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Signal denoising using the
minimum-probability-of-error criterion
jishnu sadasivan,1 subhadip mukherjee2 and chandra sekhar seelamantula1

We consider signal denoising via transform-domain shrinkage based on a novel risk criterion called the minimum probability
of error (MPE), which measures the probability that the estimated parameter lies outside an ε-neighborhood of the true value.
The underlying parameter is assumed to be deterministic. The MPE, similar to the mean-squared error (MSE), depends on the
ground-truth parameter, and therefore, has to be estimated from the noisy observations. The optimum shrinkage parameter is
obtained by minimizing an estimate of the MPE. When the probability of error is integrated over ε, it leads to the expected �1
distortion. The proposed MPE and �1 distortion formulations are applicable to various noise distributions by invoking a Gaus-
sian mixture model approximation. Within the realm of MPE, we also develop a specific extension to subband shrinkage. The
denoising performance ofMPE turns out to be better than that obtained using the minimumMSE-based approaches formulated
within Stein’s unbiased risk estimation (SURE) framework, especially in the low signal-to-noise ratio (SNR) regime. Performance
comparisons with three benchmarking algorithms carried out on electrocardiogram signals and standard test signals taken from
the Wavelab toolbox show that the MPE framework results in SNR gains particularly for low input SNR.
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1 . INTRODUCT ION

Signal denoising algorithms are often developed with the
objective of minimizing a chosen distortion function that
quantifies the distance between an estimate and the ground-
truth. The most widely used distortion measure in the
literature is the mean-squared error (MSE). The ground-
truth parameter may be deterministic or stochastic with
a known prior distribution. The latter formalism leads to
Bayesian estimators. Within the deterministic signal esti-
mation paradigm, which is also the formalism considered
in this paper, one typically desires that the estimator has
minimum variance and is unbiased (MVU) [1,2]. An MVU
estimator may not always exist, and if it does, it can be
obtained using the theory of sufficient statistics. Eldar and
Kay [2] showed that, when it comes tominimizing theMSE,
biased estimates can outperform the MVU estimate. For
example, one could shrink theMVU estimate and optimally
select the shrinkage parameter to minimize the MSE.

In this paper, we consider the problem of estimating
a deterministic signal corrupted by additive white noise.
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The noise distribution is assumed to be known, but not
restricted to be Gaussian. We propose a new distortion
measure based on the probability of error and develop
transform-domain shrinkage estimators. The proposed risk
criterion leads to shrinkage estimators that are adapted to
the noise type, meaning that the shrinkage operators cor-
responding to different noise distributions having the same
variance turn out to be different. This behavior is in contrast
with shrinkage estimators obtained using theMSE, wherein
one obtains the same shrinkage profile corresponding to dif-
ferent noise distributions having the same variance. Before
proceeding with the developments, we review important
literature related to the problem at hand.

A) Prior art
TheMSE is by far the most widely used measure for obtain-
ing the optimum shrinkage parameter. Since the MSE is a
function of the ground-truth, directly minimizing it results
in a practically unrealizable estimate, in the sense that the
estimate depends on the unknown parameter/or its statis-
tics. However, in some cases, it is possible to find the
optimum shrinkage parameter, for example, using a min-
max approach [2], where the parameter is constrained to
a known set. An optimum shrinkage estimator, when the
variance of the unbiased estimate is a scaled version of the
square of the parameter, with a known scaling, is proposed
in [2].
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Optimum shrinkage estimators have also been com-
puted based on risk estimation, where an unbiased esti-
mate of the MSE, which depends only on the noisy
observations, is obtained and subsequently minimized to
compute the optimal shrinkage. Under the assumption
of Gaussian noise, an unbiased estimate of the MSE,
namely Stein’s unbiased risk estimator (SURE), was devel-
oped based on Stein’s lemma [3], and has been suc-
cessfully employed in numerous denoising applications.
The shrinkage estimator of the mean of a multivariate
Gaussian distribution with diagonal covariance matrix,
obtained by minimizing SURE, dominates the classical
least-squares estimate when the observation dimension
exceeds three [4].

A risk minimization approach for denoising using a lin-
ear expansion of elementary thresholding functions has
been developed in [5–9], wherein the combining weights
are chosen optimally to minimize the SURE objective.
SURE-optimized wavelet-domain thresholding techniques
have been proposed in [10–12]. Atto et al. [13,14] have
investigated the problem of signal denoising based on
optimally selecting the parameters of a wavelet-domain
smooth sigmoidal shrinkage function by minimizing the
SURE criterion. Ramani et al. [15] developed a Monte
Carlo technique to select the parameters of a generic
denoising operator based on SURE. An image denois-
ing algorithm based on non-local means (NLM) is pro-
posed in [16], where the NLM parameters are optimized
using SURE. Notable denoising algorithms that aim to
optimize the SURE objective include wavelet-domain mul-
tivariate shrinkage [17], local affine transform for image
denoising [18], SURE-optimized blockwise shrinkage for
image denoising [19], SURE-optimized Savitzky-Golay fil-
ter [20], etc. The SURE approach has also found appli-
cations in image deconvolution [21] and compressive
sensing [22].

The original formulation of SURE, which assumes inde-
pendent Gaussian noise has been extended to certain dis-
tributions in continuous and discrete exponential families
in [23,24], respectively, with the assumption of indepen-
dence left unchanged. Eldar generalized SURE (GSURE)
for distributions belonging to the non-i.i.d. multivariate
exponential family [4]. Giryes et al. [25] used a pro-
jected version of GSURE for selecting parameters in the
context of solving inverse problems. Luisier et al. [26]
proposed an unbiased estimate of MSE under Poisson
noise and minimized it to obtain the optimum wavelet-
domain image denoising function. A detailed discussion
of Gaussian parameter estimation using shrinkage estima-
tors, together with a performance comparison of SURE
with the maximum-likelihood (ML) and soft-thresholding-
based estimators can be found in [27] (Chapter 2). It is
shown in [27] that the soft-thresholding-based estimator
dominates the James-Stein shrinkage estimator in terms of
MSE if the parameter vector to be estimated is highly sparse,
such as a spike. On the other hand, the shrinkage esti-
mator dominates if the parameter vector has nearly equal
entries.

B) This paper
We propose a signal estimation method based on the prob-
ability of error (PE) criterion, which we first introduced
in [28] and demonstrated application to electrocardiogram
(ECG) signal denoising. Recently, in [29] we proposed a
speech denoising framework based on [28]. In this paper,
we expand further on the idea and carry out a detailed
investigation on various aspects related to the PE crite-
rion. In particular, we consider different noise distributions
such as Laplacian, Student’s-t, Gaussian, aGaussianmixture
model (GMM), expected �1 distortion, analysis and com-
parison of the implicit shrinkage function, and performance
benchmarking with standard denoising techniques. The PE
quantifies the probability of the estimate falling outside an
ε-neighborhood of the true parameter value. Since the PE
risk depends on the ground truth, we consider a surrogate,
which may be biased, and minimize it to obtain the shrink-
age parameter (Section 2). The optimization is carried out
in the discrete cosine transform (DCT) domain, either in a
pointwise fashion or on a subband basis. The resulting esti-
mator is referred to as the shrinkage estimator based on the
minimumprobability of error (MPE).We derive the PE risk
for Gaussian, Laplacian, and Student’s-t noise distributions
(Sections 2-2.1 and 2.5). In practical applications, where
the noise distribution may be multimodal and not known
explicitly, we propose to use a Gaussian mixture model
(GMM) approximation [30,31] (Section 2-2.4).We show the
performance of the MPE-based denoising technique on the
Piece-Regular signals taken from the Wavelab toolbox in
Gaussian, Student’s-t, and Laplacian noise contaminations
(Section 3). Proceeding further, we also consider the proba-
bility of error integrated over 0< ε <∞ (Section 4), which
results in the expected �1 distortion between the parame-
ter and its estimate. The �1 distance has been used in the
Bayesian setting and in regression problems as a robust dis-
tortion metric [1,32]. The estimators for the expected �1 dis-
tortion are also derived by invoking the GMM approxima-
tion (Section 4-4.1). The noise-adaptive shrinkage behavior
resulting from the proposed PE and �1 distortion-based risk
functions are demonstrated by plotting the shrinkage pro-
file as a function of the parameter value (Section 4-4.3). We
also assess the denoising performance of the shrinkage esti-
mator obtained byminimizing the �1 distortion for different
input SNRs and for different number of noisy realizations
(Section 5).

To further boost the denoising performance of the
�1 distortion-based estimator, we develop an iterative
algorithm to successively refine the cost function and the
resulting estimate, starting with the noisy signal as the ini-
tialization (Section 5). The iterations lead to an improve-
ment of 2–3 dB in the output signal-to-noise ratio (SNR)
(Section 5-5.1).

For performance evaluation, we conduct experiments
on the Piece-Regular and the HeaviSine signals from the
Wavelab toolbox [33], and ECG signals from the Phys-
ioBank database [34]. We consider three techniques for
comparison: (i) wavelet-domain soft-thresholding [35]; (ii)
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SURE-based orthonormal wavelet thresholding using a
linear expansion of thresholds (SURE-LET) [5]; and (iii)
SURE-based smooth sigmoid shrinkage (SS) in wavelet
domain [13], all assuming Gaussian noise contamination
(Section 6) in order to facilitate a fair comparison.

I I . THE PE R ISK

Consider the observation model x= s+w, where x∈R
n

and s∈R
n denote the noisy and clean signals, respectively.

The noise vector w is assumed to have i.i.d. entries with
zero mean and variance σ 2. The goal is to estimate s from
x by minimizing a suitable cost function. The signal model
is considered in an appropriate transform domain, where
the signal admits a parsimonious representation, but noise
does not. We consider two types of shrinkage estimators:
(i) pointwise, where a shrinkage factor ai ∈ [0, 1] is applied
to xi in order to obtain the estimate ŝi = aixi, which means
that ŝi does not depend on ŝj for i �= j; and (ii) subband-
based estimator, wherein a single shrinkage factor aJ is
applied to a group of coefficients xi, i∈ J in subband J⊂ 1,
2, . . . , n. Shrinkage estimators may also be interpreted as
premultiplication of x by a diagonal matrix.

A) PE risk for pointwise shrinkage
Since the estimate of si does not depend on xj, for j �= i, in
the pointwise shrinkage scenario, we drop the index i for
brevity of notation. The PE risk is defined as

R = P (| ŝ− s| > ε) , (1)

where ε > 0 is a predefined tolerance parameter. The riskR
quantifies the estimation error using the probability mea-
sure and implicitly takes into account the noise distribution
beyond the first- and second-order statistics. On the con-
trary, the MSE relies only on the first- and second-order
statistics of noise for shrinkage estimators. Substituting
ŝ = ax = a(s+ w), the riskR evaluates to

R (s; a) = P (|a(s+ w)− s| > ε)

= 1− F
(

ε − (a− 1)s
a

)
+ F

(
−ε + (a− 1)s

a

)
,

where F( · ) is the cumulative distribution function (c.d.f.) of
the noise. SinceR depends on s, which is the parameter to
be estimated, it is impractical to optimize it directly over a.
To circumvent the problem, we minimize an estimate ofR,
which is obtained by replacing s with x (which is also the
ML estimate of s). Such an estimate R̂ = R(x; a) takes the
form

R̂ = 1− F
(

ε − (a− 1)x
a

)
+ F

(
−ε + (a− 1)x

a

)
, (2)

and correspondingly, the optimal shrinkage parameter is
obtained as aopt = arg min

0≤a≤1 R̂. A grid search is performed

to optimize R̂ over a∈ [0, 1], and the clean signal is obtained

as ŝ = aoptx. We next derive explicit formulae for the risk
function for Gaussian, Laplacian, and Student’s-t noise
distributions.

(i) Gaussian distribution: In this case, the noisy obser-
vation x also follows a Gaussian distribution, and there-
fore, ŝ− s is distributed as N ((a− 1)s, a2σ 2). The PE risk
estimate is given as

R̂ = Q
(

ε − (a− 1)x
aσ

)
+ Q

(
ε + (a− 1)x

aσ

)
, (3)

where Q(u) = (1/
√
2π)

∫∞
u e−t2/2 dt.

(ii) Student’s-t distribution: Consider the case where the
noise follow a Student’s-t distribution with parameter λ > 2
and the probability density function (p.d.f.) of noise is given
by

f (w) = �
(

λ+1
2

)
√

λπ�
(

λ
2

) (1+ w2

λ

)−(λ+1)/2
.

The variance ofw is σ 2= λ/(λ− 2). The expression for R̂ is
the one given in (2) with

F(w) = 1
2
+ w�

(
λ+ 1
2

) G1
( 1
2 ,

λ+1
2 ; 32 ;−w2

λ

)
√

λπ�
(

λ
2

) ,

where G1 is the hypergeometric function defined as

G1 (a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

and (q)k denotes the Pochhammer symbol:

(q)k
�=
{
1 for k = 0,
q(q+ 1)(q+ 2) · · · (q+ k− 1), for k > 0.

(iii) Laplacian distribution: Considering the noise to be
i.i.d. Laplacian with zero-mean and parameter b (variance
σ 2= 2b2), with the p.d.f. f (w)= (1/2b)exp (− |w|/b), the PE
risk can be obtained by using the following expression for
F(w) in (2):

F(w) = 1
2
+ 1

2
sgn(w)

(
1− exp

(
−|w|

b

))
. (4)

B) Closeness of R̂ toR
To measure the closeness of R̂ to R, consider the exam-
ple of estimating a scalar s= 4 from a noisy observation x.
The PE risk estimate R̂ is obtained by setting s= x. In Figs
1(a),1(b), and 1(c), we show the variation of the actual risk
R and its estimate R̂ with a, averaged over 100 indepen-
dent trials, for Gaussian, Student’s-t, and Laplacian noise
distributions, respectively. The noise has zeromean, and the
variance is taken as σ 2= 1 for Gaussian and Laplacianmod-
els, whereas for Student’s-t model, the variance is σ 2= 2.
The value of ε is set equal to σ while computing the PE
risk. We observe that R̂ is a good approximation toR, par-
ticularly in the vicinity of the minima. The deviation of
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Fig. 1. (Color online) The PE risk averaged over 100 realizations for: (a) Gaussian, (b) Student’s-t, and (c) Laplacian noise, versus the shrinkage parameter a; and
(d) the percentiles of error in minima.

the shrinkage parameter aopt(x), obtained by minimizing
R̂, with respect to its true value aopt(s) resulting from the
minimization ofR, is shown in Fig. 1(d) for the three noise
models under consideration. The central red lines in Fig.
1(d) indicate the medians, whereas the black lines on the
top and bottom denote the 25 and the 75 percentile points,
respectively.We observe that aopt(x) is concentrated around
aopt(s), especially for Gaussian and Laplacian noise, barring
a few outliers.

C) Perturbation probability of the location of
minimum
The location of the minimum of the PE risk determines
the shrinkage parameter. Therefore, one must ensure that it
does not deviate too much from its actual value, with high
probability, when s is replaced by x in the original riskR. Let
aopt(s) = arg min

0≤a≤1R(s; a) denote the argument that mini-

mizes the true riskR. Consider the probability of deviation
given by

PMPE
e = P

(∣∣aopt (s)− aopt (x)
∣∣ ≥ δ

)
, (5)

for some δ > 0. Using a first-order Taylor-series approxima-
tion of aopt(x) about s, and substituting x= s+w, we obtain
aopt(x)≈ aopt(s)+w a′opt(s), where ′ denotes the derivative.
We would like to point out that the Taylor-series approxi-
mation is not rigorously justified here but it is reasonable
to guide our analysis. The deviation probability PMPE

e in
(5) simplifies to PMPE

e = P(|w| ≥ δ/

∣∣∣a′opt(s)∣∣∣). For additive
Gaussian noise w with zero mean and variance σ 2, placing
the Chernoff bound [36,37] on PMPE

e leads to

PMPE
e ≤ 2 exp

(
− δ2

2σ 2
∣∣a′opt (s)∣∣2

)
.

To ensure that PMPE
e is less than α, for a given α ∈ (0, 1), it

suffices to have ∣∣∣a′opt (s)∣∣∣2 ≤ δ2

2σ 2 log
( 2

α

) , (6)

which translates to a lower-bound on the input SNR. Since
there is no closed-form expression available for a′opt(s) in
the context of the PE risk, we empirically obtain the range
of input SNR values s2/σ 2, for which (6) is satisfied.

Analogously, to satisfy an upper bound on the deviation
probability PSUREe of the minimum in the case of SURE, for
a given deviation δ > 0, one must ensure that

s6

8σ 6

(
δ − σ 4

(s2 + σ 2) s2

)2

≥ log
( 2
α

)
. (7)

The proof of (7) is given in Appendix A.
The minimum input SNR required to ensure Pe≤α for

both SURE- andMPE-based shrinkage estimators is shown
in Fig. 2, for different values of α and δ. The PE risk esti-
mate is obtained by replacing s with x and setting ε= σ .
We observe that reducing the amount of deviation δ for a
given probability α, or vice versa, leads to a higher input
SNR requirement for both SURE andMPE.We also observe
from Fig. 2 that, for given δ and α, SURE requires a higher
input SNR than MPE to keep the δ-deviation probability
under α. Also, for a given input SNR, the δ-deviation prob-
ability of the estimated shrinkage parameter aopt(x) from
the optimum aopt(s) is smaller for MPE than SURE, thereby
indicating that the MPE-based shrinkage is comparatively
more reliable and robust than the SURE-based one at low
input SNRs.

D) Unknown noise distributions
In practical applications, the distribution of noise may
not be known in a parametric form and may also be
multimodal. At best, one would have access to real-
izations of the noise, from which the distribution has
to be estimated. In such cases, approximation of the
noise p.d.f. using a GMM is a viable alternative [30,31],
wherein one can estimate the parameters of the GMM
using the expectation-maximization algorithm [38]. Gaus-
sian mixture modeling is attractive as it comes with the
guarantee that, asymptotically, as the number of Gaus-
sians increases, the GMM approximation to a p.d.f. that
has a finite number of discontinuities converges uni-
formly except at the points of the discontinuity [31].
The GMM approximation can be used even for non-
Gaussian, unimodal distributions. For the GMM-based
noise p.d.f.

f (w) =
M∑
m=1

αm

σm
√
2π

exp
(
− (w− θm)2

2σ 2
m

)
, (8)
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Fig. 2. (Color online) Input SNR requirement for SURE (black) and MPE (blue) to ensure that the probability of δ-perturbation of the minima is less than or equal
to α.

the PE risk turns out to be

R̂ =
M∑
m=1

αm

[
Q
(

ε − (a− 1)s− θm

aσm

)

+ Q
(

ε + (a− 1)s+ θm

aσm

)]
, (9)

using (3). For illustration, consider the estimation of a scalar
s= 4 in the transform domain from its noisy observation
x. The additive noise is Laplacian distributed with zero
mean and variance σ 2= 1. The noise distribution is mod-
eled using a GMM with M= 4 components and the corre-
sponding PE risk estimate is obtained using (9) by setting
s= x. In Fig. 3(a), we show a Laplacian p.d.f. and its GMM
approximation. Fig. 3(b) shows the GMM approximation to
a multimodal distribution. Figure 4(a) shows the PE risk
based on the original Laplacian distribution as well as the
GMMapproximation, as a function of the shrinkage param-
eter a. The close match between the two indicates that the
GMM is a viable alternative when the noise distribution is
unknown or follows a complicated model. In Fig. 4(b), we
plot the GMM-based PE risk and its estimate averaged over
100 independent trials. We observe that the locations of the
minima of the actual risk and its estimate are in good agree-
ment, thereby justifying theminimization of R̂. The PE risk

Fig. 3. (Color online) Original noise distribution and a GMM approximation:
(a) Laplacian p.d.f. and its approximation using a four-component GMM; and
(b) A multimodal p.d.f. and its three-component GMM approximation.

and its estimate are shown in Fig. 4(c) for the multimodal
p.d.f. of Fig. 3(b).

E) PE risk for subband shrinkage
Let aJ be the shrinkage factor applied to the set of coeffi-
cients xi, i∈ J in subband J. The estimate ŝJ of the clean sig-
nal is obtained by ŝJ = aJxJ , where xJ ∈R

|J| and aJ ∈ [0, 1].
For notational brevity, we drop the subscript J, as we did for
pointwise shrinkage, and express the estimator as ŝ = ax,
where boldface letters indicate vectors. Analogous to point-
wise shrinkage, the PE risk for subband shrinkage is defined
asR = P(‖̂s− s‖2 > ε), which, for ŝ = ax, becomesR =
P(‖aw + (a− 1)s‖2 > ε). For w ∼ N (0, σ 2I),

R = 1− F(θ |k, λ), (10)

where k= |J|, λ =∑k
j=1((1− a)2s2j /a

2σ 2), θ = (ε/aσ )2, and
F(θ | k, λ) is the c.d.f. of the non-central χ 2 distribution,
given by

F(θ | k, λ) =
∞∑

m=0

λme−λ/2

2mm!
γ
(

θ
2 ,

k+2m
2

)
�
( k+2m

2

) ,

where �(a)= ∫∞0 exp(−t)ta−1 dt and γ (x, a)= ∫ x
0 exp

(−t)ta−1 dt.
Similar to pointwise shrinkage, we propose to obtain

an estimate R̂ of R for subband shrinkage estimators by
replacing sj with xj. The optimum subband shrinkage factor
is obtained by minimizing R̂.

Fig. 5 shows the subband PE risk and its estimate ver-
sus a, where the underlying clean signal s∈R

|J| is corrupted
by Gaussian noise and the subband size is chosen to be
|J|= k= 8. The clean signal s is generated by drawing
samples from N (2× 1k, Ik), where 1k and Ik denote a
k-length vector of all ones and a k× k identity matrix,
respectively. The observation x is obtained by adding
zero-mean i.i.d. Gaussian noise to s, with an input
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Fig. 4. (Color online) The PE risk estimate versus the shrinkage parameter a: (a) PE risk for Laplacian noise, considering the Laplacian p.d.f. and its GMM approx-
imation; (b) GMM-based PE risk estimate for Laplacian noise; and (c) PE risk estimate for multimodal noise; for ε= σ . The risk estimates are averaged over 100
Monte Carlo realizations.

Fig. 5. (Color online) The PE risk and its estimate averaged over 100 Monte
Carlo trials for the subband shrinkage estimator versus a; where ε = √kσ ,
with k=8. The additive noise is Gaussian with SNRin= 5 dB. In each trial, s is
generated by drawing samples fromN (2× 1k, Ik).

SNR of 5 dB, where the input SNR is defined as
SNRin = 10 log10((1/kσ

2)
∑k

n=1 s
2
n) dB. The PE risk esti-

mate is obtained by replacing s with x in (10), which does
not drastically alter the minimum (cf. Fig. 5).

I I I . EXPER IMENTAL RESULTS FOR
MPE -BASED DENO IS ING

The performance of theMPE-based pointwise and subband
shrinkage estimator is validated on a synthesized harmonic
signal (of lengthN= 2048) in Gaussian noise and the Piece-
Regular signal (of lengthN= 4096) in Gaussian, Student’s-
t, multimodal, and Laplacian noise. The Piece-Regular
signal has both smooth and rapidly-varying regions, mak-
ing it a suitable candidate for the assessment of denoising
performance.

A) Performance of pointwise-shrinkage
estimator
1) Harmonic signal denoising
Consider the signal

sn = cos
(
5πn
2048

)
+ 2 sin

(
10πn
2048

)
, 0 ≤ n ≤ 2047,

(11)

Table 1. Comparison of MPE, SURE-based shrinkage estimator and
Wiener filter (WF) for different input SNRs. The output SNR values are

averaged over 100 noise realizations.

Input Output SNR (dB)

SNR MPE SURE WF

(dB) ε= 3.5σ ε= 2.5σ ε= 1.5σ

−5.0 11.67 5.99 −0.18 −0.27 1.44
−2.5 14.42 8.62 2.34 2.23 3.96
0 17.02 10.96 4.80 4.71 6.35
2.5 19.08 13.36 7.31 7.21 8.79
5.0 21.25 15.52 9.72 9.64 11.09
7.5 22.93 18.26 12.32 12.23 13.60
10.0 25.34 20.57 14.77 14.69 15.92
12.5 26.91 22.79 17.26 17.17 18.20
15.0 28.77 25.05 19.66 19.59 20.33
17.5 30.74 27.44 22.20 22.12 22.57
20.0 32.65 29.61 24.61 24.54 24.60

in additive white Gaussian noise, with zero mean and vari-
ance σ 2. Since the denoising is carried out in the DCT [39]
domain, the Gaussian noise statistics remain unaltered. For
the purpose of illustration, we assume that σ 2 is known.
In practice, σ 2 may not be known a priori and could be
replaced by the robustmedian estimate [40] or the trimmed
estimate [41]. The clean signal is estimated using inverse
DCT after applying the optimum shrinkage. The denois-
ing performance of theMPE and SURE-based approaches is
compared in Table 1. In case of the Wiener filter, the power
spectrum of the clean signal is estimated using the standard
spectral subtraction technique [42,43]. We observe that
MPE-based shrinkage with ε= 3.5σ is superior to SURE
and Wiener filter (WF) by 8–12 dB. The comparison also
shows that the performance of the MPE depends critically
on the choice of ε.

2) Piece-Regular signal denoising
We consider several noisy realizations of the Piece-Regular
signal, taken from the Wavelab toolbox [33], under Gaus-
sian, Student’s-t, multimodal (Fig. 3(b)), and Laplacian
noise contaminations. The noise variance is assumed to
be known. Notably, the Gaussian and Student’s-t distri-
butions of noise are preserved by an orthonormal trans-
form [44], unlike the Laplacian distribution. Therefore, the
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Fig. 6. (Color online) Denoising performance of the MPE- and SURE-based pointwise shrinkage estimators for the Piece-Regular signal corrupted by Laplacian
noise. The PE risk is calculated by using a GMM approximation and setting ε= 3σ .

Fig. 7. (Color online) Output SNR versus input SNR corresponding to the MPE- and SURE-based pointwise shrinkages, under various noise distributions. The
output SNR values are calculated by averaging over 100 independent noise realizations. (a) Gaussian noise, (b) Laplacian noise, (c) Student’s-t noise, and (d)
Multimodal noise.

PE estimates for Laplacian noise and multimodal noise
are computed based on a four-component and a three-
component GMM approximation, respectively, in the DCT
domain. The denoised signal corresponding to Laplacian
noise is shown in Fig. 6 to serve as an illustration. TheMPE
estimates are better than SURE estimates. The SNR plots in
Fig. 7 indicate that theMPEoutperforms SURE for the noise
types under consideration and that the gains are particu-
larly high in the input SNR range of −5 to 20 dB and tend
to reduce beyond 20 dB.

3) Effect of ε on the denoising performance
of MPE
Obtaining a closed-form expression for the ε that maxi-
mizes the output SNR is not straightforward.We determine
the optimum ε empirically by measuring the SNR gain as

a function of ε (cf. Fig. 8) for i.i.d. Gaussian noise. We
observe that the output SNR exhibits a peak approximately
at β = ε/σ = 3.5 for the harmonic signal in (11) and at β = 3
for the Piece-Regular signal. As a rule of thumb, we rec-
ommend ε= 3σ for pointwise shrinkage estimators. Some
insights into the role of ε and its choice will be presented in
Section 4-4.3.

B) Performance of subband MPE shrinkage
To validate the performance of the MPE-based subband
shrinkage estimator (cf. Section 2-2.5), we consider denois-
ing of the Piece-Regular signal in additive Gaussian noise.
The clean signal and its noisy measurement are shown in
Fig. 9(a). Denoising is carried out by grouping k adjacent
DCT coefficients to form a subband. The denoised signals
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Fig. 8. (Color online) Average output SNR of the pointwise MPE shrinkage as a function of β = ε/σ , for different values of the input SNR. The output SNR curves
peak when β ≈ 3.

Fig. 9. (Color online) Comparison of denoising performance of the subband shrinkage estimators using MPE and SURE, for the Piece-Regular signal corrupted by
additive Gaussian noise. The subband size is taken as k= 16 and the value of ε is 1.75

√
kσ .

obtained using SURE and MPE are shown in Fig. 9(b) and
9(c), respectively. The subband size k is chosen to be 16 and
the parameter ε is set equal to 1.75

√
kσ , a value that was

determined experimentally and found to be nearly optimal.
We observe that the MPE gives 1 dB improvement in SNR
than the SURE approach.

The variation of the output SNR is also studied as a func-
tion of k (cf. Fig. 10). We experimented with ε= 3σ , ε =
1.75
√
kσ , and ε = 1.25

√
kσ corresponding to subband sizes

k= 1, k∈ [2, 16], and k>16, respectively. For both SURE
and MPE, as k increases, the output SNR also increases
and eventually saturates for k≥ 40. For input SNR below

Fig. 10. (Color online) Output SNR versus subband size k, averaged over 100
noise realizations, for different input SNRs. The output SNR of MPE is consis-
tently superior to that obtained using SURE, especially when k≤ 40 and the
input SNR is below 15 dB.

15 dB, MPE gives a comparatively higher SNR than SURE,
and the margin diminishes with increase in input SNR or
the subband size k. The degradation in performance of
SURE for low SNRs is due to the large error in estimating
the MSE at such SNRs. The SURE-based estimate of MSE
becomes increasingly reliable as k increases, thereby leading
to superior performance.

I V . THE EXPECTED �1 D ISTORT ION

To eliminate the dependence of MPE on ε, we consider the
accumulated probability of error, namely

∫∞
0 P(|̂s− s| >

ε)dε as the risk to beminimized. For a nonnegative random
variable Y, we know that E{Y} = ∫∞0 P(Y > ε)dε. There-
fore, the accumulated probability of error is the expected �1
distortion:

R�1 (a, s) = E{|̂s− s|} =
∫ ∞
0

P (|̂s− s| > ε) dε. (12)

For Gaussian noise distribution,

R�1 (a, s) =
∫ ∞
0

Q
(

ε − (a− 1)s
aσ

)
dε

+
∫ ∞
0

Q
(

ε + (a− 1)s
aσ

)
dε. (13)
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Fig. 11. (Color online) The expected �1-risk and its estimate versus a, averaged over 100 noise realizations for: (a) Gaussian noise with σ 2= 1; (b) three-component
GMM; and (c) a four-component GMM approximation to the Laplacian distribution.

Denoting u= ε− (a− 1)s/aσ and μ=−(a− 1)s/aσ , the
first integral in (13) is evaluated as

∫ ∞
0

Q
(

ε − (a− 1)s
aσ

)
dε

= aσ
∫ ∞

μ

Q (u) du

= aσ
(∫ ∞

0
Q (u) du−

∫ μ

0
Q (u) du

)
= aσ

(
1√
2π
− μQ (μ)− 1√

2π
(
1− e−μ2/2))

= aσ
(
e−μ2/2
√
2π
− μQ (μ)

)
. (14)

The second term in (13) can be evaluated by replacing μ

with −μ in (17). Combining both integrals, we obtain the
expression for the expected �1 distortion:

R�1 (a, s) = aσ
[√

2/πe−μ2/2 − μQ (μ)+ μQ (−μ)
]

= aσ
[√

2
π
exp

(
− (a− 1)2s2

2a2σ 2

)
+ 2

(a− 1)s
aσ

×Q
(
− (a− 1)s

aσ

)
− (a− 1)s

aσ

]
.

An estimate of the expected �1 distortion is calculated
by replacing s with x. In Fig. 11(a), we show the varia-
tion of the original �1 distortion and its estimate obtained
by setting s= x, as functions of a, averaged over 100
independent realizations of N (0, 1) noise. The actual
parameter value is s= 4. The figure shows that the min-
imum of the expected �1 risk is close to that of its
estimate.

In principle, one could iteratively minimize the �1 distor-
tion by starting with ŝ = x and successively refining it. Such
an approach is given in Algorithm 1. An illustration of the
denoising performance of the iterative algorithm is deferred
to Section 5.

Algorithm 1 Iterative minimization of the expected �1
distortion.

1. Initialization: Set j← 1,̂s(j)← x, and Niter = Maxi-
mum iterationcount.
2. Iterate until j exceeds Niter:

• Find a(j)
opt = arg min

0≤a≤1R�1(a,̂ s(j)) by a grid-search.
• j← j+ 1.
• Compute ŝ(j) = a(j−1)

opt x.

3. Output: Denoised estimate ŝ(j).

A) Expected �1 risk using GMM
approximation
For the GMM p.d.f. in (8), the expected �1 distortion evalu-
ates to (cf. Appendix B for the derivation)

R�1 =
M∑
m=1

aαmσm

(√
2
π
e−μ2

m/2 − 2μmQ (μm)+ μm

)
,

(15)
where μm=−((a− 1)s+ θm)/aσm. The expected �1 risk
and its estimate for a multimodal (cf. Fig. 3(b)) and Lapla-
cian noise p.d.f.s are shown in Figs 11(b) and 11(c), respec-
tively. We observe that, in both cases, the locations of
the minima of the true risk and its estimate are in good
agreement.

B) Optimum shrinkage versus posterior SNR
We next study the behavior of aopt for different input SNRs
to compare the denoising capabilities of the MPE and
the expected �1-distortion-based shrinkage estimators. The
optimal pointwise shrinkage parameter aopt for Gaussian
noise statistics, obtained by minimizing SURE, PE risk esti-
mate, and the estimated �1 risk, for different values of the
a posteriori SNR x2/σ 2 is plotted in Fig. 12(a). To illustrate
the effect of ε, the variation of aopt versus a posteriori SNR
for MPE corresponding to Gaussian noise is shown in Fig.
12(b), for different ε. We observe that the shrinkage pro-
files are characteristic of a reasonable denoising algorithm,
as Fig. 12(a) and 12(b) exhibit that the shrinkage parame-
ters increase as the a posteriori SNR increases. Whereas in
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Fig. 12. (Color online) Shrinkage parameter profiles as a function of the a poste-
riori SNR, corresponding to different risk functions: (a) MPE, SURE, expected
�1 distortion; and (b) MPE for different values of ε. The shrinkage factor aopt
is plotted on a log scale mainly to highlight the fine differences among various
attenuation profiles.

the case of MPE, the choice of ε is crucial, the expected �1
distortion does not require tuning such a parameter.

C) Shrinkage profiles of estimators based on
MPE/�1 vis-à-vis SURE
To gain insight into the denoising behavior of the MPE
and the �1-minimization-based shrinkage estimators, it is
instructive to study the resulting thresholding functions
shown in Fig. 13. Figures 13(a) and 13(b) correspond to
Gaussian noise. The comparison of the shrinkage functions
based on MPE, �1 risk, and SURE (cf. Fig. 13(a)) reveals
that MPE results in a hard-thresholding-type shrinkage,
whereas the �1 risk and SURE produce shrinkage profiles
similar to a soft-thresholding function (the threshold oper-
ator is called “soft” as it is a continuous function of the
input data [27]). The shrinkage functions resulting from
MPE with different ε are shown in Fig. 13(b). We observe
that increasing ε is tantamount to applying a larger attenu-
ation on the noisy signal. In Fig. 13(c), we demonstrate the
variation of the MPE-based shrinkage with respect to two
different noise distributions, namely, Gaussian and Lapla-
cian, having the same first- and second-order moments.
We observe that the MPE-based estimator corresponding
to Laplacian noise attenuates larger amplitudes more than
its Gaussian counterpart. Such an attenuation profile helps
suppress Laplacian noise more effectively, considering the
heavier tail of the Laplacian distribution. A distribution-
specific shrinkage profile also distinguishes MPE from the

conventional MSE-based estimators. In contrast, the MSE-
based shrinkage estimator, given by [28]: ŝMSE = max{0, 1−
σ 2/x2}x, relies only on moments up to second order.

An inspection of the shrinkage functions correspond-
ing to different ε values in Fig. 13(b) reveals a particularly
interesting property: Transform coefficients with magni-
tudes smaller than ε are set to zero by the MPE-based
shrinkage function. Thus, the PE risk essentially results in a
distribution-specific threshold operator parameterized by ε.
In this context, we recall an observation made by Johnstone
et al. in [45]: A threshold value of 3σ to 4σ or higher works
well for signals that are sparse in the transform domain,
whereas a threshold value of 2σ or lower ismore appropriate
for a dense signal. The optimal ε values obtained empir-
ically for the harmonic and the Piece-Regular signals (cf.
Section 3-3.1.3.1.3, Fig. 8) also support this statement. Since
the harmonic signal is sparser than the Piece-Regular sig-
nal in the DCT domain, the optimal ε tends to be higher
for the harmonic signal as compared with that for the Piece-
Regular signal. Thus, the shrinkage functions shown in Fig.
13(b) provide us with valuable insights on how to fix ε. If the
underlying signal is sparse in the transform considered, one
should fix ε in the range [3σ , 4σ ], whereas for dense signals,
one should set ε to about 2σ .

V . PERFORMANCE OF THE
EXPECTED �1 D ISTORT ION -BASED
PO INTWISE SHR INKAGE
EST IMATOR

In a practical denoising application, we have only one noisy
realization from which the clean signal has to be estimated.
However, it is instructive to consider the case of multi-
ple realizations as it throws some light on the performance
comparisons vis-à-vis other estimators such as the ML esti-
mator. Consider the observation model x(m)= s+w(m) in
R

n, 1≤m≤M, where one has access to M noisy realiza-
tions of the signal s, and the noise vectors w(m) are drawn
independently from the N (0, σ 2In) distribution. The ML
estimator of the ith signal coefficient si is given by ŝML,i =
(1/M)

∑M
m=1 x

(m)
i , where x(m)

i is the ith component of x(m).
Dropping the subscript i, as each coefficient is treated inde-
pendently of the others, the shrinkage estimator takes the

Fig. 13. (Color online) Thresholding functions corresponding to different risk functions: (a) MPE, SURE, expected �1 distortion; (b) MPE for various values of ε;
and (c) MPE, MSE. In (a) and (b), the noise considered is Gaussian. In (c), both Laplacian and Gaussian noise types have been considered with σ = 1 and ε= 3σ .
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Fig. 14. (Color online) Comparison of denoising performance as a function of number of observations for a Piece-Regular signal in Gaussian noise: (a) Output SNR
corresponding to input SNR 5 dB; and (b) Output SNR as a function of the number of observationsM and input SNR. The numerical values on the curves indicate
the corresponding values ofM. In both (a) and (b), the results are averaged over 100 independent noise realizations.

Fig. 15. (Color online) Performance of �1-risk-minimization-based pointwise shrinkage estimator (Piece-Regular signal in Gaussian noise): (a) Output SNR versus
iterations (input SNR 5 dB); and (b) Output SNR versus input SNR, averaged over 100 independent noise realizations. The number of iterations in Algorithm 1 is
fixed at Niter = 20.

form ŝ = aopt ŝML. To study the behavior of the estimatewith
respect to M, we consider two variants: (i) where aopt is
obtained by minimizingR�1(s, a), referred to as the oracle-
�1; and (ii) where aopt is chosen to minimize R�1(ŝML, a),
referred to as ML-�1. The output SNR as a function of M
for the Piece-Regular signal, corresponding to an input SNR
of 5 dB, is shown in Fig. 14(a). For all three estimators,
namely, oracle-�1, ML-�1, and the ML estimate, the output
SNR increases with M. However, for the oracle-�1 and the
ML-�1 estimators, the output SNR stagnates asM increases
beyond 40. ForM≤ 60, the oracle-�1 and theML-�1 shrink-
age estimators exhibit better performance compared with
the ML estimator. As one would expect, the performance of
the ML-�1 estimator matches with that obtained using the
oracle-�1 asM becomes large, because theML estimate con-
verges in probability to the true parameter. ForM= 1, which
is often the case in practice, theML-�1 estimate significantly
dominates the ML estimator as seen in Fig. 14(a). The SNR
gain over the ML estimator could be further improved by
using the iterative minimization algorithm introduced in
Section 4 (cf. Algorithm 1). The performance of the ML-
�1 and the ML estimators, for different values of M and
input SNR is shown in Fig. 14(b). The figures show that
for small values of SNR andM, the ML-�1 estimate outper-
forms the ML estimator. This is of significant importance

in a practical setting where we have only one noisy
realization (M= 1).

A) Iterative minimization of the expected
�1-risk
WhenM= 1, the ML-�1 estimator is obtained by minimiz-
ing R�1(x, a), where x is the noisy version of s. We refer to
this estimate as the non-iterative �1-based shrinkage esti-
mator. Following Algorithm 1, one could iteratively refine
the estimate, starting from x. We compare the non-iterative
�1-based estimator with its iterative counterpart (ITER-�1),
and present the results in Figs 15,16, and 17, corresponding
to Gaussian, multimodal (Fig. 3(b)), and a GMM approx-
imation to the Laplacian noise, respectively. The output
SNR obtained using the oracle-�1 estimator, calculated by
minimizing R�1(s, a), is also shown for benchmarking the
performance.

We make the following observations from Figs 15,16,
and 17: (i) the output SNR increases with iterations, albeit
marginally after about 10 iterations; (ii) the iterativemethod
consistently dominates the non-iterative one, with an over-
all SNR improvement of about 2–3 dB, for input SNR in the
range−5 dB to 20 dB; and (iii) the SNR gain of the iterative
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Fig. 16. (Color online) Performance of pointwise shrinkage estimator based on �1 risk minimization: (a) Output SNR versus iterations, corresponding to the
Piece-Regular signal contaminated by noise (SNR 5 dB) whose p.d.f. is given in Fig. 3(b); and (b) Output SNR versus input SNR (averaged over 100 independent
noise realizations). The number of iterations in Algorithm 1 is set to Niter = 20.

Fig. 17. (Color online) Performance of pointwise shrinkage estimator obtained by �1 riskminimization: (a) Output SNR versus iterations for the Piece-Regular signal
in Laplacian noise with an input SNR of 5 dB; and (b) Output SNR versus input SNR for Niter = 20. In (a) and (b), the Laplacian distribution is modeled using a
four-component GMM to calculate the �1-risk estimate. The results displayed in (b) are obtained after averaging over 100 realizations.

technique also reduces for higher input SNR, similar to
other denoising algorithms.

V I . PERFORMANCE ASSESSMENT
OF MPE AND �1 - R I SK M IN IM IZAT -
ION ALGOR ITHMS VERSUS
BENCHMARK DENO IS ING
ALGOR ITHMS

We compare the MPE and the �1-based shrinkage esti-
mators with three denoising algorithms: (i) wavelet soft-
thresholding1 (ST) [35]; (ii) the SURE-LET denoising
algorithm2 [5]; and (iii) smooth sigmoid shrinkage (SS)
[13] in the wavelet domain3. In [35], a wavelet-based soft-
thresholding scheme is used for denoising, with the thresh-
old selected as τ = σ

√
2 ln(N) for an N-length signal. The

SURE-LET technique employs a linear expansion of thresh-
olds (LET), which is a linear combination of elementary
denoising functions and optimizes for the coefficients by
minimizing the SURE criterion. In [13], a smooth sigmoid

1A Matlab implementation is included in the Wavelab toolbox avail-
able at: http://statweb.stanford.edu/~wavelab/.

2AMATLAB implementation of the SURE-LET algorithm is available
at: http://bigwww.epfl.ch/demo/suredenoising.

3Pastor et al. kindly provided the MATLAB implementation of their
denoising technique [13], which facilitated the comparisons reported in
this paper.

shrinkage is applied on the wavelet coefficients to achieve
denoising, and the parameters of the sigmoid, which control
the degree of attenuation, are obtained by minimizing the
SURE objective. We consider ECG signals taken from the
PhysioBank database, and the HeaviSine and Piece-Regular
signals taken from Wavelab toolbox for performance
evaluation.

The noise is assumed to follow a Gaussian distribution
and the output SNR values are averaged over 100 inde-
pendent realizations. The noise variance is estimated using
a median-based estimator [40], which was also employed
by Luisier et al.1 and Donoho2. In SURE-LET, SS, and ST
techniques, denoising is performed using Symmlet-4, with
three levels of decomposition, as these settings were found
to be the best for the ECG signal (following [20]). In the
case ofMPE and �1-based shrinkage estimators, denoising is
performed in the DCT domain.We use the shorthand nota-
tions MPE andMPE-SUB to denote the pointwise and sub-
band shrinkage estimators, respectively. The corresponding
SURE-based subband shrinkage estimator is denoted as
SURE-SUB. We set k= 16 and ε = 1.75

√
kσ for computing

the subband shrinkage parameters. These parameters have
not been specifically optimized; however, experimentally
they were found to work well. The output SNR as a func-
tion of the input SNR, obtained using various algorithms, is
shown in Fig. 18.

http://statweb.stanford.edu/~wavelab/
http://bigwww.epfl.ch/demo/suredenoising
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Fig. 18. (Color online) Output SNR of various denoising algorithms, averaged over 100 noise realizations, corresponding to different input SNRs.

Fig. 19. (Color online) DCT-domain performance comparison of various denoising algorithms for different input SNRs, results are averaged over 100 noise
realizations. (a) ECG signal, (b) HeaviSine signal, and (c) Piece-Regular signal

From the ECG signal denoising performance shown
in Fig. 18(a), we observe that the MPE estimate con-
sistently dominates soft-thresholding-based denoising for
input SNRs ranging from −5 dB to 20 dB. The iterative �1-
distortion-based shrinkage estimator (20 iterations) yields
lower output SNR compared with the MPE-based esti-
mate for input SNR values in the range −5 to 17.5 dB,
but surpasses it for relatively higher values of input SNR
(17.5–20 dB). The SURE-LET and SS algorithms dominate
both MPE and �1-based shrinkage estimators, because they
use more sophisticated denoising functions in the trans-
form domain, thereby offering greater flexibility. For input
SNR in the range 0–20 dB, the expected �1-distortion-
based shrinkage estimator consistently outperforms the

soft-thresholding-based technique.We observe from Fig. 18
that the MPE-subband estimator is better than the compet-
ing algorithms at low input SNR.

In the preceding discussion, we consideredDCT-domain
shrinkage for the proposed methods and wavelet-based
denoising for the benchmark methods, because these are
the best-case performance scenarios. In order to maintain
uniformity in comparison, we have also considered the sce-
narios where all the techniques operate either in the DCT
or wavelet domain. Figure 19 shows a performance compar-
ison in the case of DCT. For input SNRs in the range −5
to 15 dB, MPE-SUB shows the best denoising performance.
Next, we address wavelet-domain denoising usingMPE.We
consider the same denoising framework as that of Atto and

Table 2. Performance comparison of wavelet domain denoising of ECG signal. The output
SNR values are averaged over 100 noise realizations.

Input Output SNR (dB)

SNR (dB) SURE-LET SS SURE-SUB ST MPE MPE-SUB ITER-�1

−5.00 3.61 4.29 4.50 2.34 3.32 4.55 −0.09
−2.50 6.15 6.80 6.99 3.63 5.83 7.06 2.41
0 8.54 9.19 9.40 5.08 8.29 9.47 4.88
2.50 10.96 11.60 11.79 6.68 10.67 11.85 7.35
5.00 13.31 13.96 14.09 8.34 13.06 14.17 9.83
7.50 15.61 16.22 16.34 10.06 15.33 16.38 12.25
10.00 17.70 18.29 18.23 11.79 17.42 18.28 14.68
12.50 19.66 20.25 20.04 13.56 19.39 19.98 17.00
15.00 21.38 21.97 21.04 15.18 21.13 21.34 19.28
17.50 22.78 23.43 22.88 16.79 22.57 22.44 21.38
20.00 23.90 24.65 24.05 18.17 23.69 23.46 23.26
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Table 3. Performance comparison for wavelet domain denoising of HeaviSine signal. Results
presented are averaged over 100 noise realizations.

Input Output SNR (dB)

(l)2-8 SNR (dB) SURE-LET SS SURE-SUB ST MPE MPE-SUB ITER-�1

−5.00 3.71 4.35 4.57 9.91 3.41 4.65 −0.04
−2.50 6.19 6.73 7.07 11.78 5.87 7.11 2.40
0 8.70 9.30 9.58 13.54 8.39 9.63 4.91
2.50 11.20 11.84 12.10 14.99 10.97 12.16 7.45
5.00 13.74 14.35 14.54 16.49 13.42 14.67 9.89
7.50 16.18 16.79 17.03 18.13 15.86 17.10 12.41
10.00 18.67 19.29 19.54 19.93 18.34 19.59 14.93
12.50 21.14 21.67 21.33 22.01 20.77 22.05 17.40
15.00 23.58 24.19 24.32 24.05 23.25 24.41 19.92
17.50 26.10 26.61 26.69 26.00 25.72 26.79 22.39
20.00 28.60 29.08 28.89 27.90 28.18 29.02 24.88

Table 4. Performance comparison for wavelet domain denoising of the Piece-Regular signal.
The output SNR values are averaged over 100 noise realizations.

Input Output SNR (dB)

SNR (dB) SURE-LET SS SURE-SUB ST MPE MPE-SUB ITER-�1

−5.00 3.65 4.33 4.53 5.17 3.37 4.59 −0.08
−2.50 6.18 6.74 7.02 6.59 5.83 7.08 2.37
0 8.62 9.30 9.50 8.16 8.34 9.56 4.90
2.50 11.14 11.78 11.97 9.81 10.77 12.03 7.39
5.00 13.52 14.11 14.30 11.54 13.19 14.36 9.87
7.50 16.00 16.57 16.68 13.33 15.57 16.75 12.35
10.00 18.44 18.95 18.82 15.16 17.96 18.93 14.86
12.50 20.97 21.41 20.91 17.04 20.42 20.98 17.34
15.00 23.49 23.97 22.78 18.95 22.99 22.78 19.85
17.50 25.92 26.48 24.40 20.83 25.41 24.22 22.29
20.00 28.34 28.99 25.93 22.79 27.86 25.55 24.82

Pastor [13], but replace their sigmoid-shrinkage function
with MPE-based shrinkage in every subband. The param-
eter ε has been set to ε= 3σ for MPE and ε = 1.25σ

√
k for

MPE-SUB, where k is the subband signal length. Tables 2
and 4 show that for input SNR below 10 dB,MPE-SUB gives
better results than the competing algorithms. For theHeav-
iSine signal (cf. Table 3), soft-thresholding technique gave
a better performance than the other techniques. However,
MPE-SUB leads to a better performance than SURE-LET,
SURE-SUB, and SS. The wavelet-domain denoising results
are shown in a tabular form and DCT-domain denoising in
figures, since the relative margin of improvement is smaller
in the case of wavelet. When all the techniques operate in
the DCT domain, the margin of improvement is maximum
in the case of MPE.

V I I . CONCLUS IONS

We have proposed a new framework for signal denoising
based on a novel criterion, namely the probability of error.
Our framework is applicable to scenarios where the noise
is i.i.d. and additive. Denoising is performed by means
of optimum transform-domain shrinkage in the sense of
minimum probability of error. We have considered both
pointwise and subband shrinkage estimators within the
MPE paradigm. The performance of the proposed MPE

estimators depends on the choice of the error-tolerance
parameter ε, which was determined empirically consider-
ing SNR gain as the quantity of interest. The parameter
ε also acts as the threshold for the shrinkage function. We
also proposed an alternative by integrating the probability
of error for ε ∈ (0,+∞), which led to the expected �1 dis-
tortion, which was minimized iteratively. We demonstrated
that iterations improve the denoising performance and the
resulting shrinkage estimator outperforms the classical ML
estimator when the number of observations is small or the
input SNR is low.

For performance comparisons with benchmarking
denoising algorithms, we considered real ECG signals and
Wavelab signals in Gaussian noise. Experimentally, we have
found that an increase in subband size leads to a higher
output SNR, and saturates beyond a point. When the sub-
band size is small or the input SNR is low,MPE outperforms
SURE.

Wedemonstrated that the optimumshrinkage parameter
obtained by minimizing estimates of the PE/�1 distortions
increases monotonically with increase in the a posteriori
SNR. This behavior of the shrinkage parameter is essential
for denoising. A theoretical characterization of this behav-
ior is needed and may lead to interesting inferences, which
could lead to a rigorous convergence proof for the proposed
iterative expected �1 distortion minimization technique.
Another important observation is that, for lower input
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SNRs, the proposed denoising framework yields a higher
output SNR thanMSE-based techniques. The improvement
may be attributed to the fact that theMPE framework incor-
porates knowledge of the distribution of the observations,
which goes beyond the second-order statistics considered
in conventionalMSE-based optimization. To the best of our
knowledge, this is the first attempt at demonstrating com-
petitive denoising performance with probability of error
chosen as the distortion measure in a non-Bayesian setting.

Following our preliminary contribution [28], recently,
Kudryavtsev and Shestakov considered the probability that
the maximum error between the estimates and true wavelet
transform coefficients exceeds a critical value and analyzed
the asymptotic behavior of the resulting optimal minimax
threshold value considering specifically hard- and soft-
thresholding schemes [46].However, the advantages of such
a strategy in the context of a denoising task are yet to be
ascertained.
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APPENDIX

A) PERTURBATIONOF SURE-BASED
POINTWISE SHRINKAGE

To analyze the perturbation in the location of the minimum of
the SURE cost, in comparison with the true MSE, one needs to
evaluate

PSUREe = P
{∣∣aopt (s)− aopt (x)

∣∣ ≥ δ
}
,

where aopt(s)= s2/(s2+ σ 2) and aopt(x)= 1− σ 2/x2. Let

h (x) = aopt (s)− aopt (x) =
(

s2

s2 + σ 2 − 1+ σ 2

x2

)
.

The Taylor-series expansion of h(x) about s yields

h(x) = σ 4

s2 (s2 + σ 2)
− 2

wσ 2

s3
+
∞∑
n=2

h(n) (s)
n!

wn,

where h(n) is the nth derivative h. Using the first-order Taylor
series approximation h(x)≈ h(s)+w h(1)(s), we obtain

h(x) ≈ σ 4

s2 (s2 + σ 2)
− 2

wσ 2

s3
,

which, in turn, leads to an approximation of the perturbation
probability PSUREe :

PSUREe = P {|h (x)| ≥ δ}

≈ P

{∣∣∣∣ σ 4

s2 (s2 + σ 2)
− 2

wσ 2

s3

∣∣∣∣ ≥ δ

}
.

Invoking w ∼ N (0, σ 2), and using the Chernoff bound [36],
we obtain

PSUREe ≤ 2 exp
(
− s6

8σ 6

(
δ − σ 4

(s2 + σ 2) s2

)2)
.

Consequently, to satisfy an upper bound on the deviation prob-
ability of the form PSUREe ≤ α, for a given δ > 0, one must
ensure that

s6

8σ 6

(
δ − σ 4

(s2 + σ 2) s2

)2
≥ log

( 2
α

)
. (A.1)

The condition in (A.1) translates to an equivalent condition
on the minimum required SNR s2/σ 2 to achieve a certain
PSUREe .

B) EXPECTED �1 RISK FORGMM

For additive noise with the p.d.f. given in (8), we have

E{|̂s− s|} =
M∑
m=1

αm

(∫ ∞
0

Q
(

ε − (a− 1)s− θm

aσm

)
dε

+
∫ ∞
0

Q
(

ε + (a− 1)s+ θm

aσm

)
dε
)
, (A.2)

using (9) and (12). Letting μm=−((a− 1)s+ θm)/aσm and
um= (ε− (a− 1)s− θm)/aσm, we get∫ ∞

0
Q (um) dε = aσm

(
e−μ2

m/2
√
2π
− μmQ (μm)

)
. (A.3)

Substituting (A.3) in (A.2) yields

E{|̂s− s|} =
M∑
m=1

aαmσm

×
(√

2
π
e−μ2

m/2 − 2μmQ (μm)+ μm

)
,

which is the expression for the expected �1 distortion for noise
following a GMM distribution.

https://statweb.stanford.edu/ wavelab/
https://statweb.stanford.edu/ wavelab/
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https://www.physionet.org/physiobank/database/aami-ec13/
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