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Quench, thermalization, and residual entropy across a non-Fermi liquid to Fermi liquid transition
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We study the thermalization, after sudden and slow quenches, in an interacting model having a quantum
phase transition from a Sachdev-Ye-Kitaev (SYK) non-Fermi liquid (NFL) to a Fermi liquid (FL). The model
has SYK fermions coupled to noninteracting lead fermions and can be realized in a graphene flake connected
to external leads. A sudden quench to the NFL leads to rapid thermalization via collapse-revival oscillations
of the quasiparticle residue of the lead fermions. In contrast, the quench to the FL shows multiple prethermal
regimes and much slower thermalization. In the slow quench performed over a time τ , we find that the excitation
energy generated has a remarkable intermediate-τ nonanalytic power-law dependence, τ−η with η < 1, which
seemingly masks the dynamical manifestation of the initial residual entropy of the SYK fermions. Our study
gives an explicit demonstration of the intriguing contrasts between the out-of-equilibrium dynamics of a NFL
and a FL in terms of their thermalization and approach to adiabaticity.
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I. INTRODUCTION

One of the major frontiers in condensed-matter physics is
to describe gapless phases of interacting fermions without any
quasiparticles, namely non-Fermi liquids (NFL) [1]. Recently,
new insights about fundamental differences between NFLs
and Fermi liquids (FL) have been gained in terms of many-
body quantum chaos and thermalization. This new impetus
has come from exciting developments in a class of NFLs
described by the Sachdev-Ye-Kitaev (SYK) model [2–4] and
its extensions [5–13] and their connections with black holes in
quantum gravity [3,14,15]. In particular, the model proposed
in Ref. [6] classifies the SYK NFL and a FL as two distinct
chaotic fixed points separated by a quantum phase transition
(QPT). In this characterization, the NFL thermalizes much
faster than the FL, as quantified by a rate of the onset of chaos
or the Lyapunov exponent [3,6,16].

However, the Lyapunov exponent is computed from an
equilibrium dynamical correlation, the so-called out-of-time-
ordered correlator [3,4,17]. Here, using the model of Ref. [6]
as a template, we ask whether such contrast between the NFL
and FL persists even for thermalization from a completely out-
of-equilibrium situation, e.g., a quantum quench. The model
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has two species of fermions, interacting SYK fermions cou-
pled to another species of otherwise noninteracting fermions,
referred to as lead fermions. A QPT between a strongly inter-
acting NFL and weakly interacting FL phases can be tuned in
the model at low energies by varying the ratio, p, of numbers
of sites on which the two types of fermions reside. Remark-
ably, the solvable nature of the model allows us to study its
full nonequilibrium evolution after a quench exactly. By using
nonequilibrium Keldysh field theory in the thermodynamic
limit, as well as numerical exact diagonalization (ED) for
finite systems, we demonstrate a drastic difference in thermal-
ization rates for the NFL and FL after a sudden quench. In
addition, we show that the quasiparticle residue of the lead
fermions exhibits a dynamical transition as function of p from
collapse-and-revival oscillations to prethermalized plateaus
as a function of time. This dynamical transition is similar to
that seen in the interaction quench of Hubbard model [18].

Furthermore, the Landau description of a FL is based on
the concept of adiabatic time evolution from a noninteracting
system under slow switching on of the interaction, without
encountering a phase transition. Is it possible to evolve an
NFL adiabatically to the FL and vice versa? We argue that
such evolution is not possible here due to another intriguing
aspect of the SYK NFL, namely the finite zero-temperature
residual entropy (density) S0 [3,4,15]. The entropy is related to
the Bekenstein-Hawking entropy of the black hole in the dual
gravity theory [3,4,15,17] and has relevance for strange metal-
lic states described by local quantum criticality [5,9,11,13].
We probe the signature of this entropy in the heat generated
during nonequilibrium dynamics and characterize how the
putative adiabatic limit is approached in the two phases, and
across the QPT, after a slow quench with a finite rate. We show
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that, remarkably, the heat or energy of excitations �E gener-
ated by the quench scales as �E (τ ) ∼ τ−η with quench time
τ . Moreover, we find a direct manifestation of the equilibrium
QPT in the scaling exponent η. We also contrast all the above
results for the interacting model with those for an analogous
noninteracting model under identical quench protocols. In
particular, we show that the two models show drastically dif-
ferent thermalization behaviors in the thermodynamic limit.

The model studied here could be realized in a graphene
nano flake [19] attached to leads and under a magnetic field.
The QPT also has close parallel in the NFL-to-FL transi-
tion in the multichannel Kondo model [20]. Moreover, the
study of dynamics after a quench in our model, where no
quasiparticle description exists in one of the phases around
the QPT, allows us to probe hitherto unexplored regime of
many-body quantum dynamics. This is complementary to
the previous studies of dynamics after quench across a QPT
in integrable models [21,22] or weakly interacting systems
with well-defined quasiparticles [18,23,24]. The scaling laws
mentioned above cannot be explained by the usual Kibble-
Zurek scaling [25,26], unlike that in integrable or weakly
integrable models [18,21–24]. Although there have been a
few studies on nonequilibrium dynamics of the original SYK
model [27–30], none of them addressed the issue of a quench
across a nontrivial QPT.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the interacting and noninteracting mod-
els and describe the quench protocols. Section III discusses
the results for the nonequilibrium evolutions after slow and
sudden quenches in the large-N limit obtained using nonequi-
librium Schwinger-Keldysh method. Some results for finite-N
obtained via ED studies in a few limiting cases are also
discussed in this section. In Sec. IV we conclude with the
implications and significance of our results. The details of
the nonequilibrium large-N formulations, equilibrium spectral
properties of the models, and some additional results on the
slow quench in the noninteracting model are included in
Appendices A–C. The analysis of the slow quench using usual
adiabatic perturbation theory and the breakdown of adiabatic-
ity in our model are discussed in Appendix D. Additional
details of the numerical calculations, ED, and the results are
given in the Supplemental Material [31].

II. MODEL

A. Interacting model

As described schematically in Fig. 1, we study a time-
(t) dependent version of the model in Ref. [6], H(t ) = Hc +
Hψ + Hcψ (t ), where

Hc = 1

(2N )3/2

∑
i jkl

Ji jkl c
†
i c†

j ckcl , (1a)

Hψ = 1

M1/2

∑
αβ

tψ

αβψ†
αψβ, (1b)

Hcψ (t ) = f (t )

(NM )1/4

∑
iα

(Viαc†
i ψα + V ∗

iαψ†
αci ). (1c)

The model (Fig. 1), has two species of fermions: (1) the
SYK fermions (c), on sites i = 1, . . . , N , interacting with
random four-fermion coupling Ji jkl [Eq. (1a)], drawn from a
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FIG. 1. Model and the quench protocol: SYK (c) fermions (red
dots), interacting via random quartic coupling Ji jkl on N sites, are
connected, at time t = 0, to lead (ψ) fermions (blue dots joined by
lines) using random-quadratic couplings Viα with strength V . The ψ

fermions reside on M sites and have random hopping amplitudes tψ

αβ .
For a fixed site fraction p = M/N , the coupling V is ramped from 0
to a finite value over quench duration τ , as depicted by a red arrow
pointing into the page. For t → ∞, the connected system is expected
to relax to a thermal state in the equilibrium p-T phase diagram,
where T is the final temperature. A critical point, pc = 1, separates
the SYK NFL (p < pc) and the FL (p > pc). The low-energy NFL
and FL behaviors persist up to the crossover scales ωNFL and ωFL,
respectively.

Gaussian distribution with zero mean and variance |Ji jkl |2 =
J2, and (2) the lead fermions (ψ), on a separate set of sites
α = 1, . . . , M connected via random all-to-all hopping tψ

αβ

[Eq. (1b)]. The SYK and the lead fermions are quadrat-
ically coupled via Viα; tψ

αβ and Viα are complex Gaussian

random variables with zero mean and variances |tψ

αβ |2 = t2
ψ

and |Viα|2 = V 2, respectively.
The model is exactly solvable for N, M → ∞ with a fixed

ratio p = M/N that is varied to go through the QPT between
NFL and FL at a critical value p = pc = 1 [6]. Two crossover
scales, ωNFL and ωFL, approach zero from either side of the
QPT (Fig. 1). The residual entropy density S0(p) of the SYK
NFL continuously vanishes at the transition [6]. This is one of
the unique features of the QPT.

To probe the nonequilibrium dynamics, we make the cou-
pling term in Eq. (1c) time dependent. In particular, we
perform geometric quenches (Fig. 1) by switching on the cou-
pling between the two initially disconnected subsystems (a)
suddenly such that f (t ) = 	(t ), the Heaviside step function,
and (b) by slowly ramping up the coupling over a time τ , i.e.,
f (t ) = r(t/τ )[	(t ) − 	(t − τ )]; r(x) is a ramp function, e.g.,
r(x) = x. Before the quench, the disconnected subsystems,
with a preset site ratio p, are at their own thermal equilibria at
initial temperatures T c

i and T ψ
i . We take T c

i , T ψ
i → 0 so that

SYK and lead fermions belong to the NFL and (noninteract-
ing) FL states, respectively. As shown in Fig. 1, for t → ∞,
depending on whether p < 1 or p > 1, the coupled system
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eventually is expected to thermalize to either the NFL or the
FL state, respectively. In any case, one of the subsystems
always undergoes a transition, either from FL to NFL or vice
versa, under the quench.

B. Noninteracting model

To contrast the behavior of the above interacting model,
and to demonstrate the crucial role of interaction in the
nonequilibrium dynamics after quench and eventual thermal-
ization, we also consider an analogous noninteracting model.
The latter is obtained by replacing the interaction term for the
c fermions with a random hopping term similar to the one
appearing in the ψ-fermion Hamiltonian [Eq. (1)]. To this end,
we have H(NI)(t ) = Hc + Hψ + Hcψ (t ), with

H(NI)
c = 1

(N )1/2

∑
i j

t c
i jc

†
i c j . (2)

Here t c
i j is a complex Gaussian random variable with zero

mean and variance |t c
i j |2 = t2

c ; Hψ and Hcψ (t ) are the same
as in Eq. (1).

Below, we first briefly discuss the method for studying
the time evolution of the systems, followed by the results for
sudden and slow quenches.

III. RESULTS

A. Nonequilibrium evolution

We use standard Schwinger-Keldysh nonequilibrium
Green’s function technique [32,33] to study the quenches
described above. Utilizing the closed-time-contour
Schwinger-Keldysh action (see Appendix A) for the
model, we derive the Kadanoff-Baym (KB) equations for
the disorder-averaged nonequilibrium Green’s functions,
G<

s (t1, t2), G>
c (t1, t2) (s = c, ψ), e.g., G>

c (t1, t2) =
−i〈ci(t1)c†

i (t2)〉; the overline denotes disorder averaging.
The KB equations are numerically integrated using a
predicator-corrector scheme (see the Supplemental Material
[31], Sec. 1) starting from the initial equilibrium Green’s
functions (see the Supplemental Material [31], Sec. 2) for
the disconnected system. The time dependence of H(t ) is
encoded in KB equations via the local self-energies 
s, which
could be exactly calculated in the large-N limit for both the
interacting and the noninteracting models (see Appendix A).

We obtain the time-dependent expectation value of an
observable O(t ), i.e., 〈O(t )〉 ≡ Tr[ρ(t )O(t )] (see the Sup-
plemental Material [31], Sec. 3), using the Green’s func-
tions. Here ρ(t ) is the time-dependent density matrix and
O(t ) includes the explicit time dependence, if any, of the
observables. To understand thermalization, we track how the
contributions of the individual terms in Eq. (1) to the total
energy E (t ) = 〈H(t )〉, e.g., Ecψ (t ) = 〈Hcψ (t )〉, relax after the
quench. Since the whole system is isolated, we estimate the
expected temperature Tf of the putative thermal state at long
times from the total energy E (t ) = E f , which is conserved
after the quench.

B. Sudden quench

We first ask whether the contrast between dynamics of the
NFL and FL can be seen even when the system is subjected to

an abrupt nonequilibrium process. To address this, we study
the case when the subsystems are suddenly connected at t =
0. We take J = 1, tψ = 1, V = 1 and low initial temperatures,
T c

i = 0.05 and T ψ
i = 0 [34]. The sudden quench leads to a

rather high final temperature Tf ∼ 1 (see the Supplemental
Material [31], Sec. 4.1). Before the quench, the lead fermions
are noninteracting and the single-fermionic excitations are
sharply defined at T ψ

i = 0. To track the quasiparticle evolu-
tion, we compute an energy-resolved time-dependent occupa-
tion, nψ (ε, t ) = −iG<

ψ (ε; t, t ), for the lead fermions. Here ε

are the eigenvalues of the quadratic Hamiltonian in Eq. (1b),
i.e., Hψ = ∑

ε εψ†
ε ψε , and the Green’s function G<

ψ (ε; t1, t2)
is obtained by integrating an appropriate KB equation [see
Eq. (A6)].

The quasiparticle residue, zψ (t ) = nψ (0−, t ) − nψ (0+, t ),
is obtained from the occupation discontinuity at ε = 0. The
vanishing of the residue indicates the destruction of the quasi-
particles.

C. Collapse-and-revival oscillations and prethermal plateaus

In our model, z∞
ψ = zψ (t → ∞) is expected to vanish for

quench to any p since the coupled system either thermal-
ize to NFL or to a finite-temperature FL state. As shown
in Figs. 2(a) and 2(b), the collapse of the residue happens
through two very different routes. First, for p < pdyn

c , a critical
value of p corresponding to a dynamical transition, zψ (t ) un-
dergoes collapse-and-revival oscillations [Fig. 2(a)]. Second,
for p > pdyn

c , zψ (t ) shows multiple long prethermal plateaus
[Fig. 2(b)]. For V = 1, we find pdyn

c ≈ 1.5 from z1(p) → 0,
where z1 is the residue at the first maximum of the oscillations
[see curve labeled “int.” in Fig. 2(a), inset]. Hence, the critical
value pdyn

c for this dynamical transition is greater than the
“equilibrium” critical ratio pc = 1. It is encouraging to find
that similar oscillations and evidence of a dynamical transition
have been observed [18] in the interaction quench across Mott
transition in the Hubbard model as well.

However, in contrast to the interaction quench in the
Hubbard model, where the collapse-and-revival oscillations
originate from on-site Hubbard repulsion, in our model, the
oscillations are linked to a soft hybridization gap in the lead
fermions. The gap appears due to hybridization [Eq. (1c)]
between the SYK and lead fermions and closes at the NFL-FL
transition (Appendix B). In fact, we observe a similar dynam-
ical transition in the noninteracting model of Eq. (2) under
an analogous sudden quench [see the curve labeled “n.int.”
in Fig. 2(a), inset]. The critical point in this scenario occurs
at pdyn

c ≈ 0.5. We emphasize here that although a dynamical
transition exists for the noninteracting case, the presence of
interactions is crucial for thermalization (discussed in the next
section), which the noninteracting model fails to achieve for
any value of p (see the Supplemental Material [31], Sec. 4.3).
The SYK interactions are also responsible for nontrivially
shifting the critical value of pdyn

c from 0.5 to 1.5 as shown
in Fig. 2(a) (inset).

D. Thermalization and long-time steady states

The crucial aspects that distinguish the noninteracting
[Eq. (2)] and interacting [Eq. (1)] models, as well as the
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FIG. 2. Dynamical transition and thermalization after a sudden quench: Panels (a) and (b) show the quasiparticle residue zψ (t ) for the
ranges p = 0.1–1.5 and p = 1.7−20.0, respectively. In (a) inset, the curve labeled “int.” shows the height z1 of the first maximum of the
oscillations as a function of p. This is compared with the p dependence of the oscillation maximum (marked as “n.int.”), when the c fermions are
made noninteracting. The effect of interactions pushes the critical value of pdyn

c from 0.5 to 1.5. Panel (c) gives the time evolution of bond energy
Ecψ , in the interacting model, for p = 0.4–0.8 (left) and p = 8–20 (right), while panel (g) shows the time evolution in the noninteracting model
for the same p values. The Ecψ attain their respective equilibrium values (triangles) rather quickly when p < pdyn

c in the interacting model and
shows a slow approach to thermalization when p 
 pdyn

c . However, thermalization is completely absent in the noninteracting model, and Ecψ

never reach their respective equilibrium values regardless of the value of p. Panel (e) shows the ψ-fermion long-time steady-state occupation
function f ∞

ψ (ω) (dots) in the interacting model for p = 0.1 (top) and 8.0 (bottom), respectively, and compares them with the Fermi function
nF (ω, Tf ) (line). Thermalization occurs for p = 0.1, i.e., f ∞

ψ (ω) → nF (ω, Tf ), while p = 8.0 remains athermal. Panel (f) shows the failure of
f ∞
ψ (ω)(dots) for the noninteracting model to approach nF (ω, Tf ) (line) for both p = 0.3, 8.0. Panels (d) and (h) give Ecψ as a function of t

obtained via large-N calculation for p = 0.1, 8.0 and via ED for p = 1/3, 3.0, respectively, for the interacting model. The thermal expectation
(diagonal ensemble) values for the large-N (ED) case are shown by the arrow heads and horizontal lines.

NFL and FL, are the thermalization process and the long-time
steady states. As shown in Fig. 2(c) [also see the Supplemental
Material [31], Sec. 4.2, Figs. S3(a) and S3(b)], Ecψ (t ) reaches
the thermal expectation corresponding to the temperature Tf

very rapidly for p < pdyn
c , whereas there is a drastically slow,

albeit finite, relaxation rate for Ecψ (t ) toward the thermal
value for p > pdyn

c . In contrast, Ecψ (t ) does not relax to the
expected thermal value for any p in the noninteracting model,
see Fig. 2(g) [also see the Supplemental Material [31], Sec.
4.2, Figs. S4(a) and S4(b)]. We further analyze the steady state
through the Green’s functions Gs(T , ω) = ∫ ∞

−∞ Gs(t1 = T +
t/2, t2 = T − t/2)eiωt , where T = (t1 + t2)/2. In the steady
state, Gs(T , ω) becomes independent of T . Moreover, for a
thermal steady state at Tf , the steady-state occupation func-
tion f ∞

s (ω) = limT →∞ iG<
s (T , ω)/[2ImGR

s (T , ω)] should be
equal to the Fermi function nF (ω, Tf ) = 1/(eω/Tf + 1), i.e.,
should satisfy the fluctuation-dissipation theorem (FDT).
We find that for the interacting model [Eq. (1)], f ∞

s (ω) =
nF (ω, Tf ) [see Fig. 2(e), top] for the NFL (p < pdyn

c ), whereas
FDT gets violated [Fig. 2(e), bottom] in the FL regime (p >

pdyn
c ) for the largest T (∼100J−1, where J is the interaction

strength in Eq. (1a)) accessed.
We find that the FDT is never satisfied for the nonin-

teracting model at any p, as seen in Fig. 2(f) [also see

the Supplemental Materal [31], Sec. 4.2, Figs. S4(c) and
S4(d)]. This is expected for the noninteracting case, where
the long-time steady state is described by a generalized Gibbs
ensemble (GGE) instead of the usual thermal Gibbs ensemble
[21,22,26,31]. Nevertheless, even in the interacting model, the
FL phase shows an approximate GGE behavior by attaining
a prethermal steady state within the time accessible in our
numerical calculations. The prethermal GGE will presumably
relax to a thermal state over a much longer timescale [22,35].
Similar behaviors have been seen for quenches to FL phases
in other interacting models [36]. In contrast, the strong inter-
action leads to rapid thermalization for the NFL phase. Hence
the sudden quench in the interacting model demonstrates dras-
tically different thermalization dynamics between the NFL
and the FL phases.

It is worthwhile to ask whether the contrast in the thermal-
ization behaviors of NFL and FL persists even at finite N . In
Fig. 2(h), we show (see also the Supplemental Material [31],
Sec. 4.2) the results for Ecψ (t ) obtained from ED studies of the
model of Eq. (1) for N = 16. The ED gives results similar to
that at large N , shown in Fig. 2(g). Another pertinent question
is whether the thermalization times of Ecψ (t ) in NFL and
FL phase can be directly related to their respective Lyapunov
timescales (τL) [6]. Here it is important to note that the sudden
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FIG. 3. Heat production and thermalization in a slow quench:
(a) Heat or excitation energy �E (τ ) produced during the quench as
a function of quench duration τ (dots) and the power-law scaling
fits, �E ∼ τ−η (lines), for p = 0.1, 1, 10. Inset shows an indication
of the deviation from the power law for larger τ at p = 10. (b) The
exponent η vs. p. The inset shows the η(p) obtained for the quench in
the noninteracting model, see Eq. (2). Panels (c) and (d) show time
evolutions of Ecψ for τ = 1.1, 10.1, 19.1, at p = 0.1 and p = 10,
respectively. The thermal expectations are shown by the arrow heads.

quench in our model leads to (see the Supplemental Material
[31], Sec. 4.1, Fig. S2) substantially high temperature Tf �
J . As a result, the relaxation of various high-energy modes
also influence Ecψ (t ), making it hard to isolate τL from the
relaxation of high-energy modes.

We also note that even though some specific low-energy
features of SYK NFL and FL phases, like the temperature
dependence of the Lyapunov time τL, cannot be ascertained
from the dynamics after sudden quench, our results show that
the low-energy fixed points for the initial states still drasti-
cally influence the thermalization process. This is despite the
fact that the sudden quench leads to substantially high final
temperatures.

E. Slow quench

We next address the question whether the initial decoupled
NFL and FL subsystems can be adibatically evolved to the
final states of the coupled system. To this end, we consider the
slow quench where the coupling is changed slowly through
a ramp, r(t/τ ). Here we keep both the subsystems at some
low initial temperature T c

i = T ψ
i = Ti for t < 0 and define the

heat or excitation energy [37,38], �E (τ ) = E (τ ) − 〈H(τ )〉Ti ,
produced during the quench; 〈H(τ )〉Ti is the thermal expecta-
tion of the final Hamiltonian H(τ ) at the initial temperature
Ti. As shown in Fig. 3(a), remarkably, we find that �E (τ ) ∼
τ−η(p) with η(p) < 1, i.e., a nonanalytic power-law scaling.
The exponent η has a strong nonmonotonic dependence on
p with a minimum around the QPT [Fig. 3(b)], revealing
signatures of equilibrium QPT in the nonequilibrium evo-
lution. We also find nonanalytic scaling for the quench in
the noninteracting model (see Appendix C). However, the

exponent has a very weak dependence on p [Fig. 3(b), inset].
The particular nonanalytic power laws cannot be explained
through a standard adiabatic perturbation theory [25,38–40],
as we show in Appendix D. Also, a Kibble-Zurek–type ar-
gument [25,26] cannot be given for such a zero-dimensional
system. We find the exponent to depend on ramp shape as well
(see Supplemental Material [31], Sec 5.1). This is also not
expected from adiabatic perturbation theory for an exponent
η < 1 [31,38].

One possible promising route to understand the nonstan-
dard exponent η(p) in the intermediate time window after
the quench could be to construct a low-energy theory for
the model of Eq. (1) along the line of Schwarzian theory
for the pure SYK model [16,17]. A recent study [41] analyzes
the quench dynamics using the Schwarzian theory for an SYK
model suddenly coupled to a large thermal bath made out of
another SYK model. However, the situation is somewhat more
involved in our model due the strong back action of SYK
fermions on the lead fermions in the NFL phase (p < 1) and
that of the lead fermions on the SYK fermions in the FL phase
(p > 1). Such back action is absent in the model of Ref. [41]
since the bath is infinitely larger than the system and since
both the bath and the system are described by SYK model. In
our case, one needs to start with two uncoupled low-energy
theories, one corresponding to the Schwarzian action for the
SYK fermions with scaling dimension � = 1/4, and the other
for the noninteracting fermions with scaling dimension � =
1/2. Hence the resulting theory after the quench will not be
that of the standard Schwarzian mode but a different and
more complicated one that includes the strong back actions
among the subsystems. We would discuss this effective theory
elsewhere [42].

As alluded to earlier, for the quench to any finite p, e.g.,
from the NFL to FL, the residual entropy S0 of the NFL
implies a violation of adiabaticity even for an arbitrary slow
quench. The excitation energy �E (τ ) characterizes how S0

metamorphoses into thermal excitations in the FL. The latter
has S0 = 0, and hence even an arbitrary slow quench must
lead to �E (τ → ∞) �= 0 and a T �= 0 state, having a thermal
entropy that at least accounts for the T = 0 entropy of the
initial NFL state. Hence, the observed power law, implying
asymptotic approach to the adiabatic limit �E (τ → ∞) = 0
is surprising. It would suggest that S0 is not manifested as ther-
mal excitations in the final state for τ → ∞. Hence, we do not
expect the power law to eventually persist for any finite p for
τ → ∞. We see an indication of only a weak deviation from
the intermediate-τ power law for p = 10 around τ ∼ 30–40
[Fig. 3(a), inset]. From the intermediate-τ power law, we can
estimate a timescale, much longer than presently accessible in
our calculations, where the scaling is expected to be violated
due to S0 (see Appendix D). This mechanism of the violation
of adiabaticity due to S0 in the large-N limit is different
from the hitherto known routes [26] of adiabaticity breaking.
As we show in Appendix D, physics beyond the large-N
limit [43] suggests that the limits τ → ∞ and N → ∞ do
not commute, also indicating the absence of the adiabatic
limit [26].

As shown in Fig. 3(c), a steady-state value of Ecψ (t ),
consistent with the thermal value is attained very rapidly
within the NFL for any τ . In contrast, a “glassy” behavior
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is seen within the FL, where Ecψ (t ) relaxes very slowly for
small τ but relaxes almost instantaneously for larger τ values
[Fig. 3(d)].

IV. CONCLUSIONS

In conclusion, our study of sudden and slow quenches in a
large-N model of NFL-FL transition reveal a remarkably rich
nonequilibrium phase diagram and sharp contrasts between
noninteracting FL and NFL phases. The sudden quench al-
lows us to track the distinct evolutions of initially prepared
well-defined quasipartile state in the NFL and FL phases
and establish the existence of a dynamical phase transition
which is different from the equilibrium NFL-FL quantum
phase transition. In the context of slow quenches, unique
features of the NFL-FL QPT and the low-temperature state
of the SYK model, such as strongly interacting fermionic
excitations and residual zero-temperature entropy, allow us
to probe completely unexplored regime of out-of-equilibrium
quantum many-body dynamics compared to previous studies
of integrable and weakly integrable systems. These unusual
features lead to remarkable intermediate nonanalytic scaling
of excitation-energy production with the quench duration and
the eventual breakdown of quantum adiabaticity. A natural
future extension would be to go beyond large N to study
evolution for longer times ∼N .
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APPENDIX A: NONEQUILIBRIUM GREEN’S FUNCTIONS
AND KADANOFF-BAYM EQUATIONS

1. Interacting model

We find the nonequilibrium Green’s functions and the cor-
responding Kadanoff-Baym equations using the Schwinger-
Keldysh closed-contour formalism. To do this we write the
Schwinger-Keldysh action [32] for the time-dependent Hamil-
tonian H in Eq. (1), i.e.,

S =
∫
C

dz

[
N∑

i=1

c̄i(z)(i∂z + μ)ci(z)+
M∑

α=1

ψ̄α (z)(i∂z + μ)ψα (z)

− 1

(2N )3/2

∑
i jkl

Ji jkl c̄ic̄ jckcl − 1

M1/2

∑
αβ

tψ

αβψ̄αψβ

− f (z)

(NM )1/4

∑
iα1

Viα c̄iψα + V ∗
iαψ̄αci

]
. (A1)

The contour variable z lies on the usual Keldysh contour [32]
(Fig. 4) with the forward (+) or backward (−) branches.

The explicit time dependence in the action is introduced
via the function f (z) = f (t ). The nonequilibrium generating
functional for obtaining time-dependent expectation values
is defined as Zneq = ∫

D(c, c̄, ψ̄, ψ ) eiS[c̄,c,ψ̄,ψ], under the

FIG. 4. Schwinger-Keldysh closed time contour: The closed-
time Schwinger-Keldysh contour stretching from −∞ to +∞ for-
ward in time and then backward from +∞ to −∞.

two usual assumptions. First, the initial density-matrix ρ̂ is
independent of any disorder, and all the disorder dependence
has been pushed into the time-evolution operators. Second,
the disorder is switched on sometime in the infinitely long
past so that the system has enough time to equilibrate to
the conditions created by the disorder-dependent Hamiltonian.
These assumptions allow us to implement the averaging of
Zneq over all disorder realizations as follows:

〈Zneq〉dis =
∫

D(c, c̄, ψ̄, ψ ) 〈eiS[c̄,c,ψ̄,ψ]〉dis

=
∫

D(c, c̄, ψ̄, ψ )
∫

d[J,V, t] eiSP[J]P[V ]P[t],

(A2)

where P[.] s are the Gaussian probability distributions for
the couplings Ji jkl , tψ

αβ , and Viα appearing in Eq. (1). We
perform the Gaussian integrals over the disorder distributions
and define the large-N fields,

Gc(z1, z2) = − i

N

∑
i

ci(z1)c̄i(z2)

Gψ (z1, z2) = − i

M

∑
α

ψα (z1)ψ̄α (z2) (A3)

that live on the contour and the corresponding Lagrange mul-
tipliers 
c,ψ (z1, z2). Finally, after integrating out the fermions
we end up with the action

S[
, G] = − iN ln det {−i[(i∂1 + μ)1 − �c]}
− iM ln det{−i[(i∂1 + μ)1 − �ψ ]}

×
∫
C

dz1dz2

{
+ i

J2N

4
Gc(z2, z1)2Gc(z1, z2)2

+ i
t2
ψM f (z1) f (z2)

2
Gψ (z2, z1)Gψ (z1, z2)

+ iV 2
√

NM f (z1) f (z2)Gc(z2, z1)Gψ (z1, z2)

+ 
c(z1, z2)[−iNGc(z2, z1)]

+ 
ψ (z1, z2)[−iMGψ (z2, z1)]

}
, (A4)

where the matrix (i∂1 + μ)1 has elements of the form
(i∂z1 + μ)δ(z1 − z2). The elements for matrices �c, �ψ are

c(z1, z2), 
ψ (z1, z2) respectively. The action S is extremized
with respect to G and 
 to produce the large-N saddle-point
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equations


c(z1, z2) = J2Gc(z1, z2)2Gc(z2, z1)

+ √
pV 2 f (z1) f (z2)Gψ (z1, z2)


ψ (z1, z2) = t2
ψGψ (z1, z2) + V 2

√
p

f (z1) f (z2)Gc(z1, z2) (A5)

and

(i∂z1 + μ)δ(z1 − z2) − 
s(z1, z2) =G−1
s (z1, z2), (A6)

where G−1
s is the inverse of the matrix Gs with its elements

given by Gs(z1, z2) and s = c, ψ . We rewrite Eq. (A6) by
multiplying with Gs from the right and the left, respectively,

(i∂z1 + μ)Gs(z1, z2) −
∫
C

dz
s(z1, z)Gs(z, z2)

= δC (z1, z2), (A7)

(−i∂z2 + μ)Gs(z1, z2) −
∫
C

dz Gs(z1, z)
s(z, z2)

= δC (z1, z2), (A8)

which are integrodifferential equations satisfied by Gs(z1, z2)
and where δc is the Dirac-delta function defined on the
contour.

From the contour-ordered Green’s function Gs(z1, z2),
we obtain the disorder-averaged real-time nonequilibrium
Green’s functions, greater (>), lesser (<), and retarded R,
from Gs(z1, z2) at the saddle point, e.g.,

G>
c (t1, t2) ≡ Gc(t1−, t2+) = −i〈ci(t1)c†

i (t2)〉, (A9)

G<
c (t1, t2) ≡ Gc(t1+, t2−) = +i〈c†

i (t2)ci(t1)〉, (A10)

GR(t1, t2) = − i	(t1 − t2)〈{ci(t1), c†
i (t2)}〉

= 	(t1 − t2)[G>(t1, t2) − G<(t1, t2)], (A11)

GA(t1, t2) = +i	(t2 − t1)〈{ci(t1), c†
i (t2)}〉

= 	(t2 − t1)[G<(t1, t2) − G>(t1, t2)]. (A12)

and similarly for Gψ (z1, z2). The first (second) sign in the
suffix of Gs(t1±, t2∓) indicates whether the z1(z2) coordinate
lies in the forward (+ve) or backward (−ve) branch of the
contour.

a. Steady state. In a steady state the Green’s functions are
invariant under time translational, e.g., GR(t1, t2) = GR(t1 −
t2) = GR(t ).

b. Thermal equilibrium. For thermal equilibrium at a tem-
perature T , in addition to the above steady-state condition, the
Green’s functions satisfy the FDT [32], e.g.,

iG<
s (ω)/

[
2ImGR

s (ω)
] = nF (ω, T ), (A13)

where nF (ω, T ) = 1/(eω/T + 1) is the Fermi function and
G〈,〉,R,A(ω) are Fourier transforms of G〈,〉,R,A(t ) defined by

G(ω) =
∫ ∞

−∞
G(t )eiωt dω, (A14)

The above conditions allow us to test whether a system, after
undergoing a nonequilibrium process, has reached a steady

state and whether the steady state is consistent with thermal
equilibrium.

2. The Kadanoff-Baym equations

From Eq. (A7) and Eq. (A8), we obtain the time-evolution
equations for G>,<

s , e.g.,

(i∂t1 + μ)G>
s (t1, t2) =

∫
C

dz
s(t1−, z)Gs(z, t2+)

≡ I (1)
s> (t1, t2)

(−i∂t2 + μ)G>
s (t1, t2) =

∫
C

dz Gs(t1−, z)
s(z, t2+)

≡ I (2)
s> (t1, t2), (A15)

where we have used the fact δC (z1 → t1−, z2 → t2+) = 0.
Finally, using Langreth rules [44], we get

I (1)
s> (t1, t2) =

∫ t1

−∞

R

s (t1, t )G>
s (t, t2)dt

+
∫ t2

−∞

>

s (t1, t )GA
s (t, t2)dt

I (2)
s> (t1, t2) =

∫ t1

−∞
GR

s (t1, t )
>(t, t2)dt

+
∫ t2

−∞
G>

s (t1, t )
A
s (t, t2)dt, (A16)

where 
R (
A) is the retarded (advanced) self-energies, given
by


R(t1, t2) = 	(t1 − t2)[
>(t1, t2) − 
<(t1, t2)]


A(t1, t2) = 	(t2 − t1)[
<(t1, t2) − 
>(t1, t2)], (A17)

where, using Eq. (A5),


>,<
c (t1, t2) = 
c(z1 → t1−, z2 → t2+)

= J2G>,<
c (t1, t2)2G<,>

c (t2, t1)

+ √
p V 2 f (t1) f (t2)G>,<

ψ (t1, t2)
>,<
ψ (t1, t2)

= 
ψ (z1 → t1−, z2 → t2+) = t2
ψG>,<

ψ (t1, t2)

+ V 2

√
p

f (t1) f (t2)G>,<
c (t1, t2). (A18)
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FIG. 5. Spectral functions for the noninteracting case at T = 0.04. (a) The spectral functions for the c fermions shown for multiple values
of p. (b) Spectral function for the ψ fermions, showing the soft-gap closing between p = 0.5 and p = 0.7.

Similarly, one can repeat the above analysis for the G<
s

case. The integrodifferential equations for G>
s and G<

s can be
stated together as

(i∂t1 + μ)G>,<
s (t1, t2) =

∫ t1

−∞

R

s (t1, t )G>,<
s (t, t2)dt

+
∫ t2

−∞

>,<

s (t1, t )GA
s (t, t2)dt

(−i∂t2 + μ)G>,<
s (t1, t2) =

∫ t1

−∞
GR

s (t1, t )
>,<
s (t, t2)dt

+
∫ t2

−∞
G>,<

s (t1, t )
A
s (t, t2)dt .

(A19)

This set of equations are called the KB equations, which,
along with the relations given in Eq. (A17) and Eq. (A18), set
up a closed system of equations that can be time evolved in
the t1-t2 plane (see Fig. S1), starting from an initial condition
for Gs and 
s.

3. Noninteracting model

Following procedure similar to that discussed above
for the interacting model, we obtain the disorder-averaged
Schwinger-Keldysh action for the noninteracting model of (2)
and the saddle-point equations.

The large-N self-energies are given by


c(z1, z2) = t2
c Gc(z1, z2)

+ √
pV 2 f (z1) f (z2)Gψ (z1, z2)


ψ (z1, z2) = t2
ψGψ (z1, z2)

+ V 2

√
p

f (z1) f (z2)Gc(z1, z2). (A20)

Consequently, a set of contour Kadanoff-Baym equations
similar to the ones given in Eq. (A7) and Eq. (A8) is obtained.
Using the Langreth rules the above equations involving con-
tour indices z1, z2 can be changed to real-time variables t1, t2
to give the final Kadanoff-Baym equations [see Eq. (A19)]
for the system with the following expressions for the self-

energies:


>,<
c (t1, t2) = t2

c G>,<
c (t1, t2) + √

p V 2 f (t1) f (t2)G>,<
ψ (t1, t2)


>,<
ψ (t1, t2) = t2

ψG>,<
ψ (t1, t2) + V 2

√
p

f (t1) f (t2)G>,<
c (t1, t2).

(A21)

APPENDIX B: GAP-CLOSING TRANSITIONS IN THE
INTERACTING MODEL AND NONINTERACTING MODEL

The spectral functions obtained from the equilibrium
Green’s functions (see the Supplemental Material [31], Sec.
2) for the connected system, i.e., V = 1, for various p values
are discussed below. Figures 5(a) and 5(b) show the results
for the noninteracting model, whereas Figs. 6(a) and 6(b)
show the spectral functions for the interacting model. In the
noninteracting case, we find that the spectral function for the
ψ fermions have a soft gap for smaller values of p, which
closes completely around p = 0.5–0.7. This is consistent
with the dynamical transition that we observe for the sudden
quench of the noninteracting model, which we discuss in the
Supplemental Material [31], Sec. 4.3. The c-fermion spectral
function does not have a soft gap for small values of p, but a
soft gap begins to form near p ∼ 1.9 as we increase p. This
is expected, since the noninteracting model has an additional
symmetry under p → 1/p and c ↔ ψ . Moving on to the
interacting model, we find a similar soft-gap-closing scenario
taking place for the ψ-fermion spectral functions, as shown in
Fig. 6(b). However, this time the gap closes completely around
p = 1.6–2.6, which is far from the equilibrium NFL-to-FL
transition point of p = 1.0. This is again consistent with the
dynamical transition critical point [see Fig. 2(a) inset in the
main text] that we find in the sudden quench of the interacting
model. The c-fermion spectral functions have a highly peaked
form around ω = 0, for smaller p values, due to the presence
of a divergent T = 0 spectral function coming from the NFL
fixed point. At higher values of p, the peak subsides and a gap
begins to form in the spectral function.
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FIG. 6. Spectral functions for the interacting model at T = 0.04. (a) Spectral function for the c fermions for multiple values of p.
(b) Spectral function for the ψ fermions, showing the soft-gap closing somewhere between p = 1.6 and p = 2.6.

APPENDIX C: EXCITATION ENERGY AS A FUNCTION
OF QUENCH TIME FOR THE NONINTERACTING MODEL

We also study the dependence of excitation energy �E on
the quench duration τ for the slow quench of the noninter-
acting model of Eq. (2). We find that there exists a power-
law relationship between �E and τ here as well, as shown
in Fig. 7, which we report in the main text. However, the
dependence of the power-law exponent η on p is qualitatively
different from the interacting case as shown in Fig. 3(b) of the
main text.

APPENDIX D: BREAKDOWN OF ADIABATIC
PERTURBATION THEORY AND THE ABSENCE

OF ADIBATIC LIMIT

Here we elaborate on the connection between the zero-
temperature residual entropy of the SYK NFL and the absence

FIG. 7. Excitation energy vs. quench duration for the nonin-
teracting model. The excitation energy �E , produced in the slow
quench, plotted as a function of quench duration τ . The power-law
dependence is clearly evident from the straight line fits to the log-log
scale plot of �E vs. τ . The slope of the straight lines are almost
equal, making the exponent η of the power law to have only a weak
dependence on the site fraction p. This feature is in contrast with the
η-p dependence for the interacting model, where η heavily depends
on p and has a minimum value at p = 1, see Fig. 3(b).

of the adiabatic limit for the slow quenches described in the
main paper. In the large-N limit, S0 reflects the exponentially
dense many-body energy spectrum near the ground state in
the NFL phase [4], and the QPT in our model marks a
transition from exponentially small many-body level spacing,
� ∼ e−S0(p)N , in the NFL to � ∼ 1/N in the FL. Hence, the
residual entropy S0 cannot be thought of as a thermodynamic
entropy strictly at T = 0, i.e., when the T → 0 limit is taken
first, keeping N finite and then N → ∞ limit is taken, S0 =
0. In the large-N description, the limit is taken the other
way around, and it captures the exponentially dense many-
body level spectrum near the ground state in the NFL phase.
However, at any nonzero temperature ( >∼ e−S0N ), which could
be infinitesimally small in the large-N limit, S0 is the true
thermodynamic entropy. Hence, we expect this entropy to be
manifested in the large-N nonequilibrium dynamics during
a slow quench, implying the absence of the adiabatic limit.
However, as mentioned in the main text, surprisingly we
find the intermediate-τ nonanalytic power-law scaling, which
seems to mask the effect of residual entropy. In the following,
we first try to estimate the power law from the so-called
adiabatic perturbation theory [25,38–40], which has been
previously used for noninteracting and weakly interacting
systems. We show that the adibatic perturbation theory cannot
explain the p-dependent exponent directly obtained from the
direct nonequilibrium evolution, discussed in the main text.
Furthermore, we discuss the possible modes of violation of
the adiabaticity in the large-N limit, as well as beyond it.

1. Adiabatic perturbation theory in the large-N limit

In the adiabatic perturbation theory [25,38–40], the time-
dependent term [Eq. (1c)] is treated as a perturbation as-
suming a weak strength of the ramp in Eq. (1), i.e., f (t ) =
� f r(t/τ ) with � f � 1. To this end, we obtain the energy
generated during quench [38] as

�E (τ ) � � f 2
∫ ∞

0

dω

ω
AV (ω)R(ωτ ) + O(� f 2). (D1)

Here R(x) = | ∫ 1
0 dsr′(s)eixs|2 and r′(x) is derivative of the

ramp function. AV (ω) is a T = 0 spectral function corre-
sponding to the disordered-averaged imaginary-time correla-
tion function of the operator V = (NM )−1/4 ∑

iα (Viαc†
i ψα +
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h.c.), i.e., −〈TτV (τ )V (0)〉. This can be computed in the large-
N limit, and we obtain

AV (ω) = 2
√

p

1 + p
V 2

∫ ω

0
dω′ρc(ω′)ρψ (ω′ − ω), (D2)

where ρc(ω) and ρψ (ω) are the spectral functions of the SYK
and lead fermions, respectively, for the uncoupled systems
before the quench. For long quench time τ 
 �−1, where
� ≈ J, tψ , we can use the low-energy forms, ρc(ω) ∼ |ω|−1/2

and ρψ (ω) ∼ const, for ω � �. These give AV (ω) ∼ ω1/2.
It can be shown [38] that R(x → ∞) ∼ x−2n, where n � 1 is
the order of the derivative discontinuity in the ramp (see the
Supplemental Material [31], Sec. 5.1). As a result,

�E (τ ) ∼ τ−1/2
∫ �τ

0
dxx−1/2R(x). (D3)

Moreover, the integral above is convergent for τ → ∞ since
2n > 1/2. Hence, the adiabatic perturbation theory predicts a
nonanalytic power law with exponent η = 1/2 for any p. This,
of course, does not agree with the strongly nonmonotonic
η(p) obtained from the direct nonequilibrium calculations
[Fig. 3(b)]. Hence, the adiabatic perturbation theory does not
work in our case. The theory assumes a nondegenerate ground
state [38], and it is an interesting question whether such a
theory could at all be applied to a phase with exponentially
dense many-body spectrum near the ground state, even though
some of the effect of the dense spectrum is incorporated in the
large-N single-particle density of states.

2. Breakdown of adiabaticity in the large-N limit

As discussed in the main text, the presence of a residual
entropy in the SYK fermions, prior to the quench, implies
that a finite amount of excitation energy �E > 0 must be
produced even in the τ → ∞ limit. Therefore, the power-law
relationship �E ∼ τ−η, in principle, should break down at
some large τ . We now provide a route to find an estimate for
the time τbreak at which we can expect the power-law behavior
to break down. This can be done by assuming an isoentropic
(the initial and final entropies are taken to be equal) limit
of the quench process. We first calculate the temperature Tf

necessary for the final Hamiltonian Hf to hold the initial
entropy Si by solving the equilibrium problem and demanding

Si = S f (Tf ). (D4)

Using the definition of �E given in the main text, we
can estimate τbreak from the condition �E (τbreak ) ≈ �ETf =
〈H(τbreak )〉Tf − 〈H(τbreak )〉Ti . The latter is the excitation en-
ergy produced by converting the initial entropy to thermal ex-
citations, and the excitations generated by the quench cannot
be lower than �ETf . This leads to

τbreak (p) =
[

Tr[ρ̂(Tf )Hf ] − Tr[ρ̂(Ti )Hf ]

α

]−1/η

, (D5)

where α can be extracted from power-law fits to �E using

�E = ατ−η. (D6)

Performing such an estimate for the p = 1.5 case, we find
τbreak ∼ 200, a time which is not easily accessible using
the numerical algorithm in the Supplemental Material [31],
Sec. 1.

3. The adiabatic perturbation theory beyond large
N and the absence of adiabatic limit

Within the adiabatic perturbation theory discussed above,
we can go beyond the large-N theory by incorporating some
finite-N corrections, at least due to the single-particle level
spacing, following Ref. [43]. It is still not known how to
incorporate the effects of many-body level spacing. Never-
theless, it has been shown in Ref. [43] that the SYK spectral
function ρc(ω) changes from the divergent |ω|−1/2 behavior
to ρc(ω) ∼ �−1

s |ω|1/2 for ω � �s ∼ J/(N ln N ). The large
prefactor N ln N in the

√|ω| dependence presumably arises
from the dense spectrum, even though the density of states
is suppressed at low energies. We obtain AV (ω) ∼ ω3/2 for
ω � �s, giving

�E (τ ) ∼ τ−3/2N ln N
∫ �sτ

0
dxx1/2R(x)

+ τ−1/2
∫ �τ

�sτ

dxx−1/2R(x). (D7)

Hence, keeping N fixed, we obtain �E (τ ) ∼ τ−3/2N ln N
for τ → ∞. Clearly, the limits τ → ∞ and N → ∞ do not
commute. This indicates that the adiabatic limit cannot be
reached.
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