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Abstract

We obtain identities and relationships between the modular j-function, the generating
functions for the classical partition function and the Andrews spt-function, and two
functions related to unimodal sequences and a new partition statistic we call the
“signed triangular weight” of a partition. These results follow from the closed formula
we obtain for the Hecke action on a distinguished harmonic Maass formM (τ ) defined
by Bringmann in her work on the Andrews spt-function. This formula involves a
sequence of polynomials in j(τ ), through which we ultimately arrive at expressions for
the coefficients of the j-function purely in terms of these combinatorial quantities.
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1 Introduction and statement of results
Partitions, first and foremost combinatorial objects, permeate seemingly disparate areas
ofmathematics. The partition function p(n) gives the number of ways towrite n as the sum
of unordered positive integers. The generating function for p(n) is a weakly holomorphic
modular form of weight −1/2, namely

P(q) :=
∑

n≥0
p(n)q24n−1 = q−1

∏

n≥1

1
1 − q24n

= 1
η(24τ )

, (1.1)

where η(τ ) is Dedekind’s eta-function and we use the convention q = e2π iτ . This is one
indication of partitions’ deep ties to number theory. Outside combinatorics and number
theory, perhaps the most prominent role for partitions is in representation theory, where
the theory of Young tableaux for partitions encodes the irreducible representations of all
symmetric groups [12, Theorem 2.1.11].
Other modular forms and functions that were first studied in number theory have

likewise appeared in the representation theory of finite groups. In particular, the modular
j-function, whose Fourier expansion is

j(τ ) =
∑

n≥−1
c(n)qn = q−1 + 744 + 196884q + 21493760q2 + · · · , (1.2)

is well-known in number theory because the j-invariants, i.e. the values of j(τ ) for τ ∈ H,
parametrize isomorphism classes of elliptic curves over C [16, Proposition 12.11].
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McKay famously observed that the first few coefficients of j(τ ) satisfy striking relations
such as

c(1) = 196884 = 1 + 196883,

c(2) = 21493760 = 1 + 196883 + 21296876,
(1.3)

where the right-hand sides are linear combinations of dimensions of irreducible represen-
tations of the monster groupM. Such expressions inspired Thompson to conjecture [17]
that there is a monstrous moonshine module, an infinite-dimensional gradedM-module
V � = ⊕

n�−1 Vn such that for n ≥ −1, we have

c(n) = dim(Vn).

Thompson further conjectured that, since the graded dimension is the graded trace of the
identity element ofM, the traces of other elements g may likewise be related to naturally-
occuring q-series. This was refined by Conway and Norton in [11], who conjectured that
for every element g ∈ M, the McKay-Thompson series

Tg (τ ) :=
∞∑

n=−1
Tr(g |Vn)qn

is the Hauptmodul which generates the function field for a genus 0 modular curve for
a particular congruence subgroup �g ⊂ SL2(R). Borcherds proved the Conway–Norton
conjecture for the Monster Moonshine Module in [6], an impactful result which, in part,
solidifies the j-function’s connection to the representation theory ofM.
Since the j-function and partitions appear in both number theory and representation

theory, one can ask if there is a relation between c(n) and p(n). In this paper, we discover
that the coefficients of the Fourier expansion of both the j-function and a certain sequence
of polynomials in j have a combinatorial description in terms of partitions of integers and
unimodal sequences. This suggests the possibility of deeper connections between the
representation theory of the symmetric group and the monster Lie algebra.
This research is inspired by recent work of Andrews [2] in which he defined spt(n) to

count the number of smallest parts among all integer partitions of n. For example, we
can determine that spt(4) = 10 by counting the following underlined parts across all five
partitions of 4:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Following the notation of [15], we define a renormalized generating function for spt(n) as

S(q) :=
∑

n≥1
spt(n)q24n−1. (1.4)

Paralleling Ramanujan’s notable congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11),
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Andrews [2] showed that the spt function satisfies the congruences

spt(5n + 4) ≡ 0 (mod 5),

spt(7n + 5) ≡ 0 (mod 7),

spt(13n + 6) ≡ 0 (mod 13).

Of further interest are the spt-function’s rich families of congruences modulo all primes
� ≥ 5. As Ono proved in [15], if � ≥ 5 is prime, n ≥ 1, and

(−n
�

) = 1, then

spt
(

�2n − 1
24

)
≡ 0 (mod �). (1.5)

Subsequent work by Ahlgren et al. [1] extended these congruences to arbitrary powers of
�. Ifm ≥ 1, then

spt
(

�2mn + 1
24

)
≡ 0 (mod �m). (1.6)

These congruences follow from studying a distinguished harmonic Maass form M (τ )
definedbyBringmann in [7] (see (2.1)). ForbackgroundonharmonicMaass forms,we refer
the reader to [8,14]. The functionM (τ ) is of particular interest because its holomorphic
partM+(τ ) involves the generating functions for both p(n) and spt(n); namely we have

M+(τ ) = S(q) + 1
12

q
d
dq

P(q). (1.7)

For weight 3/2 harmonic Maass forms with Nebentypus χ12 := ( 12
·
)
, we follow the

normalization given in [15] to define the Hecke operators T (�2) of index �2 on a power
series f (τ ) = ∑

n�−∞ a(n)qn by

f (τ ) | T (�2) :=
∑

n�−∞

[
a(�2n) +

(
3
�

)(−n
�

)
a(n) + �a(n/�2)

]
qn. (1.8)

The congruences in (1.5) and (1.6) follow from the fact that

M+(τ ) | T (�2) ≡
(
3
�

)
M+(τ ) (mod �). (1.9)

Ono asked whether there exist explicit identities which imply (1.9). We answer this
question. Using the standard notation (q; q)∞ := ∏

n≥1(1 − qn), we define a sequence of
monic integer polynomials Bm(x) of degree (m − 1) by

B(x, q) =
∑

m≥1
Bm(x)qm := (q; q)∞ · 1

j(τ ) − x

= q + (x − 745)q2 + (x2 − 1489x + 357395)q3 + · · · .
(1.10)

In terms of the Eisenstein series E4(τ ) and E6(τ ), as well as Ramanujan’s Delta function
	(τ ), we offer the following solution to Ono’s problem.
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Theorem 1.1 If � ≥ 5 is a prime and δ� := �2−1
24 , then

M+(τ ) |3/2 T (�2) =
(
3
�

)
(1 + �)M+(τ ) − �

12
P(q) · Bδ�

(j(24τ )) · E
2
4 (24τ )E6(24τ )

	(24τ )
.

Remark We note that the identity in the theorem immediately reduces to (1.9) modulo
�. Moreover, this result gives an expression for the Hecke action in terms of only the
original mock modular form and the coefficient of q−�2 produced by the Hecke operator.
Therefore, the resulting mock modular form is determined by a single term.

For notational clarity, we note that

−q
d
dq

j(τ ) = E2
4 (τ )E6(τ )
	(τ )

= q−1 −
∑

n≥1
nc(n)qn = q−1 − 196884q − 42987520q2 + · · · .

Thus, Bδ�
(j(24τ )) · E2

4 (24τ )E6(24τ )
	(24τ ) is completely determined by the coefficients of j. For

convenience, we write

−q
d
dq

j(24τ ) = q−24 − 196884q24 − 42987520q48 + · · · .

Example Here we illustrate Theorem 1.1 for the primes 5, 7, and 11. In the notation of
[15], we define

M�(τ ) := M+(τ ) |3/2 T (�2) −
(
3
�

)
(1 + �)M+(τ ). (1.11)

For � = 5, note that δ5 = 1 and B1(x) = 1. Therefore, we find that

M5(τ ) = 5
12

P(q) · q d
dq

j(24τ ) = − 5
12

q−25 − 5
12

q−1 + 492205
6

q23 + · · · .

For � = 7, δ7 = 2 and B2(x) = x − 745. Therefore, we have

M7(τ ) = 7
12

P(q) · (j(24τ ) − 745) · q d
dq

j(24τ ) = − 7
12

q−49

− 7
12

q−1 + 149078125
12

q23 + · · · .

For � = 11, δ11 = 5 and

B5(x) = x4 − 2977x3 + 2732795x2 − 812685832x + 4947668669.

Therefore, we have

M11(τ ) = 11
12

P(q) · B5(j(24τ )) · q d
dq

j(24τ ) = −11
12

q−121 + 11
12

q−1 + · · · .
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In view of (1.11), the case � = 5 gives an expression for M+(τ ) | T (25) in terms of the
coefficients c(n) of the j-function, thus deriving an unexpected relationship between these
coefficients and the values of p(n) and spt(n). Namely, we offer the following partition-
theoretic counterparts to (1.3):

c(1) = 196884 = 2 + 49 + 15708 + 181125,

c(2) = 21493760 = 1
2

(
1 − 49 + 182 − 15708 − 181125 + 2405844 + 40778375

)
.

The two identities above are examples of a more general theorem. Tomake this precise,
it is important to illustrate how the summands above correspond to p(n) and spt(n). We
require the following notation. For n ≥ 1, we define

h1(24n − 1) := 12
5
spt(25n − 1) + 5(24n − 1)p(25n − 1)

+ μn ·
(12
5
spt(n) + 5(24n − 1)p(n)

)
,

h2(25(24n − 1)) := 12spt(n) + (24n − 1)p(n),

(1.12)

where μn := 6 − ( 1−24n
5

)
. We define h1(m) = 0 if m �≡ 23 mod 24 and h2(m) = 0 if

m �≡ 23 mod 24 or ifm �≡ 0 mod 25. We will also need the following function. For n = 1,
we set s(n) = 2, and for n > 1, let

s(n) :=
{
(−1)k+1 if 24n = (6k + 1)2 − 25 or 24n = (6k + 1)2 − 1 for some k ∈ Z,
0 otherwise.

Remark It is an easy exercise to confirm s(n) is well-defined.

Then we have the following result.

Theorem 1.2 If n ≥ 1, then

c(n) = s(n)
n

+ 1
n

∑

k∈Z

[
(−1)kh1(24n − (6k + 1)2) + (−1)kh2(24n − (6k + 1)2)

]
.

Remark The formula in Theorem 1.2 bears a strong resemblance to another well-known
expression for the coefficients of j. Work of Kaneko [13] shows for n ≥ 1 that

c(n) = 1
n

∑

r∈Z

[
t(n − r2) − (−1)n+r

4
t(4n − r2) + (−1)r

4
t(16n − r2)

]
, (1.13)

where t are traces of singular moduli, i.e. the sums of the j-invariants of elliptic curves
with complex multiplication. In view of the similarity of these expressions, it is natural to
wonder whether Theorem 1.2 suggests a deep connection between partitions and traces
of singular moduli.

In [3], Andrews related spt(n) to a number of other combinatorial and number-theoretic
functions. One connection of particular interest is the relationship of spt to strongly
unimodal sequences. We ask whether this relationship reveals deeper connections to the
j-function and representation theory.
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A sequence of integers {ak}sk=1 is a strongly unimodal sequence of size n if
∑s

k=1 ak = n
and for some r it satisfies 0 < a1 < a2 < · · · < ar > ar+1 > ar+2 > · · · > as > 0.
The rank of {ak}sk=1 is s − 2r + 1, the number of terms after the maximal term minus
the number of terms preceding it. The function U (t; q) counts specific types of strongly
unimodal sequences [10]. For t = −1,

U (−1; q) =
∑

n≥1
u∗(n)qn = q + q2 − q3 − 2q5 + 2q6 + · · · ,

where u∗(n) is the difference of the number of even-rank strongly unimodal sequences
of size n and the number of odd-rank strongly unimodal sequences of size n. Andrews
proved in [3] that

U (−1; q) = −
∑

n≥1
spt(n)qn + 2A(q), (1.14)

where

A(q) =
∑

n≥1
a(n)qn := 1

(q; q)∞

∞∑

n=1

(−1)n−1nq
n2+n
2

1 − qn

= q + q2 − q3 + q4 − q5 + 4q6 + · · · .

It is natural to ask what A(q) is counting. We find that A(q) is the generating function
for a partition statistic that we call the “signed triangular weight” of a partition, a result
which is of independent interest. Given a partition λ 
 N , where we write the size of the
partition as |λ| := N , let nλ be the maximal number such that λ contains parts of size
1, 2, . . . , nλ. Lettingmk denote the number of times that the part k appears in λ, we define
the signed triangular weight of λ to be ts(λ) := ∑nλ

k=1(−1)k−1kmk . If λ does not contain a
part of size 1, then let ts(λ) = 0.

Example Consider λ = {1, 2, 2, 3, 4, 5, 5, 8}. Then λ 
 30, nλ = 5, and

ts(λ) = 1 · 1 − 2 · 2 + 3 · 1 − 4 · 1 + 5 · 2 = 6.

We prove the following result relating ts(λ) for all partitions λ of all positive integers to
the series A(q).

Theorem 1.3 The following q-series identity is true:

A(q) =
∑

λ

ts(λ)q|λ|.

From this, we may conclude that a(n) = ∑
|λ|=n ts(λ). Given this relationship, the spt

congruence given in (1.6) immediately implies the following result.

Corollary 1.4 If � ≥ 5 is prime,
(−n

�

) = 1, and m ≥ 1, then

u∗
(

�2mn − 1
24

)
≡ 2a

(
�2mn − 1

24

)
(mod �m).
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Combining our explicit expression for the action of the Hecke operator T (25) in The-
orem 1.1 and our combinatorial expressions for c(n), we arrive at new expressions for
the coefficients of j(τ ) in terms of p(n) and the coefficients of a(n) and u∗(n). For ease of
notation, we define the functions

g1(24n − 1) := −12
5
u∗(25n − 1) + 24

5
a(25n − 1) + 5(24n − 1)p(25n − 1)

+ μn ·
(

−12
5
u∗(25n − 1) + 24

5
a(25n − 1) + 5(24n − 1)p(n)

)
,

g2(25(24n − 1)) := −12u∗(n) + 24a(n) + (24n − 1)p(n),
(1.15)

where as in (1.12), g1(m) = 0 if m �≡ 23 mod 24 and g2(m) = 0 if m �≡ 23 mod 24 and
m �≡ 0 mod 25.

Corollary 1.5 If n ≥ 1, then

c(n) = s(n)
n

+ 1
n

∑

k∈Z

[
(−1)kg1(24n − (6k + 1)2) + (−1)kg2(24n − (6k + 1)2)

]
.

Example Using our result, we find the following identities:

c(1) = 196884 = s(24) + 168a(1) − 84u∗(1) + 161p(1)
5

+ 24
5
a(24) − 12

5
u∗(24) + 115p(24)

c(2) = 21493760 = 1
2

(
s(48) − 168a(1) − 84u∗(1) + 161p(1)

5

+ 14a(2) − 7u∗(2) + 329p(2)
5

− 24
5
a(24) + 12

5
u∗(24) − 115p(24) + 24

5
a(49) − 12

5
u∗(49) + 235p(49)

)
.

Question 1 Are the combinatorial interpretations of the coefficients of the j-function in
Theorem 1.2 and Corollary 1.5 glimpses of hidden structure of the monster module? In
particular, do spt(n), u∗(n), and a(n) play roles in representation theory?

Remark After this paper was submitted, T. Matsusaka (Private communication, 2019)
informed the authors that he has obtained further similar results along these lines which
frame the spt function in terms of a weakly holomorphic Jacobi form. This structure also
provides a connection to the formulation by Kaneko [13] of the j-function’s coefficients
using traces of singular moduli.

This paper is organized as follows. In Sect. 2, we investigate the specific harmonic
Maass form M (τ ) and derive an expression for the action of the Hecke operator on its
holomorphic part. To do this, we study canonical families of polynomials in j(τ ) and
explore the relationship of modular forms to modular functions on SL2(Z). In Sect. 3, we
prove Theorem 1.3. In Sect. 4, we prove Theorem 1.2 and Corollary 1.5.
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2 Harmonic maass forms
2.1 Preliminaries

To motivate our study and to ground the methods used here, we begin by introducing
the harmonic Maass form of interest for this paper. Recall that a weakly holomorphic
modular form for a congruence subgroup � of SL2(Z) is a function that is holomorphic
on H, whose poles, if any, are supported on the cusps of �\H, and which satisfies the
corresponding modularity properties for its weight. If f is a weakly holomorphic modular
form of weight k for � and Nebentypus χ , we write f ∈ M!

k (�,χ ).
Likewise, a smooth function f : H → C is a harmonic Maass form of weight k for � and

χ if it satisfies the standard modular transformation laws, is annihilated by the harmonic
Laplacian 	k , and has at most growth-order 1 exponential growth at each cusp on �\H.
We denote the vector space of harmonicMaass forms of weight k for� and χ asHk (�,χ ).
Recalling the definitions ofP(q) and S(q) in (1.1) and (1.4), we defineM (τ ) following

[15] as

M (τ ) := S(q) + 1
12

q
d
dq

P(q) − i
4π

√
2

·
∫ i∞

−τ̄

η(24z)
[−i(z + τ )]3/2

dz. (2.1)

By Theorem 2.1 of [15], M (τ ) ∈ H3/2 (�0(576),χ12), where χ12 := ( 12
·
)
. By M+(q) we

denote the holomorphic part ofM (τ ). This may be expressed as

M+(q) := S(q) + 1
12

q
d
dq

P(q) = − 1
12

q−1 + 35
12

q23 + 65
6
q47 + · · · .

2.2 The Hecke action

To understand the action of the Hecke operator onM+, we will need the following result
that produces a weakly holomorphic modular form involvingM+(τ ) | T (�2). We produce
this modular form via the following result.

Lemma 2.1 If

M�(τ ) := M+(τ ) | T (�2) −
(
3
�

)
(1 + �)M+(τ ),

then M�(τ ) ∈ M!
3/2(�0(576),χ12).

Proof Up to a constant, the nonholomorphic part of M (τ ) is the period integral for
η(24τ ). Write τ = x + iy for x, y ∈ R. Under the action of the differential operator
ξk := 2iyk ∂

∂τ
, we have ξ3/2(M ) = − 1

8π η(24τ ). Note that η(24τ ) is an eigenform for Hecke
operators of weight 1/2 with eigenvalue χ12(�)(1 + �−1) = ( 3

�
)(1 + �−1). If we define

M�(τ ) := M (τ ) | T (�2) −
(
3
�

)
(1 + �)M (τ ),

we observe that

ξ3/2

[
M (τ ) | T (�2) −

(
3
�

)
(1 + �)M (τ )

]
= 0. (2.2)
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Here we have used the commutativity relation

ξk (f |k T (�2)) = �2k−2(ξk f ) |2−k T (�2)

for half-integral weight harmonic Maass forms given in Proposition 7.1 of [9]. Since the
Hecke algebra preserves modularity,M (τ ) | T (�2) ∈ H3/2(�0(576),χ12). By (2.2),M�(τ )
is in the kernel of ξ3/2 and is therefore holomorphic on the upper half plane. Since the
action of the Hecke and ξ operators are linear and thus split over the holomorphic and
nonholomorphic parts ofM (τ ), the same result holds for M+(τ ). In particular, M�(τ ) ∈
M!

3/2(�0(576),χ12). �

2.3 Canonical polynomials in j(τ)

We show that the set of all Bm(j(τ )) form a convenientC-basis for the ring of weakly holo-
morphic modular functions on SL2(Z) as a C-vector space. Recall that the ring of weakly
holomorphic modular functions on SL2(Z) is precisely the ring of complex polynomials
in j(τ ), i.e.M!

0(SL2(Z)) = C[j(τ )] [4, Theorem 2.8]. As defined in (1.10), we have

B1(x) = 1,

B2(x) = x − 745,

B3(x) = x2 − 1489x + 357395.

Fromthesefirst fewexamples, the set ofBm(x) appears to formaC-basis for thepolynomial
ring C[x] as a C-vector space, and hence the set of Bm(j(τ )) would form a C-basis for
M!

0(SL2(Z)). In the following lemma, we show that this is indeed the case. To do so, we
define the function

α(q) := (q; q)∞
−q d

dq j(τ )
= q + O(q2). (2.3)

Lemma 2.2 If f (τ ) is a weakly holomorphic modular function on SL2(Z) and is of the form

f (τ ) = α(q)
( −1∑

n�−∞
t(n)qn

)
+ O(q), (2.4)

then

f (τ ) =
−1∑

n�−∞
t(n)B−n(j(τ )).

Remark The above lemma gives a clean formulation for modular functions f of the form
given in (2.4) when the principal part of f /α is known.

Proof of Lemma 2.2 For eachm ≥ 0, note that there exists a unique weakly holomorphic
modular function jm(τ ) on SL2(Z) such that jm(τ ) = q−m +O(q). The Faber polynomials
Jn(x) are the coefficients of the generating function

∞∑

n=0
Jn(x)qn := E2

4 (τ )E6(τ )
	(τ )

· 1
j(τ ) − x

= 1 + (x − 744)q + · · · .
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By Corollary 4 in [5], Jn(j(τ )) = jn(τ ) for all n ≥ 0. By comparing the generating functions
for Jn(x) and Bn(x) and using the identity (1.10), we see that

α(q)
∑

n≥0
Jn(x)qn = α(q) · E

2
4(τ )E6(τ )
	(τ )

· 1
j(τ ) − x

= (q; q)∞ · 1
j(τ ) − x

=
∑

n≥1
Bn(x)qn.

Since α(q) = q + O(q2), we compare coefficients and deduce that for each n ≥ 1,

α(q)Jn(j(τ )) = Bn(j(τ )) = α(q)q−n + O(q).

And hence we can conclude that

f (τ ) = α(q)
( −1∑

n�−∞
t(n)qn

)
+ O(q) =

−1∑

n�−∞
t(n)B−n(j(τ )).

2.4 Proof of Theorem 1.1

Note that we may write

M�(z) = − �

12
q−�2 +

(
3
�

)
�

12
q−1 +

∑

n≥23
n≡23 mod 24

a�(n)qn, (2.5)

where we observe that, since �2 ≡ 1 mod 24, the nonzero coefficients ofM� are supported
on integral exponents that are 23 mod 24. Following this, we define

F�(24τ ) := η�2 (24τ )M�(τ ). (2.6)

By Lemma 2.1, it is immediate that F�(24τ ) is a weakly holomorphic modular form of
weight �2+3

2 over �0(576) with trivial Nebentypus. In fact, by Theorem 2.2 in [15], F�(τ ) is
a weight �2+3

2 holomorphic modular form on SL2(Z). We recall that the proof makes use
of the observation that F� ∈ Z[[q24]] by construction, and that the behavior of F� under

thematrix S =
(
0 −1
1 0

)
can be determined using a result of Bringmann in [7] which gives

thatM (τ ) is an eigenform of the Fricke involution.

2.4.1 Getting toWeight 0

Now that we have a holomorphic modular form of weight �2+3
2 on all of SL2(Z), we

will leverage this information, along with some properties of the Eisenstein series E14
and the j-function, to produce a closed formula for the Hecke action. We first note that
�2+3
2 ≡ 2 mod 12, and that likewise so is E2

4(τ )E6(τ ). To make use of this seemingly
innocuous fact, define δ� := �2−1

24 and note that

G�(τ ) := E2
4(τ )E6(τ )	

δ�−1(τ ) = qδ�−1 + . . . ∈ M �2+3
2

(SL2(Z)). (2.7)

Since we now have another modular form of the same weight on SL2(Z), we would like
to prove that their quotient, F�(τ )/G�(τ ), is a weakly holomorphic modular function on
SL2(Z), which, coupled with our preceding characterization of the Faber polynomials, will
allow for a unique expression of the quotient as a polynomial in j(τ ).
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Lemma 2.3 The function F�(τ )/G�(τ ) is a polynomial in j(τ ).

Proof By construction,G� has a zero of degree 2 at e2π i/3, a simple zero at i, and no other
zeros in the fundamental domain F of SL2(Z).
Since the weight of F� is k = (�2 + 3)/2 ≡ 2 mod 12, we apply the transformation law

under S =
(
0 −1
1 0

)
to get that F�(−1/i) = ikF�(i) = −F�(i), hence F�(i) = 0. Similarly,

applying the transformation law under γ =
(
0 −1
1 1

)
yields F�(e2π i/3) = 0. Differentiating

both sides of F�(γ τ ) = (τ +1)kF�(τ ) and letting τ = e2π i/3 gives that d
dτ
F�(τ )|τ=e2π i/3 = 0.

Hence F� vanishes at e2π i/3 with order at least 2. Therefore the quotient F�/G� has no
poles in F , and we may deduce that F�/G� is a weakly holomorphic modular form of
weight 0 on SL2(Z). Since the modular functions on SL2(Z) are precisely the polynomials
C[j(τ )], we may conclude that F�/G� is a polynomial in j(τ ). �

It remains to construct this polynomial in j(τ ). Using themodular functions Bδ�
(j(24τ )),

we arrive at the following conclusion:

F�(τ )
G�(τ )

= η(τ )�2M�(τ/24)
E2
4 (τ )E6(τ )	δ�−1(τ )

= (q; q)∞
−q d

dq j(τ )
q1/24M�(τ/24)

= (q; q)∞
−q d

dq j(τ )

[
− �

12
q−δ� +

(
3
�

)
�

12
+ O(q)

]

= α(q)
[
− �

12
q−δ� +

(
3
�

)
�

12
+ O(q)

]

= − �

12
Bδ�

(j(τ )),

where the last equality follows from Lemma 2.2. Hence we may rearrange to get the
expression

M�(τ/24) = F�(τ )
η�2 (τ )

= − �

12
E2
4(τ )E6(τ )
	(τ )

η−1(τ )Bδ�
(j(τ )). (2.8)

Sending τ �→ 24τ and using the fact thatP(q) = η−1(24τ ),

M�(τ ) = P(q)
(
E2
4 (24τ )E6(24τ )

	(24τ )

) [
− �

12
Bδ�

(j(24τ ))
]
.

We can finally conclude that the action of the Hecke operator T (�2) is

M+(τ ) |3/2 T (�2) =
(
3
�

)
(1 + �)M+(τ ) − �

12
P(q) · Bδ�

(j(24τ )) · E
2
4 (24τ )E6(24τ )

	(24τ )
,

concluding the proof of Theorem 1.1. �
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3 The signed triangular weight
In light of the connection between the generating functions of the Andrews spt-function
and a particular class of unimodal sequences given in (1.14) mediated by the series A(q),
we present the proof of Theorem 1.3.

3.1 Proof of Theorem 1.3

We begin by examining the summation

∑

n≥1

q
n(n+1)

2

1 − qn
. (3.1)

By considering each summand to be of the form q
n(n+1)

2 (1 + qn + q2n + q3n + · · ·), note
that if we formally expand the above power series as

∑
m≥1 α(m)qm, then α(m) counts the

number of ways to choose integers (n, k) with n ≥ 1, k ≥ 0 such thatm = Tn + kn, where
Tn = n(n+ 1)/2 denotes the nth triangular number. Similarly, the coefficient β(m) of qm

in the formal expansion of

∑

n≥1

(−1)n−1nq
n(n+1)

2

1 − qn
:=

∑

m≥1
β(m)qm (3.2)

denotes a sum over all such pairs (n, k), weighted by the parity and size of n.
Multiplying the above series by the generating function 1/(q; q)∞ for partitions then

gives a formal power series

1
(q; q)∞

∑

n≥1

(−1)n−1nq
n(n+1)

2

1 − qn
:=

∑

m≥1
γ (m)qm (3.3)

where γ (m) runs over all partitions λ 
 m such that λ contains a subpartition consisting
of the parts {1, 2, . . . , n} and also possibly k more parts of size n, for n ≥ 1 and k ≥ 0, but
weighting this count by the parity and size of n. �

4 Combinatorial interpretations of the coefficients of j(τ)
As we have now developed a variety of both combinatorial and number-theoretic objects,
all of which are tied together by a class of polynomials in j(24τ ), it is natural to ask if
we may formalize and explicate this connection. To do this, we make use of both the
standard definition of the Hecke operator on q-series expansions as well as the result of
Theorem 1.1 in order to pull the functions spt(n) and p(n) through to the j-function. We
restrict our attention to the case where � = 5 since δ� = 1 and B1(j(24τ )) = 1. While at
first glance it may seem as though we have removed j from our expressions by looking at
this case, we recall that

−q
d
dq

j(24τ ) = E2
4(24τ )E6(24τ )

	(24τ )
= q−24 −

∑

n≥1
nc(n)q24n, (4.1)

where c(n) is the nth coefficient of the j-function. Thus, we need only solve for the c(n)′s in
terms of the combinatorial information given byM+(τ ) to arrive at our final conclusions.
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4.1 Proof of Theorem 1.2

Writing the q-series expansion forM+(τ ) out in terms of spt(n) and p(n), we arrive at

M+(τ ) = − 1
12

q−1 +
∑

n≥1

[
spt(n) + (24n − 1)

12
p(n)

]
q24n−1.

For n ≥ 1, we then write for ease

m(24n − 1) := spt(n) + 24n − 1
12

p(n). (4.2)

Now we can describe the action of the Hecke operator T (25) as follows:

M+(τ ) | T (25) = − 5
12

q−25 + 1
12

q−1 +
∑

n≥1
5m(24n − 1)q25(24n−1)

+
∑

n≥1

[
m(25(24n − 1)) −

(−24n + 1
5

)
m(24n − 1)

]
q24n−1.

SinceM5(τ ) = M+(τ ) | T (25) + 6M+(τ ), we have

M5(τ ) = − 5
12

q−25 − 5
12

q−1 +
∑

n≥1
5 [m(24n − 1)] q25(24n−1)

+
∑

n≥1

[
m(25(24n − 1)) +

[
6 −

(−24n + 1
5

)]
m(24n − 1)

]
q24n−1.

Thus, when � = 5, the statement of Theorem 1.1 reduces to

M5(τ ) = − 5
12

η−1(24τ )

⎡

⎣q−24 −
∑

n≥1
nc(n)q24n

⎤

⎦

and we are able to rearrange as follows:

−q−24 +
∑

n≥1
nc(n)q24n = η(24τ )

[
− q−25 − q−1

+ 12
5

∑

n≥1

[
m(25(24n − 1)) +

[
6 −

(
1 − 24n

5

)]
m(24n − 1)

]
q24n−1

+
∑

n≥1
12m(24n − 1)q25(24n−1)

]
.

Recall the definitions of h1(m) and h2(m) in (1.12). Using these, we define

δ1(n) :=
∑

k∈Z
(−1)kh1(n − (6k + 1)2),

δ2(n) :=
∑

k∈Z
(−1)kh2(n − (6k + 1)2).



2 Page 14 of 15 A. Lin et al. Res. Number Theory (2020) 6:2

Then we may write

−q−24 +
∑

n≥1
nc(n)q24n =

∑

n≥1
δ1(24n)q24n +

∑

n≥1
δ2(24(25n − 1))q24(25n−1)

−
∞∑

n=−∞
(−1)nq(6n+1)2−25 −

∞∑

n=−∞
(−1)nq(6n+1)2−1.

We note that for n ≥ 1,

∑

n≥1
s(n)q24n = −

∞∑

n=−∞
(−1)nq(6n+1)2−25 −

∞∑

n=−∞
(−1)nq(6n+1)2−1.

Thus, Theorem 1.2 follows by solving for c(n). �
Proof of Corollary 1.5. This result follows immediately from Theorem 1.2 and the relation
spt(n) = −u∗(n) + 2a(n).

Remark While the results above use only the action of the specific Hecke operator T (25),
one should note that the entire sequence of operators T (�2) generate similar results for
the polynomials Bδ�

(j(24τ ). We outline this process below. We define

q
d
dq

j(24τ ) · Bδ�
(j(24τ )) :=

∑

n�−∞
r�(n)q24n.

Then likewise if

m�(24n − 1) := m(�2(24n − 1)) +
(
3
�

)[(−(24n − 1)
�

)
− (1 + �)

]
m(24n − 1)

+ �m((24n − 1)/�2),

we may write

M�(τ ) = − �

12
q−�2 +

(
3
�

)
�

12
q−1 +

∑

n≥1
m�(24n − 1)q24n−1.

Rewriting the result of Theorem 1.1, we have
∑

n�−∞
r�(n)q24n = 12

�
η(24τ )M�(τ ). (4.3)

Thus, expanding the right-hand side using the pentagonal number theorem allows one to
solve for r�(n). By Theorem 1.2 and Corollary 1.5, the coefficients of q d

dq j(24τ ) are known
in terms of combinatorial quantities, and so the coefficients of Bδ�

(j(τ )) themselves can
written as a sequence of combinatorial expressions as well.
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