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Abstract. We study f -biharmonic submanifolds in both generalized com-
plex and Sasakian space forms. We prove necessary and sufficient condi-
tions for f -biharmonicity in the general case and many particular cases.
Some geometric estimates as well as non-existence results are also ob-
tained.
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1. Introduction

Harmonic maps between two Riemannian manifolds (Mm, g) and (Nn, h) are
critical points of the energy functional

E(ψ) =
1
2

∫
M

|dψ|2dvg,

where ψ is a map from M to N and dvg denotes the volume element of g.
The Euler–Lagrange equation associated with E(ψ) is given by τ(ψ) = 0,
where τ(ψ) = Trace∇dψ is the tension field of ψ, which vanishes precisely for
harmonic maps.

In 1983, Eells and Lemaire [12] suggested to consider biharmonic maps
which are a natural generalization of harmonic maps. A map ψ is called bihar-
monic if it is a critical point of the bi-energy functional

E2(ψ) =
1
2

∫
M

|τ(ψ)|2dvg,
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on the space of smooth maps between two Riemannian manifolds. In [17], Jiang
studied the first and second variation formulas of E2 for which critical points
are biharmonic maps. The Euler–Lagrange equation associated with this bi-
energy functional is τ2(ψ) = 0, where τ2(ψ) is the so-called bi-tension field
given by

τ2(ψ) = Δτ(ψ) − tr
(
RN (dψ, τ(ψ))dψ

)
. (1)

Here, Δ is the rough Laplacian acting on the sections of ψ−1(TN) given by
ΔV = tr(∇2V ) for any V ∈ Γ(ψ−1(TN)) and RN is the curvature tensor
of the target manifold N defined as RN (X,Y ) = [∇N

X ,∇N
Y ] − ∇N

[X,Y ] for any
X,Y ∈ Γ(TN).

Over the past years, many geometers studied biharmonic submanifolds
and obtained a great variety of results in this domain (see [6,13–15,25,29,30],
for instance). If the map ψ : (M, g) → (N,h) is an isometric immersion from a
manifold (M, g) into an ambient manifold (N,h) then M is called biharmonic
submanifold of N . Since it is obvious that any harmonic map is a biharmonic
map, we will call proper biharmonic submanifolds the biharmonic submanifolds
which are not harmonic, that is, minimal.

The main problem concerning biharmonic submanifold is the Chen Con-
jecture [8]:

the only biharmonic submanifolds of Euclidean spaces are the min-
imal ones.

The Chen biharmonic conjecture is still an open problem, but lots of re-
sults on submanifolds of Euclidean spaces provide affirmative partial solutions
to the conjecture (see [7,9] and references therein for an overview). On the
other hand, the generalized Chen’s conjecture replacing Euclidean spaces by
Riemannian manifolds of non-positive sectional curvature turns out to be false
(see [20,24] for counter-examples). Nevertheless, this generalized conjecture is
true in various situations and obtaining non-existence results in non-positive
sectional curvature is still an interesting question. In [30], the authors gave
two new contexts where such results hold.

In [21], Lu gave a natural generalization of biharmonic maps and in-
troduced f -biharmonic maps. He studied the first variation and calculated
the f -biharmonic map equation as well as the equation for the f -biharmonic
conformal maps between the same dimensional manifolds. Ou also studied
f -biharmonic map and f -biharmonic submanifolds in [26], where he proved
that an f -biharmonic map from a compact Riemannian manifold into a non-
positively curved manifold with constant f -bienergy density is a harmonic
map; any f -biharmonic function on a compact manifold is constant, and that
the inversion about Sm for m ≥ 3 are proper f -biharmonic conformal diffeo-
morphisms. He also derived f -biharmonic submanifolds equation and proved
that a surface in a manifold (Nn, h) is an f -biharmonic surface if and only if
it can be biharmonically conformally immersed into (Nn, h). Further in [27],
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the author characterizes harmonic maps and minimal submanifolds by using
the concept of f -biharmonic maps and obtained an improved equation for
f -biharmonic hypersurfaces.

By definition, for a positive, well defined and C∞ differentiable function
f : M → R, f -biharmonic maps are critical points of the f -bienergy functional
for maps ψ : (M, g) → (N,h), between Riemannian manifolds, i.e.,

E2,f (ψ) =
1
2

∫
M

f |τ(ψ)|2dvg.

Lu also obtained the corresponding Euler–Lagrange equation for f -biharmonic
maps, i.e.,

τ2,f (ψ) = fτ2(ψ) + (Δf)τ(ψ) + 2∇ψ
gradfτ(ψ) = 0. (2)

An f -biharmonic map is called a proper f-biharmonic map if it is neither
a harmonic nor a biharmonic map. Also, we will call proper f-biharmonic
submanifolds a f -biharmonic submanifols which is neither minimal nor bihar-
monic.

Very recently, Karaca and Özgür [18] studied f-biharmonic submanifolds
in products space and extended the results obtained by the first author [29]
for biharmonic submanifolds. In the present paper, we continue to explore f -
biharmonic submanifolds. Precisely, we focus here on f -biharmonic submani-
folds of both (generalized) complex space forms and generalized Sasakian space
forms. After a section of basics about generalized complex and Sasakian space
forms as well as their submanifolds, we study about f -biharmonic submani-
folds. For both classes of ambient spaces, we first give the general necessary
and sufficient condition for submanifolds to be f -biharmonic. Then, we focus
on many particular cases and obtain some non-existence results for spaces with
holomorphic (or φ-holomorphic) sectional curvature bounded from above. Fi-
nally, the last section is devoted to the study of Legendre curves in generalized
Sasakian space forms.

2. Preliminaries

2.1. Generalized Complex Space Forms and Their Submanifolds

A Hermitian manifold (N, g, J) with constant sectional holomorphic curvature
4c is called a complex space form. We denote by Mn

C
(4c) the simply connected

complex n-dimensional complex space form of constant holomorphic sectional
curvature 4c. The curvature tensor R of Mn

C
(4c) is given by

RC(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(Z, JY )JX

−g(Z, JX)JY + 2g(X,JY )JZ},

for X,Y,Z ∈ Γ(TMn
C
(4c)), where < ·, · > is the Riemannian metric on Mn

C
(4c)

and J is the canonical almost complex structure of Mn
C
(4c). The complex space

from Mn
C
(4c) is the complex projective space CPn(4c), the complex Euclidean
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space C
n or the complex hyperbolic space CHn(4c) according to c > 0, c = 0

or c < 0.
Now, we consider a natural generalization of complex space forms, namely

the generalized complex space forms. After defining them, we will give some
basic information about generalized complex space forms and their subman-
ifolds. Generalized complex space forms form a particular class of Hermitian
manifolds which has not been intensively studied. In 1981, Tricerri and Van-
hecke [31] introduced the following generalization of the complex space forms
(Cn, CPn and CHn). Let (N2n, g, J) be an almost Hermitian manifold. We
denote the generalized curvature tensors by R1 and R2 which is defined as

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(JY,Z)JX − g(JX,Z)JY

+2g(JY,X)JZ, ∀ X,Y,Z ∈ Γ(TN).

The manifold (N, g, J) is called generalized complex space form if its curvature
tensor R has the following form

R = αR1 + βR2,

where α and β are smooth functions on N . The terminology comes obviously
from the fact that complex space forms satisfy this property with constants
α = β.

In the same paper [31], Tricerri and Vanhecke showed that if N is of (real)
dimension 2n ≥ 6, then (N, g, J) is a complex space form. They also showed
that α + β is necessarily constant. This implies that α = β are constants
in dimension 2n ≥ 6, but this is not the case in dimension 4. Hence, the
notion of generalized complex space form is of interest only in dimension 4.
Further, Olszak [23] constructed examples in dimension 4 with α and β non-
constant. These examples are obtained by conformal deformation of Bochner
flat Kählerian manifolds of non constant scalar curvature. Examples of Bochner
flat Kählerian manifolds can be found in [11]. From now on, we will denote
by N(α, β) a (4-dimensional) generalized complex space form with curvature
given by R = αR1 + βR2. Note that these spaces are Einstein, with constant
scalar curvature equal to 12(α+β). Of course, they are not Kählerian because
if they were, they would be complex space forms.

Now, let M be a submanifold of the (generalized) complex space form
Mn

C
(4c) or N(α, β). The almost complex structure J on Mn

C
(4c) (or N(α, β))

induces the existence of four operators on M , namely

j : TM −→ TM, k : TM −→ NM, l : NM −→ TM and m : NM −→ NM,

defined for all X ∈ TM and all U ∈ NM by

JX = jX + kX and JU = lU + mU. (3)
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Since J is an almost complex structure, it satisfies J2 = −Id and for X,Y
tangent to Mn

C
(4c) (or N(α, β)), we have g(JX, Y ) = −g(X,JY ). Then, we

deduce that the operators j, k, l,m satisfy the following relations

j2X + lkX = −X, (4)

m2U + klU = −U, (5)

jlU + lmU = 0, (6)

kjX + mkX = 0, (7)

g(kX,U) = −g(X, lU), (8)

for all X ∈ Γ(TM) and all U ∈ Γ(NM). Moreover j and m are skew-
symmetric.

2.2. Generalized Sasakian Space Forms and Their Submanifolds

Now, we give some recalls about almost contact metric manifolds and gener-
alized Sasakian space forms. For more details, one can refer to ([1,5,32]) for
instance. A Riemannian manifold M̃ of odd dimension is said almost contact
if there exists globally over M̃ , a vector field ξ, a 1-form η and a field of
(1, 1)-tensor φ satisfying the following conditions:

η(ξ) = 1 and φ2 = −Id + η ⊗ ξ. (9)

Remark that this implies φξ = 0 and η ◦ φ = 0. The manifold M̃ can be
endowed with a Riemannian metric g̃ satisfying

g̃(φX, φY ) = g̃(X,Y ) − η(X)η(Y ) and η(X) = g̃(X, ξ), (10)

for any vector fields X,Y tangent to M̃ . Then, we say that (M̃, g̃, ξ, η, φ) is
an almost contact metric manifold. Three class of this family are of particular
interest, namely, the Sasakian, Kenmotsu and cosymplectic manifolds. We will
give some recalls about them.

First, we introduce the fundamental 2-form (also called Sasaki 2-form) Ω
defined for X,Y ∈ Γ(TM) by

Ω(X,Y ) = g̃(X,φY ).

We consider also Nφ, the Nijenhuis tensor defined by

Nφ(X,Y ) = [φX, φY ] − φ[φX, Y ] − φ[X,φY ] + φ2[X,Y ],

for any vector fields X,Y . An almost contact metric manifold is said normal
if and only if the Nijenhuis tensor Nφ satisfies

Nφ + 2dη ⊗ ξ = 0.

An almost contact metric manifold is said Sasakian manifold if and only if it
is normal and dη = Ω. This is equivalent to

(∇Xφ)Y = g̃(X,Y )ξ − η(Y )X, ∀ X,Y ∈ Γ(M̃). (11)
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It also implies that

∇Xξ = −φX. (12)

An almost contact metric manifold is said Kenmotsu manifold if and only if
dη = 0 and dΩ = 2η ∧ Ω. Equivalently, this means

(∇Xφ)Y = −η(Y )φX − g(X,φY )ξ, (13)

for any X and Y . Hence, we also have

∇Xξ = X − η(X)ξ. (14)

Finally, an almost contact metric manifold is said cosymplectic manifold if and
only if dη = 0 and dΩ = 0, or equivalently

∇φ = 0, (15)

and in this case, we have

∇ξ = 0. (16)

The φ-sectional curvature of an almost contact metric manifold is defined as
the sectional curvature on the 2-planes {X,φX}. When the φ-sectional curva-
ture is constant, we say that the manifold is a space form (Sasakian, Kenmotsu
or cosymplectic in each of the three cases above). It is well known that the
φ-sectional curvature determines entirely the curvature of the manifold. When
the φ-sectional curvature is constant, the curvature tensor is expressed ex-
plicitely. Let R�

1, R�
2 and R�

3 be the generalized curvature tensors defined by

R�
1(X,Y )Z = g̃(Y,Z)X − g̃(X,Z)Y, (17)

R�
2(X,Y )Z =η(X)η(Z)Y −η(Y )η(Z)X+g̃(X,Z)η(Y )ξ−g̃(Y,Z)η(X)ξ (18)

and

R�
3(X,Y )Z = Ω(Z, Y )φX − Ω(Z,X)φY + 2Ω(X,Y )φZ. (19)

For the three cases we are interested in, the curvature of a space form of
constant φ-sectional curvature c is given by

• Sasakian: R� = c+3
4 R�

1 + c−1
4 R�

2 + c−1
4 R�

3.

• Kenmotsu: R� = c−3
4 R�

1 + c+1
4 R�

2 + c+1
4 R�

3.

• Cosymplectic: R� = c
4R�

1 + c
4R�

2 + c
4R�

3.

In the sequel, for more clarity, we will denote the Sasakian (resp. Kenmotsu,
cosymplectic) space form of constant φ-sectional curvature c by M̃S(c) (resp.
M̃K(c), M̃C(c)). These space forms appear as particular cases of the so-called
generalized Sasakian space forms, introduced by Alegre et al. [1]. A generalized
Sasakian space form, denoted by M̃(f1, f2, f3), is a contact metric manifold
with curvature tensor of the form

f1R
�
1 + f2R

�
2 + f3R

�
3, (20)
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where f1, f2 and f3 are real functions on the manifold. The most simple ex-
amples of generalized Sasakian space forms are the warped products of the
real line by a complex space form or a generalized complex space forms. Their
conformal deformations as well as their so-called D-homothetic deformations
are also generalized Sasakian space forms (see [1]). Other examples can be
found in [2].

Now, let (M, g) be a submanifold of an almost contact metric manifold
(M̃, g̃, ξ, η, φ). The field of tensors φ induces on M , the existence of the follow-
ing four operators:

P : TM −→ TM, N : TM −→ NM, t : NM −→ TM and s : NM −→ NM,

defined for any X ∈ TM and ν ∈ NM . Now, we have

φX = PX + NX and φν = sν + tν, (21)

where PX and NX are tangential and normal components of φX, respectively,
whereas tν and sν are the tangential and normal components of φν, respec-
tively. A submanifold M is said invariant (resp. anti-invariant) if N (resp. P )
vanishes identically. In [19], Lotta shows that if the vector field ξ is normal to
M , then M is anti-invariant.

3. f -Biharmonic Submanifolds of Generalized Complex Space
Forms

At first, we will calculate necessary and sufficient condition for f -biharmonic
submanifolds of generalized complex space form and then we make a exposition
about the results which could characterize these type of submanifolds.

Theorem 3.1. Let Mp, p < 4 be a submanifold of the generalized complex
space form N(α, β) with second fundamental form B, shape operator A, mean
curvature H and a positive C∞-differentiable function f on M . Then M is f-
biharmonic submanifold of N(α, β) if and only if the following two equations
are satisfied

(1) −Δ⊥H + tr(B(., AH .)) − pαH + 3βklH + p
Δf

f
H + 2p∇⊥

grad(ln f)H = 0,

(2)
p

2
grad|H|2 − 2pAHgrad ln f + 2tr(A∇⊥H(.)) + 6βjlH = 0.

Proof. From Eq. (2), M is f -biharmonic if and only if

fτ2(ψ) + Δfτ(ψ) + 2∇ψ
gradfτ(ψ) = 0,

which is equivalent to

τ2(ψ) + p
Δf

f
H + 2p(−AHgrad(ln f) + ∇⊥

grad(ln f)H) = 0. (22)
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On the other hand, it is a classic fact that the bi-tension field decomposes
into the following normal and tangential parts (see [4] for instance){

τ2(ψ)⊥ = −Δ⊥H + tr(B(., AH .)) + tr
(
RN (·,H)·)⊥

τ2(ψ)� = p
2grad|H|2 + 2tr(A∇⊥H(.)) + 2tr

(
RN (·,H)·)�

.
(23)

Now, the curvature tensor of generalized complex space form, N(α, β), is
given by

tr (R(·,H)·) = αtr (R1(·,H)·) + βtr (R2(·,H)·) .

Let {e1, . . . , ep} be a local orthonormal frame of TM . Then, we have

tr (R(·,H)·) = α

p∑
i=1

R1(ei,H)ei + β

p∑
i=1

R2(ei,H)ei

or,

tr (R(·,H)·) = α

p∑
i=1

[g(H, ei)ei − g(ei, ei)H]

+β

p∑
i=1

[g(JH, ei)Jei − g(Jei, ei)JH + 2g(JH, ei)Jei] ,

that is,

tr (R(·,H)·) = α(−pH) + β(3jlH + 3klH). (24)

Now, reporting this Eq. (22) with the decomposition (23) and considering
that jlH is tangent and klH is normal, we get the statement of the theorem
by identification of tangent and normal parts. �

We can easily obtain by the same computations an analogous result for
f -biharmonic submanifolds of complex space forms Mn

C
(4c). Namely, we have

Corollary 3.2. Let Mp, p � 2n, be a submanifold of the complex space form
Mn

C
(4c) of complex dimension n and constant holomorphic sectional curvature

4c, with second fundamental form B, shape operator A, mean curvature H
and a positive C∞-differentiable function f on M . Then M is f-biharmonic
submanifold of Mn

C
(4c) if and only if the following two equations are satisfied

(1) −Δ⊥H + tr(B(., AH .)) − pcH + 3cklH + p
Δf

f
H + 2p∇⊥

grad(ln f)H = 0,

(2)
p

2
grad|H|2 − 2pAHgrad ln f + 2tr(A∇⊥H(.)) + 6cjlH = 0.

Proof. For complex space forms the computations are essentially the same as
for the generalized complex space forms with the only differences that α =
β = c and dimension is not necessarily equal to 4. �
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In the sequel, we will state many results for biharmonic submanifolds of
the generalized complex space forms N(α, β). They have of course analogue
for the complex space forms but for a sake of briefness, we do not write then
since the results are the same with α = β = c. Assuming particular cases such
as hypersurfaces, Lagrangian or complex surfaces and curves of generalized
complex space form N(α, β), we have the following conclusion.

Corollary 3.3. Let Mp, p < 4 be a submanifold of the generalized complex
space form N(α, β) with second fundamental form B, shape operator A, mean
curvature H and a positive C∞-differentiable function f on M .

(1) If M is a hypersurface then M is f-biharmonic if and only if

−Δ⊥H + tr (B(·, AH ·)) − 3(α + β)H + 3
Δf

f
H + 6∇⊥

grad(ln f)H = 0,

and
3
2
grad|H|2 − 6AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

(2) If M is a complex surface then M is f-biharmonic if and only if

−Δ⊥H + tr (B(·, AH ·)) − 2αH + 2
Δf

f
H + 4∇⊥

grad(ln f)H = 0,

and

grad|H|2 − 4AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

(3) If M is a Lagrangian surface then M is f-biharmonic if and only if

−Δ⊥H + tr (B(·, AH ·)) − 2αH + 3βklH + 2
Δf

f
H + 4∇⊥

grad(ln f)H = 0,

and

grad|H|2 − 4AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

(4) If M is a curve then M is f-biharmonic if and only if

−Δ⊥H + tr (B(·, AH ·)) − αH − 3β(H + m2H) +
Δf

f
H + 2∇⊥

grad(ln f)H = 0,

and
1
2
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

Proof. The proof is a consequence of Theorem 3.1 using the facts that
(1) if M is a hypersurface, then m = 0 and so jlH = 0, kjH = 0 and

klH = −H,
(2) if M is a complex surface then k = 0 and l = 0,
(3) if M is a Lagrangian surface, then j = 0, m = 0,
(4) if M is a curve, then j = 0.

�
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Remark 3.4. It is a well known fact that any complex submanifold of a Kähler
manifold is necessarily minimal. But as mentioned above, the generalized space
forms N(α, β) are not Kählerian unless there are the complex projective plane
or the complex hyperbolic plane. Hence, considering f -biharmonic surfaces
into N(α, β) is of real interest, since they are not necessarily minimal.

Similarly, if we assume mean curvature vector H as parallel vector then
for curves and complex or Lagranian surfaces, we obtain the following corol-
laries.

Corollary 3.5. Let Mp, p < 4 be a submanifold of the generalized complex
space form N(α, β) with second fundamental form B, shape operator A, mean
curvature H and a positive C∞-differentiable function f on M .

(1) If M is a Lagrangian surface of N(α, β) with parallel mean curvature
then M is f-biharmonic if and only if

tr (B(·, AH ·)) = 2αH − 3βklH − 2
Δf

f
H, and AHgradf = 0.

(2) If M is a complex surface of N(α, β) with parallel mean curvature then
M is f-biharmonic if and only if

tr (B(·, AH ·)) = 2αH − 2
Δf

f
H and AHgradf = 0.

(3) If M is a curve in N(α, β) with parallel mean curvature then M is
f-biharmonic if and only if

tr (B(·, AH ·)) = αH + 3β(H + m2H) − Δf

f
H, and AHgradf = 0.

Proof. Since M has parallel mean curvature so that the terms Δ⊥H, ∇⊥
gradfH,

grad|H|2 and tr(A∇⊥· H·) vanish and we obtain immediately the result from the
previous Corollary. �

Further, for constant mean curvature hypersurfaces in N(α, β), we have
the following result.

Proposition 3.6. (1) Let M3 be a hypersurface of the generalized complex space
form N(α, β) with second fundamental form B, non zero constant mean cur-
vature H and f a positive C∞-differentiable function on M . Then M is f
biharmonic if and only if

|B|2 = 3(α + β) − 3
Δf

f
and A gradf = 0

or equivalently, M is proper f-biharmonic if and only if the scalar curvature
of M satisfies

ScalM = 3(α + β) + 9H2 + 3
Δf

f
and A gradf = 0.
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(2) There exists no proper f-biharmonic hypersurfaces with constant mean
curvature and constant scalar curvature.

Proof. For the first point, since M is a hypersurface, by Corollary 3.3, M is
f -biharmonic if and only if{

−Δ⊥H + tr (B(·, AH ·)) − 3(α + β)H + 3Δf
f H + 6∇⊥

grad(ln f)H = 0,
3
2grad|H|2 − 6AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

Since M has constant mean curvature, the above equation reduces to{
tr (B(·, AH ·)) = 3(α + β)H − 3Δf

f H,

AHgrad(ln f) = 0.

Using condition AH = HA for hypersurfaces, we get

tr
(
B(·, AH(·))

)
= Htr

(
B(·, A(·))

)
= H|B|2.

Reporting this result in first equation of the above condition and from the
assumption that H is a non-zero constant, we get the desired identity |B|2 =
3(α + β) − 3Δf

f .
For the second equivalence, by the Gauss equation, we have

ScalM =
3∑

i,j=1

g
(
RN (ei, ej)ej , ei

) − |B|2 + 9H2,

where {e1, e2, e3} is a local orthonormal frame of M . From the expression of
the curvature tensor of N(α, β), we get

ScalM = 6(α + β) − |B|2 + 9H2.

Moreover, since grad(ln f) = 1
f gradf and AH = HA with H is a non-zero

constant, then AHgrad(ln f) = 0 reduces to A gradf = 0.
Hence, we deduce that M is proper f -biharmonic if and only if |B|2 =

3(α + β) − 3Δf
f and A gradf = 0, that is, if and only if ScalM = 3(α + β) +

9H2 + 3Δf
f and A gradf = 0.

Now, for the second point, if M is a hypersurface with constant mean curvature
and constant scalar curvature, then by the first point, if M is f -biharmonic
then

ScalM = 3(α + β) + 9H2 + 3
Δf

f
.

As we have already mentioned, α+β is constant, hence, since H and ScalM are
constant, then Δf

f is constant, that is, f is an eigenvalue of the Laplacian. But
f is a positive function, so the only possibility is that f is a positive constant
and M is biharmonic. This concludes the proof of the second point. �

Now, we give this proposition which give an estimate of the mean curva-
ture for a f -biharmonic Lagrangian surface.
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Proposition 3.7. Let M2 be a Lagrangian surface of the generalized complex
space form N(α, β) with second fundamental form B, shape operator A, non-
zero constant mean curvature H and a positive C∞-differentiable function f
on M .

(1) If infM

(
2α + 3β − 2Δf

f

)
is non-positive then M is not f-biharmonic.

(2) If infM

(
2α + 3β − 2Δf

f

)
is positive and M is proper f-biharmonic

then

0 < |H|2 � inf
M

(
2α + 3β − 2Δf

f

2

)
.

Proof. Assume that M is a f -biharmonic Lagrangian surface of N(α, β), con-
sidering third assertion of Corollary 3.3, we have{

−Δ⊥H + 2Δf
f H + 4

f ∇⊥
gradfH + tr (B(·, AH ·)) − 2αH − 3βH = 0,

grad|H|2 − 4
f AHgradf + 2tr (A∇⊥H(·)) = 0.

Hence, by taking the scalar product with H and taking the assumption that
mean curvatutre H 
= 0, i.e., |H| is constant, from the first part of the above
equation, we have

− < Δ⊥H,H > +
4
f

< ∇⊥
gradfH,H > +|AH |2 +

(
2
Δf

f
− 2α − 3β

)

< H,H >= 0.

This equation implies that

− 〈
Δ⊥H,H

〉
=

(
2α + 3β − 2

Δf

f

)
|H|2 − |AH |2,

where we have used that < ∇⊥
gradfH,H >= 0 since |H| is constant. Now, with

the help of the Bochner formula, we get(
2α + 3β − 2

Δf

f

)
|H|2 = |AH |2 + |∇⊥H|2.

Now, using Cauchy–Schwarz inequality, i.e., |AH |2 � 2|H|4 in the above equa-
tion, we have(

2α + 3β − 2
Δf

f

)
|H|2 � 2|H|4 + |∇⊥H|2 � 2|H|4. (25)

So, we have 0 < |H|2 � infM

(
2α+3β−2Δf

f

2

)
because |H| is a non-zero constant.

This is only possible if the function 2α + 3β − 2Δf
f has a positive infimum.

This concludes the proof. �

Now, we have similar result for complex surfaces.
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Proposition 3.8. Let ψ : M2 → N(α, β) be a complex surface of generalized
complex space form N(α, β) with second fundamental form B, shape operator
A, mean curvature H and a positive C∞-differentiable function f on M .

(1) If infM

(
2α − 2Δf

f

)
is non-positive then M is not f-biharmonic.

(2) If infM

(
2α − 2Δf

f

)
is positive and M is proper f-biharmonic then

0 < |H|2 � inf
M

(
α − Δf

f

)
.

Proof. Let M be a f -biharmonic complex surface of N(α, β) with non-zero
constant mean curvature. Then, by the second assertion of Corollary 3.3, we
have

−Δ⊥H + 2
Δf

f
H + tr (B(·, AH ·)) − 2αH = 0, and AHgradf = 0.

Replacing 2α+3β by 2α in the proof of Proposition 3.10, we have the required
result. �

We finish this section by the following extension to complexe space forms.
Indeed, we can obtain analogues of Propositions 3.6 and 3.10 for submanifolds
of the complex space forms Mn

C
(4c) directly form Corollary 3.2. For briefness

and since the proof are similar up to some dimensional constants, we write
them without proof. However, there is no analogue for complex submanifolds
since any complex submanifold of Mn

C
(4c) is in fact minimal.

Proposition 3.9. (1) Let M2n−1 be a hypersurface of the complex space form
Mn

C
(4c) with second fundamental form B, non zero constant mean curvature

H and f a positive C∞-differentiable function on M . Then M is f biharmonic
if and only if

|B|2 = 2c(n + 1) − (n + 1)
Δf

f
and A gradf = 0

or equivalently, M is proper f-biharmonic if and only if the scalar curvature
of M satisfies

ScalM = (4n2 − 2n − 4)c + (2n − 1)2H2 + (n + 1)
Δf

f
and A gradf = 0.

(2) There exists no proper f-biharmonic hypersurfaces with constant mean
curvature and constant scalar curvature.

Proposition 3.10. Let Mn be a Lagrangian surface of the complex space form
Mn

C
(4c) with second fundamental form B, shape operator A, non-zero constant

mean curvature H and a positive C∞-differentiable function f on M .

(1) If infM

(
n+3

n c − 2Δf
f

)
is non-positive then M is not f-biharmonic.
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(2) If infM

(
n+3

n c − 2Δf
f

)
is positive and M is proper f-biharmonic then

0 < |H|2 � inf
M

(
n + 3

n
c − 2

Δf

f

)
.

4. f -Biharmonic Submanifolds of Generalized Sasakian Space
Forms

Now, we consider f -biharmonic submanifolds of generalized Sasakian space
forms and give the following theorem for its characterization.

Theorem 4.1. Let Mp be a submanifold of a generalized Sasakian space form
M̃(f1, f2, f3), with second fundamental form B, shape operator A, mean cur-
vature H and a positive C∞-differentiable function f on M . Then M is f-
biharmonic submanifold of M̃(f1, f2, f3) if and only if the following two equa-
tions are satisfied

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H

= pf1H − f2|ξ�|2H − pf2η(H)ξ⊥ − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = −2f2(p − 1)η(H)ξ� − 6f3PsH.

Proof. At first, we calculate the curvature tensor of generalized Sasakian space
form M̃(f1, f2, f3). From Eq. (20), we have

R�(X,Y )Z = f1R
�
1(X,Y )Z + f2R

�
1(X,Y )Z + f3R

�
2(X,Y )Z

= f1{g̃(Y,Z)X − g̃(X,Z)Y }
+f2{η(X)η(Z)Y − η(Y )η(Z)X + g̃(X,Z)η(Y )ξ − g̃(Y,Z)η(X)ξ}
+f3{g̃(X,φZ)φY − g̃(Y, φZ)φX + 2g̃(X,φY )φZ}.

Let us consider {e1, e2, . . . , ep} an orthogonal basis of the tangent space
of M . Then, we have

R�(ei,H)ei = f1{g̃(H, ei)ei − g̃(ei, ei)H} + f2{η(ei)η(ei)H − η(H)η(ei)ei

+g̃(ei, ei)η(H)ξ}
+f3{g̃(ei, φei)φH − g̃(H,φei)φei + 2g̃(ei, φH)φei}.

Taking the trace and using Eq. (21) in the above equation, we get
tr

(
R�(·, H) · )

= −f1pH + f2
∑

i

{η(ei)
2H − η(H)η(ei)ei + |ei|2η(H)ξ}

+f3
∑

i

{tr(P )φH − g̃(H, Nei)φei + 2g̃(ei, sH)φei}

= −f1pH + f2{|ξ�|2H − η(H)ξ� + pη(H)ξ}



Vol. 75 (2020) f-Biharmonic Submanifolds of Generalized Space Forms Page 15 of 25 20

+f3
∑

i

{tr(P )sH + tr(P )tH − g̃(H, Nei)Pei − g̃(H, Nei)Nei

+2g̃(ei, sH)Pei + 2g̃(ei, sH)Nei}.

It implies that
tr

(
R�(·, H) · )

= −f1pH + f2{|ξ�|2H − η(H)ξ� + pη(H)ξ} + 3f3(PsH + NsH),

by considering the anti-symmetry property of φ, tr(P ) = 0 and g̃(H,Nei) =
−g̃(tH, ei).

Now, from value of tr
(
R�(·,H) · )

and Eqs. (22), (23), we have result of
the theorem by considering the tangential and normal parts. �

Now, we have the following corollary if we assume different particular
cases in Theorem 4.1.

Corollary 4.2. Let Mp be a submanifold of a generalized Sasakian space form
M̃(f1, f2, f3).

(1) If M is invariant then M is f-biharmonic if and only if

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H = pf1H − f2|ξ�|2H − pf2η(H)ξ⊥

and
p

2
grad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = −2f2(p − 1)η(H)ξ� − 6f3PsH.

(2) If M is anti-invariant then M is f-biharmonic if and only if

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H = pf1H

−f2|ξ�|2H − pf2η(H)ξ⊥ − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = −2f2(p − 1)η(H)ξ�.

(3) If ξ is normal to M then M is f-biharmonic if and only if

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H = pf1H − pf2η(H)ξ − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = 0.

(4) If ξ is tangent to M then M is f-biharmonic if and only if

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H = pf1H − f2H − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = −6f3PsH.
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(5) If M is a hypersurface then M is f-biharmonic if and only if

−Δ⊥H + trB(·, AH ·) + p
Δf

f
H + 2p∇⊥

grad(ln f)H = (2nf1 + 3f3)H

−f2|ξ�|2H − (2nf2 + 3f3)η(H)ξ⊥

and

ngrad|H|2 + 2trA∇⊥H(·) − 2pAHgrad(ln f) = −(2(2n − 1)f1 + 6f3)η(H)ξ�.

Proof. The proof is a direct consequence of Theorem 4.1 using the following
facts.

(1) If M is invariant then N = 0.
(2) If M is anti-invariant then P = 0.
(3) If ξ is normal then η(gradf) = 0 and M is anti-invariant which implies

P = 0.
(4) If ξ is tangent then η(H) = 0.
(5) If M is a hypersurface then sH = 0.

Analogously to the case of generalized complex space forms (Proposition 3.6),
we can obtain some curvature properties in some special cases by using charac-
terizations of f -biharmonic submanifolds of generalized Sasakian space forms.

Proposition 4.3. (1) Let M2n be a hypersurface of generalized Sasakian space
form M̃(f1, f2, f3) with non zero constant mean curvature H and ξ is tangent
to M . Then M is proper f-biharmonic if and only if

|B|2 = 2nf1 − f2 + 3f3 − n
Δf

f
, and A gradf = 0,

or equivalently if and only if

ScalM = 2n(2n − 2)f1 + (4n − 1)f2 − 2(n − 1)f3 − H2

+n
Δf

f
H and A gradf = 0.

(2) There exists no proper f-biharmonic hypersurfaces with constant mean
curvature and constant scalar curvature so that ξ is tangent.

Proof. Let M be a f -biharmonic hypersurface of M̃(f1, f2, f3) with non zero
constant mean curvature and ξ tangent to M . Then, from Corollary 4.2, we
have ⎧⎪⎨

⎪⎩
−Δ⊥H + trB(·, AH ·) + nΔf

f H + 2n∇⊥
grad(ln f)H

= (2nf1 + 3f3)H − f2|ξ�|2H − (2nf2 + 3f3)η(H)ξ⊥,

ngrad|H|2 + 2trA∇⊥H(·) − 2nAHgrad(ln f) = 0.

Now, as per assumption, ξ is tangent to M which gives η(H) = η(ν) = 0.
Therefore, we have

φ2ν = −ν + η(ν)ξ = −ν.
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On the other hand, we have

φ2ν = φ(sν + tν)
= Psν + Nsν + stν + t2ν.

Hence, we get

− ν = Psν + Nsν + stν + t2ν. (26)

Moreover, since 〈φν, ν〉 = Ω(ν, ν) = 0, we have that φν is tangent, i.e., tν = 0.
Thus, Eq. (26) becomes

−ν = Psν + Nsν,

and so Ps = 0 and Ns = −Id by identification of tangential and normal parts.
Using these results in the above f -biharmonic condition for the hypersurfaces
of generalized Sasakian space form, we have

{
trB(·, AH ·) = (2nf1 + 3f3)H − f2|ξ�|2H − nΔf

f H,

AHgrad(ln f) = 0.

Hence, the second equation is trivial and the first becomes

trB(·, AH ·) = 2nf1H − f2H + 3f3H − n
Δf

f
H,

or equivalently

|B|2 = 2nf1 − f2 + 3f3 − n
Δf

f
,

since trB(·, AH ·) = |B|2H and H is a non zero constant.
Similarly, using Gauss formula for second part, we have

ScalM =
∑
i,j

g̃(R�(ei, ej)ej , ei) − |B|2 − nH2

=
∑
i,j

f1{g̃(ej , ej)g̃(ei, ei) − g̃(ei, ej)g̃(ej , ei)}

+
∑
i,j

f2{η(ei)η(ej)g̃(ej , ei)

−η(ej)η(ej)g̃(ei, ei) + g̃(ei, ej)η(ej)g̃(ξ, ei) − g̃(ej , ej)η(ei)g̃(ξ, ei)}
+

∑
i,j

f3{g̃(ei, φej)g̃(φej , ei) − g̃(ej , φej)g̃(φei, ei)

+2g̃(ei, φej)g̃(φej , ei)}
−|B|2 − nH2 = 2n(2n − 1)f1 + 2(2n − 1)f2

−(2n − 1)f3 − |B|2 − nH2.
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Using the value of |B|2 obtain in the first part of the proof, we get the required
result, that is,

ScalM = 2n(2n − 2)f1 + (4n − 1)f2 − 2(n − 1)f3 − nH2 + n
Δf

f
H.

Moreover, since grad(ln f) = 1
f gradf and AH = HA with H is a positive con-

stant, the equation AHgrad(ln f) = 0 reduces to A gradf = 0. This concludes
the proof. �

Now, from this proposition, we can prove the following non-existence
result.

Corollary 4.4. Let M2n be a constant mean curvature hypersurface of the gen-
eralized Sasakian space form M̃(f1, f2, f3) with ξ tangent. If the functions
f1, f2, f3 satisfy the inequality
2nf1 − f2 + 3f3 � nΔf

f on M then M is not biharmonic.
In particular, there exists no proper f-biharmonic CMC hypersurface with ξ
tangent and f satisfying

• c̃ � 4
2n+2 [nΔf

f − 6n−2
4 ] in a Sasakian space form M̃2n+1

S (c̃).

• c̃ � 4
2n+2 [nΔf

f + 6n−2
4 ] in a Kenmotsu space form M̃2n+1

K (c̃).

• c̃ � 4n
2n+2

Δf
f in a cosymplectic space form M̃2n+1

C (c̃).

Proof. As per assumption, M is a hypersurface of M̃(f1, f2, f3) with non zero
constant mean curvature H and ξ tangent to M . From Proposition 4.3, M
is f -biharmonic if and only if its second fundamental form B satisfies |B|2 =
2nf1 − f2 + 3f3 − nΔf

f . In other words, this is not possible if

2nf1 − f2 + 3f3 � n
Δf

f
. (27)

Now, f1 = c̃+3
4 and f2 = f3 = c̃−1

4 if M̃(f1, f2, f3) is a Sasakian space form
where c̃ is φ-sectional curvature. Therefore, the inequality 2nf1 − f2 + 3f3 �
nΔf

f reduces to c̃ � 4
2n+2 [nΔf

f − 6n−2
4 ]. Similarly, we have f1 = c̃−3

4 and
f2 = f3 = c̃+1

4 (resp. f1 = f2 = f3 = c̃
4 ) for the Kenmotsu (resp. cosymplectic)

case and the inequality 2nf1−f2+3f3 � nΔf
f reduces to c̃ � 4

2n+2 [nΔf
f + 6n−2

4 ]
(resp. c̃ � 4n

2n+2
Δf
f ). �

Now, we have the following proposition analogous to complex case.

Theorem 4.5. Let Mq be a submanifold of the generalized Sasakian space form
M̃(f1, f2, f3) with constant mean curvature H so that ξ and φH are tangent.
Further, we consider F (f, q, f1, f2, f3) the function defined on M by

F (f, q, f1, f2, f3) = qf1 − f2 + 3f3 − q
Δf

f
.

Then we have the following observations.



Vol. 75 (2020) f-Biharmonic Submanifolds of Generalized Space Forms Page 19 of 25 20

(1) If inf
M

F (f, q, f1, f2, f3) is non-positive then M is not f-biharmonic.

(2) If inf
M

F (f, q, f1, f2, f3) is positive and M is proper f-biharmonic then

0 < |H|2 � 1
q

inf
M

F (f, q, f1, f2, f3).

Remark 4.6. If M̃(f1, f2, f3) is the Sasakian (Kenmotsu or cosymplectic) space
form M̃2n+1

S (c̃) (resp. M̃2n+1
K (c̃) or M̃p+1

C (c̃)) then F (f, q, f1, f2, f3) depends
only on f , q and the constant φ-sectional curvature c̃ and is equal to

F (f, q, c̃) = qf1 − f2 + 3f3 − q
Δf

f
=

⎧⎪⎪⎨
⎪⎪⎩

(q+2)c̃
4 + (3q−2)

4 − q Δf
f for M̃p+1

S (c̃),
(q+2)c̃

4 − (3q−2)
4 − q Δf

f for M̃p+1
K (c̃),

(q+2)c̃
4 − q Δf

f for M̃p+1
C (c̃).

Proof. As M is proper f -biharmonic submanifold with constant mean curva-
ture H and ξ tangent to M , so we get from Corollary 4.2 that{

−Δ⊥H + trB(·, AH ·) + 2q
f ∇⊥

gradfH + q Δf
f H = qf1H − f2H − 3f3NtH,

2trA∇⊥H(·) − 2qAHgrad(ln f) = −6f3PtH.

Now, considering φH is tangent implies that sH = 0. Again applying φ gives
that φ2H = PtH + NtH. But from φ2H = −H + η(H)ξ and ξ is tangent, we
have φ2H = −H. Therefore, comparing tangential and normal parts, we get
PtH = 0 and NtH = −H. Using these facts in the above equation, we get{

−Δ⊥H + trB(·, AH ·) = qf1H − f2H + 3f3H − q Δf
f H,

2trA∇⊥H(·) − 2qAHgrad(ln f) = 0.

Taking scalar product by H in the first equation, we get

− 〈
Δ⊥H,H

〉
+ 〈trB(·, AH ·),H〉 = F (f, q, f1, f2, f3)|H|2.

Using the facts 〈trB(·, AH ·),H〉 = |AH |2, |H| is a constant and the Böchner
formula, i.e., 1

2Δ|H|2 =
〈
Δ⊥H,H

〉 − |∇⊥H|2 in the above equation, we have

|AH |2 + |∇⊥H|2 = F (f, q, f1, f2, f3)|H|2.
Now, this equation reduces to

F (f, q, f1, f2, f3)|H|2 = |AH |2 + |∇⊥H|4 � q|H|2 + |∇⊥H|2 � q|H|4,
by considering the Cauchy–Schwarz inequality |AH |2 � 1

q tr(AH) = q|H|4. It
implies that

F (f, q, f1, f2, f3) � q|H|2,
as |H| is a positive constant. This proves the two assertions of the
theorem. �

Now, we have the analogous result replacing the assumption that φH is
tangent by φH is normal. Namely, we have:
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Proposition 4.7. Let Mq be a submanifold of the generalized Sasakian space
form M̃(f1, f2, f3) with constant mean curvature H so that ξ is tangent and
φH is normal. Further, we consider F (f, q, c̃) the function defined on M by

G(f, q, f1, f2) = qf1 − f2 − q
Δf

f
.

Then we have the following observations.
(1) If inf

M
G(f, q, f1, f2) is non-positive then M is not f-biharmonic.

(2) If inf
M

G(f, q, f1, f2) is positive and M is proper f-biharmonic then

0 < |H|2 � 1
q

inf
M

G(f, q, f1, f2).

Remark 4.8. If M̃(f1, f2, f3) is the Sasakian (Kenmotsu or cosymplectic) space
form M̃2n+1

S (c̃) (resp. M̃2n+1
K (c̃) or M̃p+1

C (c̃)) then G(f, q, f1, f2) depends only
on f , q and the constant φ-sectional curvature c̃ and is equal to

G(f, q, c̃) = qf1 − f2 − q
Δf

f
=

⎧⎪⎪⎨
⎪⎪⎩

(q−1)c̃
4 + (3q+1)

4 − q Δf
f for M̃p+1

S (c̃),
(q−1)c̃

4 − (3q+1)
4 − q Δf

f for M̃p+1
K (c̃),

(q−1)c̃
4 − q Δf

f for M̃p+1
C (c̃).

Proof. Now, in this case, M is proper f -biharmonic submanifold with ξ is
tangent and φH is normal. Normality of φH implies that sH = 0. Therefore,
from Corollary 4.2, we have

−Δ⊥H + trB(·, AH ·) = qf1H − f2H − q
Δf

f
H

= G(f, q, f1, f2)H.

Similarly, as in the previous theorem, taking the scalar product by H and using
the Böchner formula and then with the help of the Cauchy–Schwarz inequality,
we get

G(f, q, c̃)|H|2 = |AH |2 + |∇⊥H|4 � q|H|2 + |∇⊥H|2 � q|H|4.
It easily provides the inequality G(f, q, f1, f2) � q|H|2, since |H| is a posi-
tive constant. We get 0 < |H|2 � 1

q infM G(f, q, f1, f2), which concludes the
proof. �

5. f -biharmonic Legendre Curves in (α, β)-Trans-Sasakian
Generalized Sasakian Space Forms

In this last section, we will focus on f -biharmonic curves in (α, β)-trans-
Sasakian generalized Sasakian space forms.
First, we briefly give some recalls about (α, β)-trans-Sasakian manifold. This
class of contact metric manifold has been introduced by Oubina [28] as a
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generalization of both Sasakian and Kenmostu manfiolds. An almost contact
metric manifold (M, g, φ, ξ, η) is called trans-Sasakian of type (α, β) or (α, β)-
trans-Sasakian if the following holds

∇Xξ = −αφX + β(X − η(X)ξ),

for any tangent vector field X and α, β two smooth functions on M . In [22],
Marrero proved that every trans-Sasakian manifold of dimension greater or
equal to 5 is either α-Sasakian, β-Kenmotsu or cosymplectic. Moreover, Ale-
gre and Carriazo [2] proved that if M̃(f1, f2, f3) is a connected α-Sasakian
generalized Sasakian space form, then the functions f1, f2 and f3 are constant
and

(1) if α = 0, then f1 − f2 = f3 and so M(f1, f2, f3) is a cosymplectic space
form,

(2) if α 
= 0, then α is constant and f1 − α2 = f2 = f3.

Alegre and Carriazo also showed in [3] that if M̃(f1, f2, f3) is a β-Sasakian
generalized Sasakian space form, then the functions f1, f2 and f3 depend only
on the direction of ξ. Examples are given in [1]. We mention finally that ex-
amples of 3-dimensional (α, β)-trans-Sasakian with both α and β non-zero are
given in [22]. We add that, under the condition that α and β depend only on
the direction of ξ, then a 3-dimensional (α, β)-trans-Sasakian is a generalized
Sasakian space form with f2 = 0 and f1, f3 explicitely given from α, β and the
scalar curvature of the manifold (see [3, Theorem 4.7] for the result and [10]
for an explicit example).

Let (Mn, g) be a Riemannian manifold and γ : I −→ M be a curve
parametrized by arc length. We set T = γ′. We say that γ is a Frenet curve of
osculation order r, 1 � r � n, if there exists orthormal vector fields E1 = T ,
E2, . . . , Er along γ so that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇T T = κ1E2,
∇T E2 = −κ1E1 + κ2E3,

· · ·
∇T Er−1 = −κr−2Er−2 + κr−1Er,
∇T Er = −κr−1Er−1,

(28)

where κ1, . . . , κr−1 are positive fonctions.
Moreover, a curve γ parametrized by arc length is a f -biharmonic curve if and
only if it satisfies Eq. (2) which becomes the following for curves

f(∇T ∇T ∇T T − R(T,∇T T )T ) + 2f ′∇T ∇T T + f ′′∇T T = 0. (29)

Now, we assume that M = M̃(f1, f2, f3) is a (α, β)-trans-Sasakian generalized
Sasakian space form and that γ is a Legendre curve of osculating order r. We
recall that a Legendre curve is a curve so that the tangent vector field T is
orthogonal to the contact vector field ξ, that is so that η(T ) = 0. First, from
Eq. (28), we have
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∇T ∇T T = −κ2
1 + κ′

1E2 + κ1κ2E3, (30)

and

∇T ∇T ∇T T = −3κ1κ
′
1E1 + (κ′′

1 − κ3
1 − κ1κ

2
2)E2 + (2κ′

1κ2 + κ1κ2)
E3 + κ1κ2κ3E4. (31)

Moreover, we have the following elementary lemma.

Lemma 5.1. Assume that κ1 > 0, then, we have

η(E2) = − β

κ1
.

Proof. Since M is a (α, β)-trans-Sasakian, we have ∇Xξ = −αφX + β(X −
η(X)ξ). Then, using this, η(T ) = 0, φT ⊥ T and ∇T T = κ1E2, we get

η(E2) =
1
κ1

〈∇T T, ξ〉 = − 1
κ1

〈T,∇Xξ〉

= − 1
κ1

〈T,−αφT + β(T − η(T )ξ)〉 = − β

κ1
.

Hence, from this lemma, ∇T T = κ1E2 and the expression of the curvature
equation (20), we get immediately

R(T,∇T T )T = −κ1f1E2 − βf2ξ − 3κ1f3〈ϕT,E2〉ϕT. (32)

Thus, we obtain the following characterization of biharmonic Legendre curves
in (α, β)-trans-Sasakian generalized Sasakian space form.

Proposition 5.2. Let γ be a non-geodesic Legendre Frenet curve of osculating
order r in a (α, β)-trans-Sasakian generalized Sasakian space form
M̃(f1, f2, f3). Then γ is f-biharmonic if and only if

0 =
(

−3κ1κ
′
1 − 2κ2

1

f ′

f

)
E1 +

(
κ′′

1 − κ3
1 − κ1κ

2
2 − κ1f1 + 2κ′

1

f ′

f
+ κ1

f ′′

f

)
E2

+
(

2κ′
1κ2 + κ1κ

′
2 + 2κ1κ2

f ′

f

)
E3 + κ1κ2κ3E4 − βf2ξ − 3κ1f3〈ϕT,E2〉ϕT.

�

Remark 5.3. If γ is of osculating order 3, which is in particular the case if
M̃(f1, f2, f3) is 3-dimensional, then the term with κ1κ2κ3E4 disappears.

Now, we will consider some special cases. First, we focus on α-Sasakian
manifolds, that is, with β = 0. We have the following proposition which gen-
eralizes the result of [16] obtained for Sasakian space form.

Proposition 5.4. There exists no proper f-biharmonic Legendre curves in a α-
Sasakian generalized Sasakian space form with ϕT ‖ E2 and constant α. In par-
ticular, there exists no proper f-biharmonic Legendre curves in 3-dimensional
α-Sasakian generalized Sasakian space form with constant α.
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Proof. Assume that γ is a f -biharmonic Legendre curve of a α-Sasakian gen-
eralized Sasakian space form. Then, from the assumption ϕT ‖ E2, Proposi-
tion 5.2 gives

3κ′
1 + 2κ1

f ′

f
= 0, (33)

κ2
1 + κ2

2 + f1 + 3f3 =
κ′′

1

κ1
+

f ′′

f
+ 2

κ′
1

κ1

f ′

f
, (34)

κ′
2 + 2κ2

f ′

f
+ 2

κ′
1

κ1
, (35)

κ2κ3 = 0. (36)

�

From ϕT ‖ E2, we deduce that κ2 is constant. Indeed, we have E2 = ±ϕT ,
since both E2 and ϕT are unit vectors and so

∇T E2 = ±∇ϕT = ± (∇ϕ) (T ) ∓ ϕ(∇T T )
= ±α (〈T, T 〉ξ − η(T )T ) ∓ ϕ(κ1E2)
= ±αξ ∓ ϕE2 = ±αξ − κ1T.

This says that, maybe up to minus sign, ξ has to be E3 and κ2 = α. Hence,
since α is constant, then κ2 is also constant and (33) implies that f is constant.
Therefore, there cannot have proper f -biharmonic legendre curves.

We finish with this last proposition in the 3-dimensional case, which is
an immediate application of Proposition 5.2.

Proposition 5.5. Let γ be a non-geodesic Legendre Frenet curve in a
3-dimensional (α, β)-trans-Sasakian manifold M so that α and β depend only
on the direction of ξ and M is a generalized Sasakian space form associated
with functions f1, f2 = 0 and f3. Then γ is f-biharmonic if and only if the
following equations are satisfied

3κ1κ
′
1 + 2κ2

1

f ′

f
= 0,

κ′′
1 − κ3

1 − κ1κ
2
2 − κ1f1 + 2κ′

1

f ′

f
+ κ1

f ′′

f
− 3κ1f3〈ϕT,E2〉2 = 0,

2κ′
1κ2 + κ1κ

′
2 + 2κ1κ2

f ′

f
− 3κ1f3〈ϕT,E2〉〈ϕT,E3〉 = 0.
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