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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease
in adults and children. It is characterized by excessive accumulation of lipids in the hepatocytes of
patients without any excess alcohol intake. With a global presence of 24% and limited therapeutic
options, the disease burden of NAFLD is increasing. Thus, it becomes imperative to attempt to
understand the dynamics of disease progression at a systems-level. Here, we decoded the emergent
dynamics of underlying gene regulatory networks that were identified to drive the initiation and
the progression of NAFLD. We developed a mathematical model to elucidate the dynamics of the
HNF4α-PPARγ gene regulatory network. Our simulations reveal that this network can enable
multiple co-existing phenotypes under certain biological conditions: an adipocyte, a hepatocyte, and a
“hybrid” adipocyte-like state of the hepatocyte. These phenotypes may also switch among each other,
thus enabling phenotypic plasticity and consequently leading to simultaneous deregulation of the
levels of molecules that maintain a hepatic identity and/or facilitate a partial or complete acquisition
of adipocytic traits. These predicted trends are supported by the analysis of clinical data, further
substantiating the putative role of phenotypic plasticity in driving NAFLD. Our results unravel how
the emergent dynamics of underlying regulatory networks can promote phenotypic plasticity, thereby
propelling the clinically observed changes in gene expression often associated with NAFLD.

Keywords: NAFLD; NASH; phenotypic plasticity; mathematical modeling; systems biology;
HNF4a; PPARg

1. Introduction

The dawn of the 21st century has seen a major global outbreak of obesity and metabolic syndrome.
In 2016, the World Health Organization (WHO) estimated that nearly two billion people are either
overweight or obese. Primary factors driving this non-communicable epidemic are caloric excess
and a sedentary lifestyle, leading to chronic diseases [1]. In the liver, these chronic diseases manifest
as non-alcoholic fatty liver disease (NAFLD). It is the most common form of chronic liver disease
among adults and children, with a global prevalence of 24% [1,2]. NAFLD is defined as an excessive
accumulation of fat in the liver, with at least 5% of hepatocytes exhibiting accumulated triglycerides
and without an excess intake of alcohol (daily intake <30 g in men and <20 g in women per day).
The disease spectrum varies from benign hepatocellular simple steatosis (SS) of the liver characterized
by excessive and abnormal retention of triglycerides and cholesterol esters to a more severe form,
called non-alcoholic steatohepatitis (NASH), marked by chronic inflammation of the liver and possibly
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resulting in cell death and subsequent cirrhosis or fibrosis in the liver. In a small fraction of cases, it can
progress to form hepatocellular carcinoma (HCC) [2].

NAFLD is a complex disease that results from an intricate interplay of intertwined genetic and
environmental factors [3–5]. On one hand, the genome wide association studies (GWAS) have identified
variants in the genes PNPLA3, TM6SF2, GCKR, MBOAT7, and HSD17B13 that seem to be associated
with susceptibility to and/or progression of NAFLD [6]. A single-nucleotide polymorphism in PNPLA3,
causing I to M transition at position 148, remains to be the variant that is most robustly associated
with the entire spectrum of NAFLD. The evidence for the heritability of NAFLD is strengthened by
data derived from epidemiological, familial aggregation, and twin studies [6]. On the other hand,
the prevalence of NAFLD is strongly associated with metabolic syndromes (obesity, type 2 diabetes
mellitus, insulin resistance, and dyslipidemia) [7]. Therefore, some recent attempts have even suggested
renaming NAFLD as MAFLD (metabolic associated fatty liver disease) [8]. However, the association of
NAFLD with obesity need not be universal; particularly, in Asian populations, NAFLD in the absence
of obesity—so-called “lean-NAFLD”—has been reported. Lean NAFLD patients may be characterized
by different pathogenetic processes as compared to obese NAFLD ones [1,9–12].

Recently, a molecular-level understanding of NAFLD has been emerging through the identification
of signaling pathways implicated in hepatic lipid homeostasis. MAPK, NF-kB, AMPK, and AKT
pathways, among others, have been identified to be dysregulated in NAFLD [13]. In NAFLD, the lipids
accumulated in the liver are primarily derived from the serum fatty acid (FA) pool (60%), followed by
a contribution from de-novo lipogenesis (DNL) (25%; three-fold higher than healthy controls) and
the remaining 15% from the dietary sources. Many genes involved in adipogenic programs play
a key role in the initiation and the progression of NAFLD [7]. Peroxisome proliferation-activated
receptor gamma 2 (PPARγ), a master regulator of adipogenesis [14], is frequently upregulated in
NAFLD [15]. Similarly, sterol regulatory binding element protein-1c, SREBP-1c (protein coded by the
gene SREBF1), a major driver of hepatic DNL, is upregulated in NAFLD [7]. Consequently, many
coregulators and downstream target genes of PPARγ and SREBP-1c are also perturbed in the context of
NAFLD [15]. Another intriguing observation about NAFLD patients is their lower levels of hallmark
liver tissue maintenance genes such as hepatocyte nuclear factor 4α (HNF4α) and hepatocyte nuclear
factor 1α (HNF1α) [16–18]. HNF4α is an established master regulator of induction and maintenance
of the hepatic cell state [19,20]. HNF4α knockout mice exhibit severe hepatomegaly (enlarged liver)
and steatosis [16,19]. Similar to HNF4α-knockout mice, HNF1α knockout also leads to a fatty liver
phenotype with increased fatty acid synthesis and steatosis in the liver [21].

The abovementioned studies identify various players associated with NAFLD in a correlative
and/or causative manner. However, most studies focus on investigating how the upregulation or
the downregulation of one or a pair of these genes affect the final phenotype of the disease. Thus,
the emergent dynamics of disease initiation and progression as a consequence of interactions among
these genes in a regulatory network is not well understood. Consequently, it still remains elusive
how these coordinated gene expression changes emerge as a result of the dynamics of underlying
regulatory networks.

Here, we identified a core regulatory network involving HNF4α, HNF1α, PPARγ, and SREBP-1c
and show how interconnections among these key players can drive NAFLD. Our results highlight that
this network can give rise to multi-stability, i.e., the co-existence of multiple phenotypes—hepatocyte
state (high HNF4α, low PPARγ), adipocyte state (low HNF4α, high PPARγ), and a “hybrid”
adipocyte-like state of the hepatocytes (high HNAF4a, high PPARγ). Our results show that, during
NAFLD, cells can switch their phenotype from being a hepatocyte to a hybrid adipocyte-like state
and vice versa, thus controlling phenotypic plasticity in the context of NAFLD. The clinical data from
NAFLD patients support the trends as predicted from the model, i.e., deregulated levels of HNF4α,
HNF1α, PPARγ, and SREBP-1c. These results offer important insights into the emergent systems-level
dynamics of the regulatory network driving NAFLD.
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2. Materials and Methods

2.1. RAndom CIrcuit PErturbation (RACIPE) Analysis:

2.1.1. RACIPE Simulations

RAndom CIrcuit PErturbation (RACIPE) is a computational method to discern the robust
dynamical properties of a particular gene regulatory network topology. It takes in a network topology
file as an input and then samples 10000 different sets of parameters. For each parameter set, RACIPE
chooses a random set of initial conditions (n = 100) for each node in the network and solves, using
Eulers’ method, with the set of coupled ordinary differential equations (ODEs) that represent the
interactions among the different nodes in a network. For each given parameter set and initial conditions,
RACIPE reports the steady-state values for each of the nodes in the network.

The parameters are sampled randomly from a specified predefined parameter range for the set
of ODEs. We ran RACIPE on our core gene regulatory network shown in Figure 1, using the default
parameters given in RACIPE algorithm but limiting the maximum number of states possible to 4.
The reason for setting this limit to 4 was that only 7.58 ± 0.08 % of parameter sets enabled > 4 states
from the initial analysis using RACIPE.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 8 of 23 
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Figure 1. Proposed core regulatory network motif that controls lipid homeostasis in the liver and is 
dysregulated during the progression of non-alcoholic fatty liver disease (NAFLD). The motif is 
composed of two tightly regulated, self-activated pairs of transcription factors (each pair shown in a 
dotted rectangle): HNF4α/HNF1α (maintaining the hepatocyte cell state) and PPARγ/SREBP-1c 
(driving an adipocytic cell state and implicated in initiation and progression of NAFLD). The arrows 
show transcriptional activation, and the solid bars represent transcriptional repression. The relative 
levels of these proteins in a cell can determine its cell state as hepatocytes in healthy liver, adipocytes in 
the fat tissue, or steatotic hepatocytes in livers of patients suffering from fatty liver. 

3.2. The Emergent Properties of This Core Regulatory Network Enable The Existence of Multiple Phenotypes 

Next, we investigated the dynamics emerging from this regulatory network. To characterize the 
robust dynamical properties of this network, we used a recently developed computational method, 
RAndom CIrcuit PErturbation (RACIPE) [47]. Given a topology of a regulatory network, RACIPE 
generates an ensemble of kinetic/biochemical models corresponding to the network topology and later 
utilizes statistical tools to identify the robust dynamic properties emerging from the specific network 
topology. For each model in the ensemble, this method samples kinetic parameters from a biologically 
relevant chosen range of values. Thus, each kinetic model simulated via RACIPE takes a unique 
combination of parameters with the goal of capturing cell-to-cell heterogeneity in the biochemical 
reaction rates. An ensemble of these models thus denotes the behavior of a cell population, where each 
cell contains the given network but has different kinetic parameters from one another. 

Here, each kinetic model is a set of four coupled ordinary differential equations (ODEs), each of 
which tracks the temporal changes in the levels of the four players (HNF4α, ΗΝF1α, PPARγ, and 
SREBP-1c) present in the core regulatory circuit. Each of these four players has a rate of production and 
a rate of degradation; the production rate is governed by transcriptional regulation from other players 
(for instance, HNF4α is repressed by SREBP-1c) captured via Hills function [48], while the degradation 
term assumes first order kinetics and is independent of the levels of all the other genes). The set of 
differential equations are then solved numerically to attain the steady state values for each of the 
regulated players. These values are then mapped onto possible biological phenotypes represented as 
an attractor in the Waddington’s landscape [49] of cell fate determination (Figure 2A). For each given 
parameter set, depending on the initial condition, each of these molecular players can converge to one 
of the many possible steady states enabled by that parametric combination. Thus, the circuit considered 
here can be possibly multi-stable, potentially enabling phenotypic plasticity and/or heterogeneity. 

Figure 1. Proposed core regulatory network motif that controls lipid homeostasis in the liver and
is dysregulated during the progression of non-alcoholic fatty liver disease (NAFLD). The motif is
composed of two tightly regulated, self-activated pairs of transcription factors (each pair shown in
a dotted rectangle): HNF4α/HNF1α (maintaining the hepatocyte cell state) and PPARγ/SREBP-1c
(driving an adipocytic cell state and implicated in initiation and progression of NAFLD). The arrows
show transcriptional activation, and the solid bars represent transcriptional repression. The relative
levels of these proteins in a cell can determine its cell state as hepatocytes in healthy liver, adipocytes in
the fat tissue, or steatotic hepatocytes in livers of patients suffering from fatty liver.

Note that, since we were considering one variable for each node simulated without treating
the mRNA and protein levels separately, we named the genes in all caps to represent this variable
throughout the study (HNF4A for HNF4α; HNF1A for HNF1α; PPARG for PPARγ; and SREBF1 for
SREBP-1c). The RACIPE results shown for this network remain largely invariant irrespective of the
integration method (Euler vs. Runge–Kutta)/number of initial conditions (n = 100, 1000, 1000) chosen
for every parameter set (Figure S6B–D).
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2.1.2. Z-Score Normalizations of The Steady State Values

RACIPE provides the steady state values in log2 scale. We performed z-score normalizations on
steady state values that were obtained from the RACIPE simulations so that the distributions/expression
values from various nodes could be compared to one another. To compute the z-score transformed
expression value for each steady state value (Ei) of a given node, we first collated all the untransformed
expression values for that node, n. We then computed the mean (En) and the standard deviation (σn)
for this list of untransformed expression values. Then, each of the steady state values were transformed
by the following formula:

zi =
Ei − En

σn
(1)

where zi is the z-normalized expression value. On plotting the distributions, we found that it was
largely bimodal, and the corresponding z-score value at the central minima of the distribution could
segregate the values into two groups, which we termed as high (H) and low (L).

2.1.3. Density Plots, Bimodality Coefficients, and Clustering Analysis:

For each node, we plotted the distribution of the z-normalized expression values as a Kernel
Density Estimate (KDE) curve. This produced a smoothened curve for the distribution as a probability
density function for a finite sample size. We also computed Sarle’s bimodality coefficient for finite
samples using the following formula:

b =
g2 + 1

k + 3(n−1)2

(n−2)(n−3)

(2)

where n is the number of items in the sample, g is the sample skewness, and k is the sample excess
kurtosis. As the value of b for the uniform distribution was 5/9, values greater than 5/9 indicate a
multimodal distribution (in our case, bimodal). We performed unsupervised hierarchical clustering of
the heatmaps, which yielded 4 predominant clusters. For clustering analysis for the scatter plots of a
pair of genes, we used hierarchical agglomerative clustering by fixing the number of clusters that were
possible to 4 (H or L for each of the two nodes, hence a maximum of 4 possible clusters).

2.2. Relative Stability Analysis

To perform a relative stability analysis of a given phase, i.e., coexisting combination of phenotypes
such as {HL, LH}, {HL, LH, LL}, etc., we collected all the parameters sets that produced that particular
phase from the RACIPE analysis. We then explicitly simulated the set of ODEs used in RACIPE in
MATLAB for 1000 different initial conditions chosen randomly and sampled from a uniform log2
scale. We plotted a Kernel density estimate for the distribution of the fraction of the cases for which a
particular state was achieved for the given phase.

2.3. Dynamic Simulations

2.3.1. Bifurcation Diagrams

To plot the bifurcation diagram to show a switch in the levels of HNF4A and PPARG, we used
the MATLAB based software MATCONT to simulate the gene regulatory network using a set of
ordinary differential equations (ODEs). We used the following set of differential equations, where the
rate of change of the expression levels of each node has two terms: a production term (also includes
the regulation of that particular node by other nodes) and a degradation term (assumes first order
kinetics). Each interaction (regulation term) in the gene regulatory network between a pair of nodes is
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represented by a shifted Hills function (HS), where HS for an interaction of B affecting the production
of A is defined as:

Hs(B, λ, n) = H−(B) + λH+(B) (3)

H−(B) =
B0

n

B0n + Bn (4)

H+(B) = 1−H−(B) (5)

where Bo is the threshold value for that interaction, n is the cooperativity for that interaction, and λ is
the fold change from the basal synthesis rate of A due to B. Therefore, λ > 1 for activators and λ < 1
for inhibitors.

The set of equations that were used to simulate the core gene regulatory network are as follows
( green : maximal production rate; cyan : regulation term; yellow : degradation term):
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(6)

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 23 

J. Clin. Med. 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jcm 

 

the heatmaps, which yielded 4 predominant clusters. For clustering analysis for the scatter plots of a 
pair of genes, we used hierarchical agglomerative clustering by fixing the number of clusters that were 
possible to 4 (H or L for each of the two nodes, hence a maximum of 4 possible clusters). 

2.2. Relative Stability Analysis 

To perform a relative stability analysis of a given phase, i.e., coexisting combination of phenotypes 
such as {HL, LH}, {HL, LH, LL}, etc., we collected all the parameters sets that produced that particular 
phase from the RACIPE analysis. We then explicitly simulated the set of ODEs used in RACIPE in 
MATLAB for 1000 different initial conditions chosen randomly and sampled from a uniform log2 scale. 
We plotted a Kernel density estimate for the distribution of the fraction of the cases for which a 
particular state was achieved for the given phase. 

2.3. Dynamic Simulations 

2.3.1. Bifurcation Diagrams 

To plot the bifurcation diagram to show a switch in the levels of HNF4A and PPARG, we used the 
MATLAB based software MATCONT to simulate the gene regulatory network using a set of ordinary 
differential equations (ODEs). We used the following set of differential equations, where the rate of 
change of the expression levels of each node has two terms: a production term (also includes the 
regulation of that particular node by other nodes) and a degradation term (assumes first order kinetics). 
Each interaction (regulation term) in the gene regulatory network between a pair of nodes is 
represented by a shifted Hills function (HS), where HS for an interaction of B affecting the production 
of A is defined as: 𝐻𝑠(𝐵, λ, n) = 𝐻 (𝐵) + λ𝐻 (𝐵) (3) 𝐻 (𝐵) = 𝐵𝐵 + 𝐵  (4) 𝐻 (𝐵) = 1 − 𝐻 (𝐵) (5) 

where Bo is the threshold value for that interaction, n is the cooperativity for that interaction, and 
λ is the fold change from the basal synthesis rate of A due to B. Therefore, λ > 1 for activators and λ < 1 
for inhibitors. 

The set of equations that were used to simulate the core gene regulatory network are as follows 
(green: maximal production rate; cyan: regulation term; yellow: degradation term): ℎ𝑛𝑓4𝑎 =  𝑔  ∗  𝐻𝑠 ℎ𝑛𝑓4𝑎, λ , ,n ,∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,  −  𝑘 ℎ𝑛𝑓4𝑎 

(6) 

ℎ𝑛𝑓1𝑎 =  𝑔  ∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,  ∗  𝐻𝑠 ℎ𝑛𝑓4𝑎, λ , , n ,  −  𝑘 ℎ𝑛𝑓1𝑎 
(7) 𝑝𝑝𝑎𝑟𝑔 =  𝑔 ∗  𝐻𝑠 𝑝𝑝𝑎𝑟𝑔, λ , , n ,  ∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,  −  𝑘 𝑝𝑝𝑎𝑟𝑔 
(8) 

𝑠𝑟𝑒𝑏𝑓1 =  𝑔 ∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,∗  𝐻𝑠 𝑝𝑝𝑎𝑟𝑔, λ , , n ,  −  𝑘 𝑠𝑟𝑒𝑏𝑓1 
(9) 

We used the degradation rate of PPARG as the bifurcation parameter. Refer to the Tables 1 and 2 
for the parameter values used for the simulations. 

(7)

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 23 

J. Clin. Med. 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jcm 

 

the heatmaps, which yielded 4 predominant clusters. For clustering analysis for the scatter plots of a 
pair of genes, we used hierarchical agglomerative clustering by fixing the number of clusters that were 
possible to 4 (H or L for each of the two nodes, hence a maximum of 4 possible clusters). 

2.2. Relative Stability Analysis 

To perform a relative stability analysis of a given phase, i.e., coexisting combination of phenotypes 
such as {HL, LH}, {HL, LH, LL}, etc., we collected all the parameters sets that produced that particular 
phase from the RACIPE analysis. We then explicitly simulated the set of ODEs used in RACIPE in 
MATLAB for 1000 different initial conditions chosen randomly and sampled from a uniform log2 scale. 
We plotted a Kernel density estimate for the distribution of the fraction of the cases for which a 
particular state was achieved for the given phase. 

2.3. Dynamic Simulations 

2.3.1. Bifurcation Diagrams 

To plot the bifurcation diagram to show a switch in the levels of HNF4A and PPARG, we used the 
MATLAB based software MATCONT to simulate the gene regulatory network using a set of ordinary 
differential equations (ODEs). We used the following set of differential equations, where the rate of 
change of the expression levels of each node has two terms: a production term (also includes the 
regulation of that particular node by other nodes) and a degradation term (assumes first order kinetics). 
Each interaction (regulation term) in the gene regulatory network between a pair of nodes is 
represented by a shifted Hills function (HS), where HS for an interaction of B affecting the production 
of A is defined as: 𝐻𝑠(𝐵, λ, n) = 𝐻 (𝐵) + λ𝐻 (𝐵) (3) 𝐻 (𝐵) = 𝐵𝐵 + 𝐵  (4) 𝐻 (𝐵) = 1 − 𝐻 (𝐵) (5) 

where Bo is the threshold value for that interaction, n is the cooperativity for that interaction, and 
λ is the fold change from the basal synthesis rate of A due to B. Therefore, λ > 1 for activators and λ < 1 
for inhibitors. 

The set of equations that were used to simulate the core gene regulatory network are as follows 
(green: maximal production rate; cyan: regulation term; yellow: degradation term): ℎ𝑛𝑓4𝑎 =  𝑔  ∗  𝐻𝑠 ℎ𝑛𝑓4𝑎, λ , ,n ,∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,  −  𝑘 ℎ𝑛𝑓4𝑎 

(6) 

ℎ𝑛𝑓1𝑎 =  𝑔  ∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,  ∗  𝐻𝑠 ℎ𝑛𝑓4𝑎, λ , , n ,  −  𝑘 ℎ𝑛𝑓1𝑎 
(7) 𝑝𝑝𝑎𝑟𝑔 =  𝑔 ∗  𝐻𝑠 𝑝𝑝𝑎𝑟𝑔, λ , , n ,  ∗  𝐻𝑠 ℎ𝑛𝑓1𝑎, λ , , n ,∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,  −  𝑘 𝑝𝑝𝑎𝑟𝑔 
(8) 

𝑠𝑟𝑒𝑏𝑓1 =  𝑔 ∗  𝐻𝑠 𝑠𝑟𝑒𝑏𝑓1, λ , , n ,∗  𝐻𝑠 𝑝𝑝𝑎𝑟𝑔, λ , , n ,  −  𝑘 𝑠𝑟𝑒𝑏𝑓1 
(9) 

We used the degradation rate of PPARG as the bifurcation parameter. Refer to the Tables 1 and 2 
for the parameter values used for the simulations. 

(8)
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We used the degradation rate of PPARG as the bifurcation parameter. Refer to the Tables 1 and 2
for the parameter values used for the simulations.

Table 1. Production rates and degradation rates of different species.

Species Production Rate (106 molecules hr−1) Degradation Rate (hr−1) References

HNF4A 0.4540 0.0491 [22]

HNF1A 0.0570 0.0494 [23]

PPARG 0.0628 0.08 [24]

SREBF1 1.1058 0.1598 [25]

The degradation rates were calculated from the reported half-life values of the corresponding
proteins assuming first order kinetics, i.e., degradation rate = ln2 / t1/2.
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Table 2. Activation or inhibition parameters for the interaction.

Description Fold
Change Value # of

binding sites Value Threshold Value Reference (est:
Estimated)

Self-Activation
of HNF4A

λhn f 4a,hn f 4a 4 nhn f 4a,hn f 4a 4 hn f 4a0
hn f 4a 3 est

Self-Activation
of HNF1A

λhn f 1a,hn f 1a 2 nhn f 1a,hn f 1a 4 hn f 1a0
hn f 1a 0.8 est

Self-Activation
of PPARG λpparg,pparg 9.514 npparg,pparg 5 pparg0

pparg 6.320 est

Self-Activation
of SREBF1

λsreb f 1,sreb f 1 4 nsreb f 1,sreb f 1 2 sreb f 10
sreb f 1 5.25 est

Activation of
HNF4A by HNF1A

λhn f 1a,hn f 4a 4 nhn f 1a,hn f 4a 3 hn f 1a0
hn f 4a 0.8 est

Activation of
HNF1A by HNF4A

λhn f 4a,hn f 1a 5.328 nhn f 4a,hn f 1a 4 hn f 4a0
hn f 1a 5.108 est, [26]

Activation of
PPARG by SREBF1

λsreb f 1,pparg 3 nsreb f 1,pparg 2 sreb f 10
pparg 5.25 est, [27]

Activation of
SREBF1 by PPARG

λpparg,sreb f 1 3.729 npparg,sreb f 1 2 pparg0
sreb f 1 9.283 est

Inhibition of
HNF4A by SREBF1

λsreb f 1,hn f 4a 0.415 nsreb f 1,hn f 4a 2 sreb f 10
hn f 4a 5 [28]

Inhibition of
PPARG by HNF1A

λpparg,hn f 1a 0.68 npparg,hn f 1a 4 hn f 1a0
pparg 0.674 [26]

The values of λ and n, whenever available, were taken from the above-mentioned references. All other parameters
of the model were estimated.

2.3.2. Switching of States

To identify the possibility of switching among states (phenotypes), we added an additional noise
term to each of the equations. The noise term added was a random number generated from a Gaussian
distribution and multiplied by an amplitude/scaling factor. The amplitude of noise for HNF4A, HNF1A,
and SREBF1 were kept at 0.1, mimicking the intrinsic noise present in the system, and 15 for PPARG,
mimicking the combined effect of intrinsic noise and extrinsic noise due to a burden of fatty acids to
the cells. The abovementioned set of differential equations was updated as follows: ( green : maximal

production rate; cyan : regulation term; yellow : degradation term; red : noise term):
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where 𝜉 is a random number picked from a normal distribution with a mean of 0 and a standard 
deviation of 1. This set of equations (10-13) was solved explicitly in MATLAB using the ode45 solver. 

2.4. Randomization of Networks 

We created an ensemble of all randomized “hypothetical” networks possible using the following 
rules: for each node, in each instance of randomization of the wild type network (FIGURE 1), the 
indegree and the outdegree of the network were kept fixed. The number of activation edges and the 
number of inhibitory edges in the entire network were also kept fixed at 8 and 2, respectively (the same 
number as that in the wild type network (Figure 1)). Furthermore, the source node and the target node 
for each of the edges were kept fixed, but the identity of the edge in terms of it being an activation or 
inhibition link was allowed to change. Hence, 44 𝐶 − 1 = !! ! − 1  such randomized “hypothetical” 
networks were constructed, excluding the wild type case. 

2.5. Jensen–Shannon Divergence (JSD) and Plasticity Scores 

For each of the randomized and the wild type networks, we calculated the Jensen–Shannon 
divergence (JSD) score  as follows. We first simulated each of the randomized networks along with the 
wild type network via RACIPE to obtain the steady state solutions that were possible on a set of 10000 
randomly chosen parameter sets. We performed z-score normalizations on the obtained steady state 
solutions and binarized the expression levels of each of the four genes as high (H) or low (L), as 
mentioned in the methods part of RACIPE analysis. We then constructed a frequency distribution of 
all the possible states across mono-stable and multi-stable parameter sets (state frequency distribution) 
and compared each of the distributions to the reference distribution of the wild-type network to get a 
corresponding JSD score. All possible 16 (=24) states emerging from considering the levels of all four 
nodes in the network were chosen to calculate the JSD. 

In short, for any two discrete frequency distribution P(x) and Q(x), 

JSD(P||Q) is defined as 𝐷(𝑃||𝑀) +  𝐷(𝑄||𝑀) (14) 

where 𝑀 = (𝑃 + 𝑄) (15) 

and D stands for the Kullback–Liebler divergence and is defined as: 𝐷(𝑃||𝑄) = 𝑃(𝑥)log (𝑃(𝑥)𝑄(𝑥)) (16) 

JSD varies from 0 to 1 where 0 corresponds to an identical distribution, whereas 1 corresponds to 
no overlap between the distributions (Figure S6A). This implies that the smaller the JSD is, the closer 
the state frequency distribution of the randomized “hypothetical” network is similar to the “wild type” 
network. 

The quantification score (a proxy for the level of plasticity enabled by a gene regulatory network) 
is defined as: P =  ( )( ) =  1 −  ( )( )   

where: 
(17) 

N (multi) = number of parameter sets enabling multi-stable solutions; 
N (mono) = number of parameter sets enabling mono-stable solutions and; 
N (all) = total number of parameter sets considered. 
The number of parameters sets that enabled mono-stability or multi-stability were obtained from 

RACIPE analysis carried on the circuit of interest. 

(13)
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where ξ is a random number picked from a normal distribution with a mean of 0 and a standard
deviation of 1. This set of equations (10-13) was solved explicitly in MATLAB using the ode45 solver.

2.4. Randomization of Networks

We created an ensemble of all randomized “hypothetical” networks possible using the following
rules: for each node, in each instance of randomization of the wild type network (Figure 1), the indegree
and the outdegree of the network were kept fixed. The number of activation edges and the number of
inhibitory edges in the entire network were also kept fixed at 8 and 2, respectively (the same number
as that in the wild type network (Figure 1). Furthermore, the source node and the target node for each
of the edges were kept fixed, but the identity of the edge in terms of it being an activation or inhibition
link was allowed to change. Hence, 44 (10

2 C − 1 = 10!
8!2! − 1) such randomized “hypothetical” networks

were constructed, excluding the wild type case.

2.5. Jensen–Shannon Divergence (JSD) and Plasticity Scores

For each of the randomized and the wild type networks, we calculated the Jensen–Shannon
divergence (JSD) score as follows. We first simulated each of the randomized networks along with
the wild type network via RACIPE to obtain the steady state solutions that were possible on a set of
10000 randomly chosen parameter sets. We performed z-score normalizations on the obtained steady
state solutions and binarized the expression levels of each of the four genes as high (H) or low (L),
as mentioned in the methods part of RACIPE analysis. We then constructed a frequency distribution of
all the possible states across mono-stable and multi-stable parameter sets (state frequency distribution)
and compared each of the distributions to the reference distribution of the wild-type network to get a
corresponding JSD score. All possible 16 (=24) states emerging from considering the levels of all four
nodes in the network were chosen to calculate the JSD.

In short, for any two discrete frequency distribution P(x) and Q(x),

JSD(P||Q) is defined as
1
2

D(P||M) +
1
2

D(Q||M) (14)

where M =
1
2
(P + Q) (15)

and D stands for the Kullback–Liebler divergence and is defined as:

D(P||Q) =
∑
x,χ

P(x) log (
P(x)
Q(x)

) (16)

JSD varies from 0 to 1 where 0 corresponds to an identical distribution, whereas 1 corresponds to
no overlap between the distributions (Figure S6A). This implies that the smaller the JSD is, the closer
the state frequency distribution of the randomized “hypothetical” network is similar to the “wild
type” network.

The quantification score (a proxy for the level of plasticity enabled by a gene regulatory network)
is defined as:

P =
N(multi)

N(all)
= 1−

N(mono)
N(all)

(17)

where:
N (multi) = number of parameter sets enabling multi-stable solutions;
N (mono) = number of parameter sets enabling mono-stable solutions and;
N (all) = total number of parameter sets considered.
The number of parameters sets that enabled mono-stability or multi-stability were obtained from

RACIPE analysis carried on the circuit of interest.
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2.6. Clinical Data Analysis

We obtained publicly available transcriptomic data for healthy controls and patients suffering
from NAFLD/NASH. We downloaded the preprocessed transcriptomic data from each study, and log2
normalized the expression levels if they were not normalized already. The expression values were then
used to plot the correlation plots or for comparison of levels of the different genes.

2.7. Statistical Tests and Correlation Coefficients

We computed the Spearman correlation coefficients and used the corresponding p-values to gauge
the strength of correlation in their expression values between a pair of genes. For statistical comparison
values used throughout the study, we used a two-tailed Student’s t-test and computed its significance.

3. Results

3.1. Identification of a Core HNF4α-PPARγ Network in Hepatocytes

As a first step, we gathered experimentally curated information about interconnections among
HNF4α, HNF1α, PPARγ, and SREBP-1c in the context of lipid homeostasis in the liver and
its disruption during the progression of NAFLD. HNF4α and HNF1α were identified as those
among the six master regulators for human hepatocytes using chromatoimmuno-precipitation and
high-resolution promoter microarrays [29]. Both of them can activate each other as well as positively
auto-regulate themselves [18,29]. Their expression levels are lower in fatty liver disease patients as
compared to healthy controls [16]. HNF4α plays a crucial role in hepatic development as well as
in hepatic lipid homeostasis. Mouse embryos deficient in HNF4α can initiate liver development
but not transcriptionally activate the liver-specific genes [30]. Further, adult mice lacking hepatic
HNF4α (Hnf4-LivKO) tend to have disrupted lipid homeostasis in vivo and display a fatty liver
phenotype [31,32]. Interestingly, the liver of Hnf4-LivKO mice had higher levels of mRNA and protein
of PPARγ as compared to the liver of wild-type mice [32]. Recent studies revealed HNF1α as a direct
transcriptional repressor of PPARγ in the context of hepatic steatosis [26].

PPARγ and SREBP-1c, on the other hand, are two master regulators of adipocytic cell-fate.
PPARγ is necessary and sufficient for adipogenesis in mammals [14]; overexpression of PPARγ
has been reported to induce adipogenesis [33]. SREBP-1c, the major transcriptional regulator of
lipogenesis, induces the cohort of genes necessary for synthesizing fatty acids [34] and increases DNL
in the liver, a hallmark of NAFLD [35]. SREBP-1c is induced during the differentiation of 3T3-L1
preadipocytes [36]. Both PPARγ and SREBP-1c are upregulated in obese patients with NAFLD [37]; they
can both self-activate directly or indirectly [38–41] and augment each other [27,28,42,43]. SREBP-1c can
transcriptionally activate PPARγ directly by binding to a putative E-box in the promoter of PPARγ [42]
and can increase the transcriptional activity of PPARγ indirectly via the production of ligands for
PPARγ [27]. Similarly, SREBF1 is predicted to be a high confidence target of PPARγ [43]. Intriguingly,
SREBP-1c has been reported to transcriptionally repress HNF4α in vitro and in vivo in the rodent
liver [28]. It can also inhibit the transcriptional activity of HNF4α, suppressing the expression of
hepatic gluconeogenic genes [44].

The abovementioned interactions put together results in a core regulatory circuit (Figure 1)
that consists of two pairs of closely connected and self-activating transcription factors and a mutual
inhibition between these two pairs. One pair (HNF4α and HNF1α) drives the hepatocytic cell state,
while the other pair (PPARγ and SREBP-1c) drives the adipocyte cell state. A mutual inhibition
between these pairs is reminiscent of a “toggle switch” seen between many “master regulators” of two
(or more) divergent cell fates, as identified during multiple instances during embryonic development
and disease progression [45,46].
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3.2. The Emergent Properties of This Core Regulatory Network Enable The Existence of Multiple Phenotypes

Next, we investigated the dynamics emerging from this regulatory network. To characterize the
robust dynamical properties of this network, we used a recently developed computational method,
RAndom CIrcuit PErturbation (RACIPE) [47]. Given a topology of a regulatory network, RACIPE
generates an ensemble of kinetic/biochemical models corresponding to the network topology and later
utilizes statistical tools to identify the robust dynamic properties emerging from the specific network
topology. For each model in the ensemble, this method samples kinetic parameters from a biologically
relevant chosen range of values. Thus, each kinetic model simulated via RACIPE takes a unique
combination of parameters with the goal of capturing cell-to-cell heterogeneity in the biochemical
reaction rates. An ensemble of these models thus denotes the behavior of a cell population, where each
cell contains the given network but has different kinetic parameters from one another.
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Figure 2. Core regulatory network may enable multiple phenotypes. (A) Schematic of Waddington’s
phenotypic landscape highlighting the possibility of multiple states as a result of the underlying gene
regulatory network, the dynamics of which can be modeled by a set of ordinary differential equations
representing the interactions among them as shown below. (B) Kernel density plot showing the bimodal
distribution of each component of the network, implying that each of the transcription factors (nodes)
can exist in either a high (H) or a low (L) state. The x-axis shows the z-normalized log2 expression
values of the given component from RACIPE analysis. (C) Heatmap showing the relative levels of
HNF4A and PPARG and the resulting four clusters. The color bar represents the relative levels of the
individual components (z-normalized log2 expression values). (D) Scatter plot showing the existence
of the four distinct clusters (defined based on hierarchical clustering) as the four states based on relative
levels of HNF4A and PPARG (z-normalized log2 expression values). Spearman’s correlation was
performed to obtain the correlation coefficient (ρ) and the corresponding p-value (p-val).

Here, each kinetic model is a set of four coupled ordinary differential equations (ODEs), each of
which tracks the temporal changes in the levels of the four players (HNF4α, HNF1α, PPARγ,
and SREBP-1c) present in the core regulatory circuit. Each of these four players has a rate of production
and a rate of degradation; the production rate is governed by transcriptional regulation from other
players (for instance, HNF4α is repressed by SREBP-1c) captured via Hills function [48], while the
degradation term assumes first order kinetics and is independent of the levels of all the other genes).
The set of differential equations are then solved numerically to attain the steady state values for each of
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the regulated players. These values are then mapped onto possible biological phenotypes represented
as an attractor in the Waddington’s landscape [49] of cell fate determination (Figure 2A). For each given
parameter set, depending on the initial condition, each of these molecular players can converge to one
of the many possible steady states enabled by that parametric combination. Thus, the circuit considered
here can be possibly multi-stable, potentially enabling phenotypic plasticity and/or heterogeneity.

We collated the levels of HNF4α, HNF1α, PPARγ, and SREBP-1c obtained from all parameter
combinations and plotted the distribution of these levels. The distribution of levels of each of these four
players was observed to be largely bimodal (Figure 2B, Figure S1A), as measured via Sarle’s bimodality
coefficient [50], suggesting that each of these players could exist in either a “high” or a “low” state.
Given that HNF4α and PPARγ are the key regulators of the hepatic and the adipocytic state, respectively,
we plotted the levels of HNF4α and PPARγ as a clustered heatmap. This analysis revealed four clusters
corresponding to four different phenotypes: HNF4α-high and PPARγ-high (HH), HNF4α-low and
PPARγ-low (LL), HNF4α-low and PPARγ-high (LH), HNF4α-high and PPARγ-low (HL) (Figure 2C).
Interestingly, the HL and the LH clusters were found to be the most abundant (Figure S2A), suggesting
that this regulatory network can exist in two predominant states—HL (HNF4α-high, PPARγ-low)
and LH (HNF4α-low, PPARγ-high). These states correspond to the hepatocyte and the adipocyte
phenotype, respectively. Biologically speaking, this result is consistent with experimental observations
that the exogenous overexpression of either HNF4α or PPARγ can drive the cell fate to a hepatocyte
(HL) or an adipocyte (LH), respectively [33,51], where the level of the other master regulator is relatively
quite low (Figure S2B), i.e., either HNF4α/PPARγ >>1 or HNF4α/PPARγ << 1. Besides these two
states, the network can exist in either the HH (HNF4α-high, PPARγ-high) or the LL (HNF4α-low,
PPARγ-low) state. The HH state can possibly be mapped onto the “hybrid” adipocyte-like phenotype
of the hepatocytes, where the levels of both HNF4α and PPARγ are high, similar to observations
made in other scenarios where co-expression of mutually opposing master regulators have been
reported [52,53]. The LL state can be thought of as an uncommitted “stem-like” phenotype where the
levels of both master regulators are low, and hence it is not committed to either of the cell lineages.
These observations remain qualitatively unchanged, even when all the four regulatory players are
considered for clustering (Figure S1G).

Consistent with the predominance of HL and LH phenotypes, the scatter plot of all steady
state solutions revealed a significant negative correlation between HNF4α and PPARγ (Figure 2D),
indicating that, while cell-to-cell heterogeneity may enable varying levels of HNF4α and PPARγ in a
cell population, these levels remain anti-correlated at a population level. Consistently, HNF4α levels
correlated positively with those of HNF1α but negatively with SREBP-1c, and PPARγ levels correlated
positively with those of SREBP-1c but negatively with HNF1α (Figure S1B–F). Put together, these results
imply that the core regulatory circuit among HNF4α, HNF1α, PPARγ, and SREBP-1c can give rise to
multiple cell fates in a biologically relevant parameter regime, with the more frequent states being a
hepatocyte (HL—HNF4α-high, PPARγ-low) and an adipocyte (LH—HNF4α-low, PPARγ-high).

3.3. Multiple Stable States (Phenotypes) Can Co-Exist, Giving Rise To Phenotypic Plasticity

Next, we investigated the possibility of whether two or more steady states (phenotypes) can
co-exist, thus possibly enabling phenotypic plasticity. In the ensemble of parameters sets simulated via
RACIPE, we found instances where this network led to only one phenotype (mono-stable) as well
as instances where it led to two (bi-stability), three (tri-stability), or four (tetra-stability) phenotypes
(Figure 3A). Multi-stability (i.e., the co-existence of more than one steady state) can enable cells to
switch their phenotypes spontaneously (i.e., without the necessity of any strong external perturbation)
depending on the levels of intrinsic or extrinsic biological noise [54,55]. Interestingly, the percentage
of parameter sets that gave rise to mono-stability was the least (Figure 3B), suggesting that this core
regulatory network is more likely to be multi-stable and thus enable phenotypic plasticity in the context
of NAFLD. Among the monostable solutions, HL and LH—corresponding to hepatocyte and adipocyte
phenotypes—were the most predominant ones (Figure 3C), reminiscent of our previous observations.
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Further inspection of the bi- and the tri-stable solutions also revealed a similar trend. Among six
(number of ways to choose two out of four solutions) possible bi-stable phases (i.e., combinations
of co-existing states), the most frequent phase was {HL, LH}, i.e., co-existence of HL and LH states
(Figure 3D). The next two most frequent phases included either HL or LH as one of the states. Similarly,
among the four possible tri-stable phases, the two more frequent ones contained both HL and LH,
together with either LL or HH, such as {HL, LH, LL} or {HL, LH, HH} (Figure 3E).

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 12 of 23 

J. Clin. Med. 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jcm 

 

 
Figure 3. Co-existence and relative stability of multiple phenotypes giving rise to multi-stable phases. 
(A) Schematic showing how a gene regulatory network for different parameter sets end up in a mono- 
or a multi- (bi-, tri-) stable regime. Depending on different initial conditions, the system (levels of the 
different regulators) can converge to one or more steady state level(s), enabling mono- or multi-stability. 
(B) A pie chart showing the fraction of parameter sets giving rise to mono-, bi-, tri-, and tetra-stability 
(mean ± standard deviation over three independent replicates through RACIPE analysis). (C) Bar plot 
showing the proportions of the various phases of the monostable solutions, namely, {HL}, {LH}, {LL}, 
and {HH}. (D) Bar plot showing the proportions of the various phases possible for bi-stable solutions. 
The kernel density estimate plot in the inset shows the relative stability of the HL and the LH states for 
the phase {HL, LH}. (E) Bar plot showing the proportions of phases possible for the tri-stable solutions. 
The kernel density estimate plot in the inset shows the relative stability of HL, LH, and HH states for 
the phase {HL, LH, HH}. Error bars represent the standard deviation of the mean values of the phase 
proportions over three independent RACIPE replicates. Panels B–E are based on three replicates of 
RACIPE simulations on the network shown in Figure 1. 

We estimated parameters (see Materials and Methods) from relevant experimental literature to 
estimate the typical values of half-lives of proteins and their concentrations in mammalian cells. These 
parameters were used to calibrate our model and to identify whether a phenotypic switch is implicated 
during NAFLD. During NAFLD, the upregulation of Hsp90 levels can suppress the degradation of 
PPARγ, thus increasing PPARγ signaling [58]. We examined the effect of decreasing the degradation 
rates of PPARγ, through a bifurcation diagram drawn using MATCONT [59]. Thus, as the degradation 
rate of PPARγ decreased, the steady state levels of PPARγ, which are generally low in the hepatocytes, 
increased constantly, which switched beyond a certain threshold in PPARγ (Figure 4B bottom panel). 
As the degradation rate of PPARγ was varied, HNF4α levels dropped modestly (Figure 4B top panel), 
indicating that the hepatocytic identity was not lost completely. Thus, at a higher degradation rate of 
PPARγ, the cell was in a hepatocytic state (solid blue line corresponding to “HL”), while lower 
degradation rates of PPARγ enabled a switch to hybrid state (solid blue line corresponding to “HH”) 
(Figure 4B). This process can be viewed as “trans-differentiation” of the cell, i.e., conversion of 
hepatocytes to hybrid adipocyte-like cell state by simultaneous repression of the original tissue (liver) 
homeostatic mechanisms and activation of a different tissue-specific (adipose tissue) program. This 
result is consistent with observations of multiple adipocytic markers reported in histological samples 
of NAFLD patients [60]. In the liver, such trans-differentiation has also been observed for quiescent 
hepatic stellate cells that can attain adipogenic or myogenic characteristics depending on the relative 
abundance of adipogenic or myogenic genes, respectively [61]. 

Figure 3. Co-existence and relative stability of multiple phenotypes giving rise to multi-stable phases.
(A) Schematic showing how a gene regulatory network for different parameter sets end up in a mono-
or a multi- (bi-, tri-) stable regime. Depending on different initial conditions, the system (levels of the
different regulators) can converge to one or more steady state level(s), enabling mono- or multi-stability.
(B) A pie chart showing the fraction of parameter sets giving rise to mono-, bi-, tri-, and tetra-stability
(mean ± standard deviation over three independent replicates through RACIPE analysis). (C) Bar plot
showing the proportions of the various phases of the monostable solutions, namely, {HL}, {LH}, {LL},
and {HH}. (D) Bar plot showing the proportions of the various phases possible for bi-stable solutions.
The kernel density estimate plot in the inset shows the relative stability of the HL and the LH states for
the phase {HL, LH}. (E) Bar plot showing the proportions of phases possible for the tri-stable solutions.
The kernel density estimate plot in the inset shows the relative stability of HL, LH, and HH states for
the phase {HL, LH, HH}. Error bars represent the standard deviation of the mean values of the phase
proportions over three independent RACIPE replicates. Panels B–E are based on three replicates of
RACIPE simulations on the network shown in Figure 1.

Within each phase, there may be varied stability of different co-existing phenotypes. Thus,
we quantified the relative stability of the co-existing states in the different multi-stable phases. We
calculated the fraction of randomly chosen initial conditions that converged to a particular state for all
the parameter sets that enabled multi-stability (bi-, tri-, or tetra-stability). Such calculation can provide
insights into how likely the system will attain a particular state for an ensemble of randomly chosen
initial conditions and hence can serve as a proxy measurement for the relative stability of that state in
that phase. For instance, for a given parameter set corresponding to the phase {HL, LH}, depending
on the sampling of initial conditions (say n = 100), x of them can converge to HL state, while (100-x)
converge to LH. We calculated the values of fractions of initial conditions leading to HL or LH and
plotted the distribution of these values (Figure S3A–C). We found that both the HL and the LH were
equally likely to be attained if the system was left to start from a large set of randomly chosen initial



J. Clin. Med. 2020, 9, 870 12 of 23

levels of the different nodes present in the gene regulatory network when analyzed across parameter
sets corresponding to {HL, LH} (Figure 3D inset). Such symmetry in the relative stability of states may
emerge due to the symmetry in the network itself (see the two sides of the network in Figure 1). For the
phases {HH, LH} and {HH, HL}, the state HH seemed relatively more stable than either LH or HL;
conversely, for the phases {HL, LL} and {LH, LL}, the state LL was found to be relatively less stable
than HL or LL (Figure S3D–G).

The relative stability trends for the two tristable phases, {HL, LH, LL} and {HL, HH, LH}, and the
tetrastable phase, {HL, LH, LL, HH}, reinforced our previous observations. LL was much less stable
relative to HL or LH in the phase {HL, LH, LL} (Figure S3H), thus implying that this phase can be
effectively considered to be equivalent to a bistable phase {HL, LH}. A possible interpretation would be
that LL corresponds to a “stem-like” cell state that is inherently less stable and can quickly differentiate
to an adipocyte or a hepatocyte. Contrary to this, for the phase {HL, LH, HH}, the relative stability of
the HH state was much larger than that of HL or LH states (Figure 3E inset). The HH state can be
thought of as a “hybrid” adipocyte/hepatocyte state, similar to those observed in other tristable cell
fate decision networks [53,56,57]. This result, together with similar observations for the tetrastable
phase (Figure S3I), emphasizes that a hybrid adipocyte-like state of hepatocytes (i.e., HH) may be
prevalent in driving NAFLD.

Together, RACIPE analysis for this core regulatory network reveals a robust feature of this network
topology—it not only allows cells to exist in more than one phenotype (HL, LH, HH) but also can
facilitate the stability of the HH state, which may be quite relevant during the progression of NAFLD,
i.e., a scenario where hepatocytes have not completely lost their identity but do simultaneously express
various adipocytic markers and/or traits. The co-existence of HH with other states (HL, LH) raises the
possibility that, during the initiation and/or the progression of NAFLD, hepatocytes may reversibly
and dynamically switch to this adipocyte-like or hybrid adipocyte/hepatocyte phenotype, emphasizing
the role of phenotypic plasticity in NAFLD.

After getting insights into robust dynamical properties of the core regulatory network across
a range of parametric combinations, we studied what might possibly be driving NAFLD in a more
realistic situation. NAFLD can be construed as a spectrum of diseases where hepatocytes can lose their
hepatocytic identities to varying degrees and/or gain adipocytic identities to different extents enabled
by phenotypic plasticity of the underlying biological network (Figure 4A). Thus, the histopathological
state of the liver seen in NAFLD is more likely to map onto the hybrid HH state, instead of an adipocytic
(LH) state. Thus, we hypothesized that NAFLD may progress via a switch from the HL (hepatocyte)
state to the HH state (hybrid or adipocyte-like state of hepatocyte).

We estimated parameters (see Materials and Methods) from relevant experimental literature
to estimate the typical values of half-lives of proteins and their concentrations in mammalian cells.
These parameters were used to calibrate our model and to identify whether a phenotypic switch
is implicated during NAFLD. During NAFLD, the upregulation of Hsp90 levels can suppress the
degradation of PPARγ, thus increasing PPARγ signaling [58]. We examined the effect of decreasing
the degradation rates of PPARγ, through a bifurcation diagram drawn using MATCONT [59]. Thus,
as the degradation rate of PPARγ decreased, the steady state levels of PPARγ, which are generally
low in the hepatocytes, increased constantly, which switched beyond a certain threshold in PPARγ
(Figure 4B bottom panel). As the degradation rate of PPARγ was varied, HNF4α levels dropped
modestly (Figure 4B top panel), indicating that the hepatocytic identity was not lost completely. Thus,
at a higher degradation rate of PPARγ, the cell was in a hepatocytic state (solid blue line corresponding
to “HL”), while lower degradation rates of PPARγ enabled a switch to hybrid state (solid blue line
corresponding to “HH”) (Figure 4B). This process can be viewed as “trans-differentiation” of the cell,
i.e., conversion of hepatocytes to hybrid adipocyte-like cell state by simultaneous repression of the
original tissue (liver) homeostatic mechanisms and activation of a different tissue-specific (adipose
tissue) program. This result is consistent with observations of multiple adipocytic markers reported
in histological samples of NAFLD patients [60]. In the liver, such trans-differentiation has also been
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observed for quiescent hepatic stellate cells that can attain adipogenic or myogenic characteristics
depending on the relative abundance of adipogenic or myogenic genes, respectively [61].
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Figure 4. NAFLD as a bistable system involving a phenotypic switch from a hepatocyte to a “hybrid”
adipocyte-like phenotype of the hepatocytes. (A) Schematic showing the phenotypic transition that
may happen in the context of NAFLD where the disease can be highly diverse in terms of the extent
of loss of hepatocytic and/or gain of adipocytic characteristics. (B) Bifurcation plots showing the
phenotypic transitions, i.e., switch in the levels of HNF4A (top panel) and PPARG (bottom panel) when
the degradation rate of PPARG is used as a bifurcation parameter. Solid blue lines denote the stable
states, dotted red lines denote the unstable states of the system. Arrows indicate transitions between
the two states. (C) Stochastic simulations of the core gene regulatory network showing switching in
HNF4A and PPARG levels (degradation rate of PPARG = 0.08 hr−1). (Image credit for “hepatocyte”,
“fatty liver”, “adipocytes” in A and B: Wikimedia Commons).

We further examined whether this core regulatory network can enable phenotypic switching
under the influence of biological noise [62]. To mimic various sources of biological noise, we simulated
the system stochastically (see Materials and Methods for details) and observed fluctuations in the levels
of both PPARγ and HNF4α. Sometimes, these fluctuations were large enough to trigger a transition
from the HL (hepatocyte; HNF4α high-PPARγ low) state to the HH state (hybrid; HNF4α high-PPARγ
high) and vice versa (Figure 4C). The stability of the HH state can be assessed by the observation that
the system may tend to spend a relatively longer time in the HH state rather than the HL state, at least
for these specific parameters. It was encouraging to note that the timescale of switching is in the order
of three months, a timescale which excellently corroborates clinical observations that NAFLD patients
who adopt aggressive lifestyle changes may reverse NAFLD to a significant degree in one month [63].
Overall, we found that, in the biologically relevant range of parameters under which NAFLD seems
to be operating, hepatocytes may undergo a phenotypic switch to a hybrid adipocyte-like state of
hepatocyte by partially activating the adipogenic program.

3.4. The Topology of the Core Regulatory Network is Designed to Enhance Phenotypic Plasticity

Next, we investigated how unique the observed traits such as multi-stability were to the topology
of the core network underlying NAFLD. In other words, we asked what are the salient features of the
topology of core regulatory network formed by reported interconnections among HNF4α, HNF1α,
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PPARγ, and SREBP-1c (Figure 1). To discern the effect of network topology, we created an ensemble
of randomized networks, where we swapped/shuffled many links in the network with one another
while maintaining the number of links that occurred and emanated from all individual nodes in
the network. Such randomization enabled us to dissect the contribution of network topology to the
above-mentioned network features. For the core regulatory network shown in Figure 1, 44 such
“hypothetical” cases are possible (see Materials and Methods). One such example of a “hypothetical”
network is shown in Figure 5A inset, where two activatory and two inhibitory links were shuffled
with respect to the “wild type” core network topology (Figure 1). In the “wild type” network, HNF1α
inhibits PPARγ, and SREBP-1c inhibits HNF4α, while in this “hypothetical network”, HNF1α activates
PPARγ, and SREBP-1c activates HNF4α. Moreover, in the “wild type” network, HNF1α activates
HNF4α, and PPARγ activates SREBP-1c, but in this “hypothetical” network, HNF1α inhibits HNF4α,
and PPARγ inhibits SREBP-1c.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 15 of 23 

J. Clin. Med. 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jcm 

 

Self-activation loops are known to contribute largely to the plasticity in many biological systems 
[65]; thus, we quantified the contribution of different self-activation loops on plasticity. The core 
network contained four self-activation loops—each for HNF4α, ΗΝF1α, PPARγ, and SREBP-1c. We 
created “mutant” networks where one or more self-activation loops were deleted. These networks 
formed an ensemble of models that covered all possible combinations of self-activation loops; only one, 
two, or three out of the four nodes had such self-activation loops. We observed that the more self-
activation loops there were, the higher the plasticity score was (Figure 5C). Put together, these results 
underscore that the topology of the core regulatory network plays crucial roles in enabling phenotypic 
plasticity during NAFLD progression. 

Figure 5. Proposed core regulatory module for NAFLD enables maximum plasticity. (A) Kernel density 
estimate plot with the histogram overlaying showing the distribution of the Jensen–Shannon distance 
(JSD) between the frequency of state distribution of the “hypothetical” randomized networks from the 
“wild type” core regulatory network. The maximum and the minimum values of the JSD observed are 
mentioned in the top right side in the figure. An example of a randomized network is shown at the top 
left corner. (B) Kernel density estimate plot with the overlaying histogram showing the distribution of 
the plasticity scores of the various random networks. The core regulatory circuit (codenamed 
4a_1a_g_f1) is shown in the inset. The red vertical line indicates the plasticity score (=0.89) of the “wild 
type” core regulatory circuit, which is greater than all other “hypothetical” randomized networks. The 
maximum and minimum values of the JSD observed are mentioned in the top right side in the figure. 
Kernel density plots from two other independent RACIPE replicates are included in Figure S4A-D. (C) 
Bar plots showing the plasticity scores of the modified core regulatory networks with a varying number 
of direct self-activation loops. A few representative examples of the modified (i.e. “mutant”) networks 
and the corresponding codenames are drawn alongside (null indicates no self-activation loops; 4a, 1a, 
g, f1 denotes the network topology having self-activations on HNF4A, HNF1A, PPARG, and SREBF1, 
respectively). * indicates a significant difference of the plasticity scores (p-val < 0.05) when compared 
via the Student’s t-test with the plasticity of the null network. Error bars denote the standard deviation 
in plasticity scores calculated for three independent RACIPE replicates. 

3.5. Clinical Data Support the Model Predictions 
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Figure 5. Proposed core regulatory module for NAFLD enables maximum plasticity. (A) Kernel
density estimate plot with the histogram overlaying showing the distribution of the Jensen–Shannon
distance (JSD) between the frequency of state distribution of the “hypothetical” randomized networks
from the “wild type” core regulatory network. The maximum and the minimum values of the JSD
observed are mentioned in the top right side in the figure. An example of a randomized network is
shown at the top left corner. (B) Kernel density estimate plot with the overlaying histogram showing
the distribution of the plasticity scores of the various random networks. The core regulatory circuit
(codenamed 4a_1a_g_f1) is shown in the inset. The red vertical line indicates the plasticity score (=0.89)
of the “wild type” core regulatory circuit, which is greater than all other “hypothetical” randomized
networks. The maximum and minimum values of the JSD observed are mentioned in the top right
side in the figure. Kernel density plots from two other independent RACIPE replicates are included in
Figure S4A–D. (C) Bar plots showing the plasticity scores of the modified core regulatory networks
with a varying number of direct self-activation loops. A few representative examples of the modified
(i.e., “mutant”) networks and the corresponding codenames are drawn alongside (null indicates no
self-activation loops; 4a, 1a, g, f1 denotes the network topology having self-activations on HNF4A,
HNF1A, PPARG, and SREBF1, respectively). * indicates a significant difference of the plasticity scores
(p-val < 0.05) when compared via the Student’s t-test with the plasticity of the null network. Error bars
denote the standard deviation in plasticity scores calculated for three independent RACIPE replicates.
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First, we calculated the state frequency of each of the 44 “hypothetical” (i.e., randomized) networks.
We then computed the Jensen–Shannon distance (JSD) of the state frequency distribution of each
of these “hypothetical” randomized networks from the observed state frequency of the “wild type”
(i.e., core) regulatory network. JSD is a measure of distance between two distributions and varies
between 0 and 1 [64]. JSD = 0 implies that the two distributions are identical, while JSD = 1 implies
that the distributions are completely non-overlapping (Figure S6A). Upon plotting the distribution of
the JSD of the 44 “hypothetical” networks, we found that none of the distributions were close to the
observed distribution of the “wild type” regulatory network (Figure 5A, Figure S4A,C) (minimum
value of JSD = 0.22). This result signifies that the phenotypic distribution attained from the core
regulatory network is unique to that network topology.

Next, we quantified the plasticity of the “wild type” network and the 44 “hypothetical” networks.
The plasticity of a network is defined to be the fraction of parameter sets that enable multi-stable
solutions out of the total number of parameter sets considered (n = 10000 here). We found the
“wild type” network to possess the maximum plasticity as compared to each of the 44 “hypothetical”
networks (Figure 5B, Figure S4B,D), highlighting that the specific network topology among these
master regulators may be optimized to enable maximum phenotypic plasticity.
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Figure 6. Clinical evidence supports the model predictions. (A) Scatter plots between the expression
levels of HNF4A and PPARG in clinical samples. Spearman correlation coefficient is given by ρ, and
p-val denotes the corresponding p-value. (B,C) Comparison of mRNA levels (log2 normalized) of
HNF4A (B) and PPARG (C) in the liver of NASH patients and healthy controls. (D) Comparison of
levels of HNF4A, HNF1A, PPARG, and SREBF1 in mouse liver for control case vs. mouse model of
NASH. Expression values are listed as TPM (transcripts per million) for given RNA-seq data. p-value
(p-val) given for Student’s t-test in B–D.

Self-activation loops are known to contribute largely to the plasticity in many biological
systems [65]; thus, we quantified the contribution of different self-activation loops on plasticity. The core
network contained four self-activation loops—each for HNF4α, HNF1α, PPARγ, and SREBP-1c. We
created “mutant” networks where one or more self-activation loops were deleted. These networks
formed an ensemble of models that covered all possible combinations of self-activation loops; only
one, two, or three out of the four nodes had such self-activation loops. We observed that the more
self-activation loops there were, the higher the plasticity score was (Figure 5C). Put together, these results
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underscore that the topology of the core regulatory network plays crucial roles in enabling phenotypic
plasticity during NAFLD progression.

3.5. Clinical Data Support the Model Predictions

Finally, we tested whether our model predictions about phenotypic plasticity in NAFLD were
consistent with the available clinical data. One key prediction of the model was that the expression
levels of HNF4α and PPARγ should be negatively correlated (Figure 2D). We observed such trends in
multiple clinical datasets (GSE66676, GSE33814, GSE37031) corresponding to NASH and/or NAFLD
patients that showed PPARγ and HNF4α to be negatively correlated (Figure 6A). These results indicate
that the core programs of hepatocytic and adipocytic identity are inversely correlated. As expected,
the levels of HNF4α and HNF1α were found to be positively correlated (Figure S5A), while those of
the HNF1α and PPARγ were negatively correlated (Figure S5B).

Next, we examined whether the HNF4α levels were significantly downregulated and/or the
PPARγ levels were upregulated in the case of NASH, a more severe stage of fatty liver disease. Indeed,
HNF4α was found to be higher in the case of the normal liver than in the case of NASH livers (Figure 6B).
Similarly, PPARγ levels were found to be amplified in livers of NASH patients in comparison to
healthy livers (Figure 6C). These observations point out that NAFLD progresses via the simultaneous
suppression of the hepatic program controlled by HNF4α and the activation of the adipogenic program
controlled primarily by PPARγ, although to varying degrees. Consistently, in mouse models of NASH,
the liver showed downregulation of HNF4α and HNF1α and up-regulation of PPARγ and SREBP-1c,
as compared to controls (Figure 6D). Intriguingly, this pattern was observed for hepatocytes but
not in liver endothelial cells, suggesting that this regulatory circuit may be specifically operative in
hepatocytes, at least in mouse models (Figure S5C). Put together, these clinical observations strongly
support that the proposed core gene regulatory network may underpin phenotypic plasticity in the
context of NAFLD initiation and progression.

4. Discussion

With the rise of obesity and sedentary lifestyle-induced metabolic disorders, diseases such as
NAFLD are on the rise with a very limited number of treatment options available, which are not proven
to be very effective [66]. The world has seen a drastic increase in the prevalence of NAFLD in the 21st
century, and the number of cases continue to rise. The global incidence of NAFLD and its specific
histological phenotype, NASH, has risen dramatically (15% in 2005 to 25% in 2010, and 33% in 2005 to
59.1% in 2010, respectively) [1]. Thus, it becomes imperative to study the initiation and the progression
of NAFLD through its various phenotypic stages to devise efficient and robust intervention measures
to control the spread of this epidemic. Multiple studies have shown the importance of various key
regulators and genetic alterations for the development and the progression of NAFLD [67,68]. However,
there are only a few attempts to analyze NAFLD from a systems biology perspective, i.e., decoding
how these different regulators interact in the context of NAFLD [17,69–72]. Thus, mechanism-based
modeling studies are required to elucidate these mechanisms from a dynamical systems perspective.

Here, we identified and computationally modeled a core gene regulatory network that appears to
be crucial to explain various features of NAFLD. Specifically, we modeled the interactions among two
hallmark liver homeostatic transcription factors, HNF4α and HNF1α, and two master regulators of
adipocytic cell fate and lipid homeostasis, PPARγ and SREBP-1c, respectively. Our results show that
the dynamical interactions between these transcription factors can drive a hepatocytic or an adipocytic
cell fate program in a cell. This core regulatory network is also capable of existing in a “hybrid” state,
an adipocyte-like phenotype of the hepatocytes, which might correspond to observations during the
progression of NAFLD. This “hybrid” state can be mapped on the presence of large lipid droplets in
the hepatocytes with an increased expression of adipocytic markers and enhanced release of various
pro-inflammatory cytokines such as IL-6, IL-18, and TNFα, both of which are hallmark features of
adipocytes [60]. Our mathematical model also predicts that the hepatocytes can spontaneously switch
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to form the “hybrid” state under the influence of biological noise. Further, we showed that this core
gene regulatory network exhibits higher levels of plasticity both due to its topology and due to the
abundance of self-activation loops. Self-activation is frequently seen in biological networks, and its
combination with mutually inhibitory circuits, as observed in the context of NAFLD, has been reported
to amplify the likelihood of multi-stability and consequent phenotypic plasticity [46,65]. Therefore,
targeting the interactions that drive phenotypic plasticity and thus reducing the frequency of switching
between hepatocytic and the “hybrid” states can be thought of as a potential therapeutic strategy
for NAFLD.

The predictions of our model are also supported by clinical data of patients suffering from NAFLD.
Overall, we can construe that the phenotype seen in NAFLD is due to a “trans-differentiation” process,
where the cells can switch from a stable attractor state (in this case, the hepatocytes) to another
one (in this case, an adipocyte-like “hybrid” state of hepatocytes) (Figure 7). While further work
needs to be carried out to elucidate the existence and the extent of phenotypic switching in NAFLD
patients, systems biology approaches similar to those presented here can have potential translational
implications in terms of sub-phenotyping of patients and guiding subsequent drug repurposing and
development [73,74]. For instance, the gut microbiota of lean NAFLD patients is strikingly different
from that of obese NAFLD patients; such diverse microenvironmental traits may alter the interactome
landscape in NAFLD pathogenesis [75].
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Figure 7. A schematic showing hepatocytes in a fatty liver as a distinct cell state due to
“trans-differentiation” from the normal hepatocytes to a much more adipocyte-like “hybrid” cell
state on the Waddington’s landscape (The Strategy of the Genes, Waddington C, 1957).

Multistability is a hallmark of many cell-fate decision networks [76,77]. Multistable systems
often display hysteresis, in other words, an asymmetry in the trajectory of “forward” vs. “backward”
responses [57,78,79]. To establish the relevance of multistability in the context of NAFLD, a proposed
in vitro experiment would be to catalog the changes in levels of various adipocytic and/or hepatocytic
markers at a single-cell scale and in a dose- and/or a time-dependent manner, when hepatocytes are
exposed to fatty acids and triglycerides driving NAFLD [80]. Another feature of multistable systems
can be “spontaneous switching” among phenotypes under the influence of biological noise [81]. To test
this feature, one can isolate a population of steatotic hepatocytes and observe if it can give rise to
non-steatotic hepatocytes (implying reversibility) when cultured separately in vitro. The extent of
reversibility can depend on various factors such as remodeling of the cellular microenvironment
and/or epigenetics [55]. Thus, it would also be interesting to quantify the reversibility of a fatty
liver phenotype as the disease progresses from NAFLD to a more inflammatory state, NASH [82].
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Specifically, it will be intriguing to examine how various players that are upregulated due to initial
phenotypic transition (PPARγ and SREBP-1c) are stabilized due to the activation of the immune
response, which is known to be a hallmark of NASH [82,83]. Another important trait that can impact
the dynamics of NAFLD is the fluctuations of molecules during the fasting-feeding cycle [84]; for
instance, SREBP-1c levels can increase drastically upon fasted mice being refed [85]. It should be
noted that, although our model offers a possible explanation for NAFLD progression, such phenotypic
switching among adipocytes and hepatocytes has not yet been reported in adult homeostatic conditions
given their different developmental lineages and with adipocytes generally believed to be arising
from the mesoderm [86], while the hepatocytes arising from the endoderm [87], although functional
hepatocytes, have been reported to be generated from human adipose-derived stem cells [88].

There are various limitations of the computational model considered here. First, the network
proposed here is by no means exhaustive; various other mechanisms may alter the dynamics of the
regulatory network and the consequent relative stability and phenotypic switching. Second, the effect
of various genetic variants has not been incorporated into the model at this first step. Third, our
current model considers largely transcriptional factors, while both microRNA regulation [89] and
post-translational modifications [90] of proteins have been shown to be important in the context of
NAFLD. Despite these limitations, this analysis strongly suggests the role of phenotypic plasticity in
the development and the progression of NAFLD. It also offers a mechanistic basis for the possible
existence of an adipocyte-like phenotype of hepatocytes during NAFLD, where cells may maintain a
delicate balance of cellular identity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/3/870/s1,
Figure S1: Dynamics of NAFLD core regulatory network, Figure S2: Frequency and characterization of HL and
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Clinical data estimates, Figure S6: Robustness of methods used.
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