entropy (CCE).
Suppose p represents the output of the softmax layer and let the
class label of an example be t. The CCE is defined by L(p, t) =

−log(pt). 0–1 loss is known as symmetric and hence is robust.
However, CCE is not symmetric because it does not satisfy
Equation 1 (CCE is not bounded). Intuitively, we can mitigate
the adverse effects of symmetric noise on NAS by replacing L2

with any symmetric loss function. Robust log loss (RLL) (Kumar
and Sastry, 2018) is a modification of CCE.

L(p, t) = log(
α + 1

α
)− log(α + pt)+

c
∑

j=1,j 6=t

1

c− 1
log(α + pj)

where α > 0 is a hyper-parameter and c denotes the number
of all classes. It satisfies the symmetry condition (Equation 1)
and compares (in log scale) probability score of desired output
with the average probability score of all other labels. In contrast,
the CCE loss only looks at the probability score of the desired
output. Another symmetric loss is mean absolute error (MAE)
defined by L(p, t) =

∑c
j=1

∣

∣yj − pj
∣

∣. Since MAE takes longer

training time to coverage (Zhang and Sabuncu, 2018), we make
use of RLL in place of CCE in NAS. For other symmetric loss
functions (Charoenphakdee et al., 2019), we leave them for
future work.

3. THEORETICAL RESULT

As discussed earlier, we want a loss function that ensures that
the relative risks of two different classifiers remain the same

with and without label noise. Here we prove this for symmetric
loss functions.

Theorem 1. LetL be a symmetric loss function,D be a noise-free
distribution, andDη be a noisy distribution with symmetric noise
η < c−1

c , where c is the number of total classes. The risk of f over

D is RL(f ), and over Dη is R
η

L
(f ). Then, given any two classifiers

f1 and f2, if RL(f1) < RL(f2), R
η

L
(f1) < R

η

L
(f2) and vice versa.

Proof 1. Though this result is not explicitly available in the
literature, it follows easily from the proof of Theorem 1 in Ghosh
et al. (2017). For completeness, we present the proof here. For
symmetric label noise, we have: 1

R
η

L
(f ) = Ex,ỹxL(f (x), ỹx)

= ExEyx|xEỹx|x,yxL(f (x), ỹx)

= ExEyx|x



(1− η)L(f (x), yx)+
η

c− 1

c
∑

j 6=yx

L(f (x), j)





= (1− η)RL(f )+
η

c− 1
(C − RL(f ))

=
ηC

c− 1
+

(

1−
ηc

c− 1

)

RL(f ).

Note that C is the constant in the symmetry condition
(Equation 1), and c signifies the number of all classes.

For the third equality, we are calculating expectation of a
function of ỹx conditioned on yx and x, where random variable
ỹx takes yx with probability 1 − η and takes all other labels with
equal probability.

Thus, R
η

L
(f ) is a linear function of RL(f ). Also, since η < c−1

c ,
we have (1 −

ηc
c−1 ) > 0. Hence, the above shows that RL(f1) <

RL(f2) implies R
η

L
(f1) < R

η

L
(f2) and vice versa. This completes

the proof.
Remark 1. Theorem 1 shows that under symmetric loss

function, the risk ranking of different neural networks remains
the same regardless of noisy or clean data. Since 0–1 loss is
symmetric, 0–1 loss as L1 in NAS could keep the risk ranking
of different neural networks consistent. It indicates that we
could discover the same optimal network architecture from noisy
validation data as the one from clean validation data theoretically.
Besides, f ∗ is proved as the global minimizer for both RL(f ) and
R

η

L
(f ) if L is symmetric (Ghosh et al., 2017). When we adopt a

symmetric loss in L2, we can obtain θ
∗ = θ

∗
η. With the above two

conditions, as long as η < c−1
c ,L1 is 0-1 loss, andL2 is symmetric

loss, a NAS would be robust to symmetric label noise.
Remark 2. Theorem 1 demonstrates that the rank

consistency for true risk under noisy and noise-free data.
The theorem (Ghosh et al., 2017, Thm.4) points out that
the minimization of empirical risk converges uniformly to
that of the true risk. With the aid of the theorem, the linear
relationship in Theorem 1 would be right as well for empirical
risk. This implies that under symmetric loss function, the relative
ranking of classifiers for empirical risk (with sufficient samples)

1Note that expectation of clean data is under the joint distribution of x, yx while

that of noise data is under the joint distribution of x, ỹx.
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would be the same as the true risk under noisy and noise-free
data. However, the sample complexity would be higher under
noisy labels.

4. EXPERIMENTS

To explore how label noise affects NAS and examine the ranking
consistency of symmetric loss functions we designed noisy label
settings on CIFAR (Krizhevsky and Hinton, 2009) benchmarks
using DARTS (Liu et al., 2019) and ENAS (Pham et al., 2018).

4.1. Dataset and Settings
4.1.1. Dataset
The CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009)
consist of 32 × 32 color images with 10 and 100 classes,
respectively. Each dataset is split into 45, 000, 5, 000, and 10, 000
as training, validation, and testing sets, following AutoKeras (Jin
et al., 2019). All the subsets are preprocessed by per-pixel
mean subtraction, random horizontal flip, and 32 × 32 random
crops after padding with 4 pixels. We corrupt the training and
validation labels by noise and always keep testing labels clean,
which is common in literature (Ghosh et al., 2017; Zhang and
Sabuncu, 2018). The validation set is used to pick up the best
neural architecture during searching and decide the best training
epoch during final retraining. Note that the test set is only
considered to report the performance.

4.1.2. Noise Construction
We provide theoretical guarantee to the performance
of RLL under symmetric noise. Meanwhile, to better
illustrate/demonstrate/understand the effectiveness of RLL, we
evaluate RLL under both symmetric noisy and hierarchical noise.

• Symmetric noise (Kumar and Sastry, 2018): There is an equal
chance that one class is corrupted to be another class. This
chance can be captured by a matrix Pη = ηB+ (1−η)I, whose
element in the i-th row and j-th column is the probability of
the true label i being changed into label j. To be specific, I is the
identity matrix; all elements of the matrix B are 1

1−c except that
diagonal values are zero, and η is the adjustable noise level. We
inject the symmetric noise in CIFAR-10 with η of [0.2, 0.4, 0.6].

• Hierarchical noise (Hendrycks et al., 2018): All label classes
can uniformly turn to any other label classes that belong to
the same “superclass.” For instance, the “baby” class is allowed
to flip to the four different categories (e.g., boy and girl) in
the “people” superclass rather than “bed” or “bear”. Since
CIFAR-100 inherently provides the superclass information, we
add the hierarchical noise into CIFRA-100 with noise level η

of [0.2, 0.4, 0.6].

4.1.3. NAS Algorithms
In order to investigate the noisy label problem in NAS, we
select representative NAS methods, including DARTS (Liu
et al., 2019) and ENAS (Pham et al., 2018). The empirical
results on AutoKeras (Jin et al., 2019) could be found in the
Supplementary Material as well.

• DARTS searches neural architectures by gradient descent. It
assigns different network operations by numeric architectural
weights and uses Hessian gradient descent jointly to optimize
weights of neural networks and architectural weights. The
experiment setting of DARTS can be found in section 1 of the
Supplementary Material.

• ENAS discovers neural architectures by reinforcement
learning. Although its RNN controller still samples potential
network operations by REINFORCE rule (Williams, 1992),
ENAS could share the weights of network operations between
different search iterations. The experiment setting of ENAS
can be found in section 2 of the Supplementary Material.

4.2. The Impact of Label Noise on the
Performance of NAS
To demonstrate how erroneous labels affect the performance of
NAS, we intentionally introduce symmetric noise (η = 0.6) in
training labels, validation labels, or both (all noisy). Different
NAS methods execute under clean labels (all clean) and these
three noisy settings. We evaluate each searcher by measuring
the testing accuracy of its best-discovered architecture. Searched
networks are retrained with clean labels or polluted labels,
denoted as “all clean” and “all noisy,” respectively. The former
one shows how noise in the search phase affects the performance
of the standard NAS. The latter one reflects how noise alters the
search quality of NAS in practical situations. Furthermore, since
test accuracy evaluates the search quality, we also include RLL to
reduce the noise effect in the retraining phase.

The main results are shown in Table 1. In the clean retraining
setting, the optimal network architectures from DARTS and
ENAS with noisy labels could result in comparable performance
to the ones searched with clean labels. One possible reason is
that both DARTS and ENAS adopt the cell search space, which
is limited. As long as the networks can be fully retrained by clean
labels, they can achieve similar performance. The architectural
variance resulting from label noise does not lead to noticeable
performance differences. The observation has also been pointed
out in Li and Talwalkar (2019).

When it comes to retraining the networks with noisy labels,
their accuracy drops significantly. The performance differences
come from the classical issue of label noise to deep neural
networks (Zhang and Sabuncu, 2018). With the help of RLL, we
can perceive that the architectures searched by DARTS could
achieve better performance, while ENAS does not. Another
important observation for ENAS is that the performance under
four search settings is comparable. One reason is that the
0-1 loss in ENAS could provide certain robustness to noisy
validation labels, which counteracts the negative effect of
symmetric noise. Since the search quality of ENAS seems robust
to symmetric noise, we do not explore ENAS further in the
following experiments.

When we focus on the noisy retraining of DARTS, the
performance of “noisy valid” is the lowest one among others. The
decrease of search quality is partially because the L1 of DARTS is
CCE, which is not robust to symmetric loss. DARTS may not be
able to rank the performance of different architectures correctly

Frontiers in Big Data | www.frontiersin.org 4 February 2020 | Volume 3 | Article 2

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Chen et al. Robust NAS Under Label Noise

TABLE 1 | NAS on CIFRA-10 with symmetric noise (η = 0.6).

DARTS (Liu et al., 2019) ENAS (Pham et al., 2018)

All clean Noisy valid Noisy train All noisy All clean Noisy valid Noisy train All noisy

Clean CCE

Retrain
96.98 96.22 95.42 96.69 95.84 96.13 95.84 95.88

Noisy CCE

Retrain
81.01 78.76 81.35 81.62 79.33 80.46 78.61 80.34

Noisy RLL

Retrain
85.63 84.85 87.11 87.53 79.38 80.07 79.22 79.80

The test accuracy is shown in percentage. Noisy train or noisy valid corrupts training or validation labels, while all noisy pollutes both training and validation labels. NAS algorithms search

architectures by CCE under the above settings and retrain the searched architectures by CCE or RLL (α = 0.01).

FIGURE 1 | The empirical risk of the first network (depicted in Table 2). The symmetric noise of η = 0.6 is introduced in training labels. The curves of empirical risk (A1

clean and A1 noisy) are from training the network by CCE or RLL (α = 0.01). The ideal curve (A1 ideal) for the noisy risk is computed from Proof 1 of section 3 with A1

clean. When A1 noisy is as close as possible to A1 ideal, the loss could be understood to follow Theorem 1 in practice. As we can see, the bottom RLL figures display

that A1 noisy curves are closer to the A1 ideal curves compared to the CCE figures.

in the setting. The inferior performance from noisy validation
labels in other machine learning models has also been proposed
in Inouye et al. (2017). Moreover, the “all noisy” searcher is
supposed to produce the worst test accuracy since it has both
noisy training and validation labels. Surprisingly, the empirical
results show that “all noisy” in DARTS even outperforms “all
clean.” A possible conjecture is that the “all noisy” searcher is
optimized under the same retraining setting, and the resulting
network is intentionally designed to adapt to noisy labels. The
finding is worthy of conducting further explorations in the
future, such as adopting NAS to discover more robust neural

architectures. Despite that, we could still find that label noise
in the search phase could generally lead to a negative influence
on NAS performance. DARTS especially suffers more from noisy
validation labels.

4.3. Noise Influence of the Risk Ranking
Since NAS aims to find the architectures that outperform others,
obtaining a correct performance ranking among different neural
networks plays a crucial role in NAS. As long as NAS can
recognize the correct performance ranking during the search
phase, it should have a high chance to recommend the best
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TABLE 2 | Two neural network architectures for the ranking of empirical risk.

Network architecture 1 Network architecture 2

Normal cell

Reduce cell

Each network has eight layers comprising normal cells and reduce cells.

neural architecture finally. Theorem 1 reveals that symmetric
loss functions have such desired property under symmetric
noise situation. To evaluate the practical effects of the theorem,
we construct two different neural networks (Table 2) through
randomly choosing the network operations as well as the
locations of the skip connection. Each network has 8 layers with
36 initial channels. We also exclude the auxiliary layer to avoid its
additional loss.

We train the networks for 350 epochs under clean and noisy
training labels, to which symmetric noise of η = 0.6 is injected.
Proof 1 of section 3 shows that the noisy true risk is of positive
correlation with the clean true risk. Although we do not have
the true risk, when the empirical risk of a loss function could
conform to the relationship, the loss is supposed to satisfy
Theorem 1 likely. Thereby, we inspect the closeness between the
empirical noisy risk and its ideal risk, which is computed by
the linear function of Proof 1 with the empirical clean risk. To
be specific, the Pearson correlation coefficient (PCC) is used to
measure the degree of closeness. (0 < PCC 6 1 indicates the
positive correlation).

Figure 1 displays the RLL and CCE training loss of the first
network under noise-free and noisy labels. After we obtained the
curve of the empirical clean risk, we drew the ideal curve for the
noisy risk according to Proof 1 of section 3. The expectation is
that the curve of noisy risk in RLL should be close to the ideal
curve, while CCE does not. As we can notice, the curves of noisy
risk in CCE deviate from the ideal curves. In contrast, the two
curves of noisy risk in RLL stay closer to the ideal curves than
CCE. Moreover, the PCC of RLL displays a positive correlation
(PCC > 0), which also supports that the empirical risk of RLL is
very close to the ideal one. The reasons that empirical noisy risks
do not perfectly match the ideal one include: (1) training samples
(examples) are not enough, (2) hyper-parameters are not optimal
for learning the networks, The second network also presents
similar results (see Figure S1). Therefore, we could understand
that symmetric loss functions have the capability to make the risk

TABLE 3 | NAS with RLL.

Symmetric Noise

(CIFAR-10)

Hierarchical Noise

(CIFAR-100)

0.2 0.4 0.6 0.2 0.4 0.6

ResNet-18
92.05

± 0.40

88.95

± 0.14

82.77

± 0.61

61.27

± 0.60

53.50

± 0.94

39.99

± 2.17

DARTS-CCE
94.91

± 0.19

91.02

± 0.78

83.31

± 2.88

67.82

± 0.70

52.57

± 1.03

39.22

± 2.50

DARTS-RLL
94.66

± 0.67

90.77

± 1.56

86.24

± 0.85

66.47

± 1.68

53.68

± 1.96

46.41

± 2.65

Test accuracy and standard deviation (3 runs) are represented in percentage. DARTS

searches architectures with CCE or RLL (α = 0.01), and then the resulting optimal neural

network is trained again from scratch by RLL (α = 0.01). Noise contaminates both

training and validation labels with different noise levels. Bold font exhibits the best result

in each column.

ranking under noisy labels uniform to the one under clean labels
in practice.

4.4. NAS Improvement With Symmetric
Loss Function
In practice, the resulting networks from NAS are trained on the
potentially wrong labels. We want to see whether NAS could still
discover high-performance networks in this harsh environment
with the help of symmetric loss function, especially robust log
loss (RLL). The performance of neural networks decreases by
label noise, but the symmetric loss can alleviate the adverse
influence, as shown in Kumar and Sastry (2018). Thus, in the
experiment, nomatter DARTS searches networks by CCE or RLL,
we leverage RLL in the final retrain phase. Apart from DARTS,
Resnet-18 He et al. (2016) is also included in the experiment
for performance comparison. Moreover, we are interested in
how NAS with RLL works in another type of label noise.
Here we also report the results beyond the hierarchical noise
of CIFAR-100.
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The results presented in Table 3 point out that RLL can
still help NAS discover high-performance network architectures
under high noise levels. No matter in symmetric or hierarchical
noise, DARTS with RLL reaches a similar accuracy to DARTS
with CCE under η = 0.2 and 0.4, and RLL one outperforms
CCE under η = 0.6. One possible reason is that DARTS is robust
to mild noise due to its small search space. Nevertheless, severe
noise introduces intense uncertainty for DARTS. RLL can help
DARTS to determine relatively robust neural architectures in the
harsh condition. From the empirical results, we can claim that
the symmetric (robust) loss function, RLL, improves the search
quality under high-level label noise. More results for another
representative searching algorithm, AutoKeras (Jin et al., 2019),
can be found in the Supplementary Material.

5. RELATED WORK

5.1. Neural Architecture Search
Neural architecture search (NAS) is purposed to facilitate
the design of network architectures automatically. Currently,
the mainstream approaches to achieve NAS include Bayesian
optimization (Kandasamy et al., 2018; Jin et al., 2019),
reinforcement learning (Zoph and Le, 2017; Cai et al., 2018; Pham
et al., 2018; Zoph et al., 2018), evolutionary algorithms (Real
et al., 2017, 2019) and gradient-based optimization (Luo et al.,
2018; Cai et al., 2019; Liu et al., 2019). Regardless of the
different approaches, NAS consists of two phases: the search
phase and the final-retrain phase. During the search phase,
NAS generates and evaluates a variety of different intermediate
network architectures repeatedly. Those networks are trained
on the training set for a short time (e.g., tens of epochs).
Their performance, measured on the validation set, is used
as a guideline to discover better network architectures. In the
final-retrain phase, the optimal network architecture will be
trained with additional regularization techniques, e.g., Shake-
Shake (Gastaldi, 2017), DropPath (Larsson et al., 2017), and
Cutout (DeVries and Taylor, 2017). The phase usually takes
hundreds of epochs. And then the trained network is evaluated
on the unseen test set. In general, the two phases utilize the same
training set.

From the perspective of the search space of network
architectures, current existing works could be divided into the
complete architecture search space (Real et al., 2017; Zoph and
Le, 2017; Kandasamy et al., 2018; Jin et al., 2019) and the cell
search space (Cai et al., 2018, 2019; Luo et al., 2018; Pham et al.,
2018; Zoph et al., 2018; Liu et al., 2019; Real et al., 2019). The
first search space allows NAS to look for complete networks
and provides a high diversity of resulting network architectures.
The second one limits NAS to seek the small architectures for
two kinds of cells (normal cell and reduction cell). And it is
also required to pre-define the base network architecture to
contain the searched cells for evaluation, which implies thatmany
intermediate networks will share similar network architecture.
Most existing works usually develop from the cell search space
because the size of this search space is significantly smaller than
the complete one, and can reduce the enormous search time.

Due to the limited hardware resources, our experiments focus
on cell search space, including DARTS (Liu et al., 2019) and
ENAS (Pham et al., 2018). We also explore the label noise impact
on AutoKeras (Jin et al., 2019). Notice that no similar works have
studied the effect of label noise on NAS until we publish the work.

5.2. Learning Under Corruption Labels
Great progress has been made in research on the robustness of
learning algorithms under corrupted labels (Arpit et al., 2017;
Chang et al., 2017; Ghosh et al., 2017; Patrini et al., 2017; Zhang
et al., 2017, 2018; Jiang et al., 2018; Ren et al., 2018; Zhang and
Sabuncu, 2018). A comprehensive overview of previous studies
in this area can be found in Frénay and Verleysen (2013). The
proposed approaches for learning under label noise can generally
be categorized into a few groups.

The first group comprises mostly label-cleansing methods
that aim to correct mislabeled data (Brodley and Friedl,
1999) or adjust the sampling weights of unreliable training
instances (Chang et al., 2017; Han et al., 2018; Jiang et al.,
2018; Ren et al., 2018; Yu et al., 2019) (adding Co-teaching
from Han et al., 2018 and Yu et al., 2019). Another group
of approaches treats the true but unknown labels as latent
variables and the noisy labels as observed variables so that EM-
like algorithms can be used to learn the true label distribution
of the dataset (Xiao et al., 2015; Vahdat, 2017; Khetan et al.,
2018). The third broad group of approaches aims to learn
directly from noisy labels under the generic risk minimization
framework and focus on noise-robust algorithms (Manwani
and Sastry, 2013; Natarajan et al., 2013; Ghosh et al., 2017;
Patrini et al., 2017; Zhang and Sabuncu, 2018). There are
two general approaches here. One can construct a new
loss function using estimated noise distributions, while the
others develop conditions on loss functions so that risk
minimization is inherently robust. In either case, they can
derive some theoretical guarantees on the robustness of classifier
learning algorithms.

All the above approaches are for learning parameters
of specific classifiers using data with label noise. In NAS,
we need to learn a suitable architecture for the neural
network in addition to learning of the weights. Our work
differs from the above studies that we discuss the robustness
in NAS under corrupted labels, while most of the above
works focus on the robustness of training in supervised
learning. We investigate the effect of label noise in NAS at
multiple levels.

6. CONCLUSION

Neural architecture search is gaining more and more attention
in recent years due to its flexibility and the remarkable power
of reducing the burden of neural network design. The pervasive
existence of label noise in real-world datasets motivates us to
investigate the problem of neural architecture search under
label noise. Through both theoretical and experimental analyses,
we studied the robustness of NAS under label noise. We
showed that symmetric label noise adversely the search ability
of DARTS, while ENAS is robust to the noise. We further
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demonstrated the benefits of employing a specific robust loss
function in search algorithms. These conclusions provide a
strong argument in favor of adopting the symmetric (robust)
loss function to guard against high-level label noise. In the
future, we could explore that the factors cause DARTS to
have superior performance under noisy training and validation
labels. We could also investigate other symmetric loss functions
for NAS.
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