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We propose a modification to Nielsen’s circuit complexity for Hamiltonian simulation using the Suzuki-
Trotter (ST) method, which provides a network like structure for the quantum circuit. This leads to an
optimized gate counting linear in the geodesic distance and spatial volume, unlike in the original proposal.
The optimized ST iteration order is correlated with the error tolerance and plays the role of an anti–de Sitter
radial coordinate. The density of gates is shown to be monotonic with the tolerance and a holographic
interpretation using path-integral optimization is given.
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Introduction.—One of the key questions in quantum
computing is to find efficient quantum circuits which can
simulate Hamiltonian evolution. Nielsen and collaborators
showed that this problem can be geometrized in such a way
that the minimum number of quantum gates is related to the
geodesic length between the identity operator I and the
desired unitary U in the “circuit space” [1–3].
In [1], an explicit procedure was given to construct the

circuit. The first step is to define a control Hamiltonian
H̃ðsÞ and split it into an “easy” part and a “hard” part where
the latter involves gates difficult to make in a laboratory.
Here s parametrizes the circuit depth. Then one writes
down a cost function which is minimized to obtain a
geodesic in circuit space which tells us how the gates
should be arranged in an optimum manner. The hard gates
are penalized using penalty factors (which we will generi-
cally denote by p) thereby increasing the cost in that
direction. The geodesic length is denoted by dðI; UÞ and in
general depends on p. A specific cost functional that is
frequently used induces a Riemannian metric on the circuit
space [4–6]. In [7], this geometry was called the “complex-
ity geometry.” In recent literature, this has played a crucial
role to compare with holography [8–13]. However, the total
number of gates in [1] is not just given by dðI; UÞ; in fact,
in [1], it is not even linear in dðI; UÞ as we will
review below.
To count the total number of gates, Nielsen [1] first

constructs a projected Hamiltonian H̃pðsÞ by simply
deleting the hard gates from the control Hamiltonian

evaluated on the geodesic solution. The corresponding
projected unitary Ũp provides a good approximation to the
target U up to some error. The next step according to [1] is
to divide the total path dðI; UÞ≡ d into N ¼ d=Δ steps of
equal interval Δ, and for each of these intervals, we define
an averaged Hamiltonian, H̄ ¼ ð1=ΔÞ RΔ

0 dsH̃PðsÞ with the
average unitary Ū ¼ e−iH̄Δ (which is eventually applied N
times). This step bypasses the need to work with path-
ordered expressions. The final step is to further divide the
interval [0, Δ] into r ¼ 1=Δ intervals with each of length
Δ2 and approximate the average unitary by quantum gates
using the Lie-Trotter formula [14]. Putting all these results
together and assuming all penalty factors to be identical
(without loss of generality), one obtains [1] the total
number of gates required to synthesize the unitary as
Ngates ¼ Oðm3d3=δ2Þ [1] where m is the number of easy
terms in the Hamiltonian and δ is the specified tolerance. If
the Hamiltonian is “geometrically local” [15]—g local in
short—which means that all the qubits can be arranged
inside a fixed D-dimensional volume V, then it can show
the following [15]: that Nlocal

gates ¼ Oðm2d3=δ2Þ, so the
dependence on m is m2, not m3. Now, since m ∝ V, we
have Nlocal

gates ¼ OðV2d3=δ2Þ. The dependence of V as found
in [1] is thus unlike holographic proposals, which have
suggested that complexity should be just linear in V [8,9].
Clearly one should be able to do better since effective
field theory reasonings, that work so well to describe
nature, suggest that the scaling should be linear in the
spatial volume. We will give an improvement below which
will make the optimized number of gates linear in V—
moreover, as we will see, this improvement seems to tie up
with holography in an interesting way.
Improvement.—Now the final step used above admits an

immediate improvement. Instead of the Lie-Trotter formula
used in [1], we can use the kth order integrators of the
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Suzuki-Trotter (ST) method [16] to approximate the circuit
constructed by the average unitary. Thus, for any small
time interval Δ, the unitary made of the mean Hamiltonian
H̄ can be approximated by S2kð−iΔ=rÞ [16–18] which
satisfies [19]:

ke−i
P

m
j¼1

H̄jΔ− ½S2kð−iΔ=rÞ�rk≤
2κmð2h5k−1ΔÞ2kþ1

r2k
ð1Þ

forΔ → 0. The factor κm dependswhetherwe chooseK-local
or g-local Hamiltonian [15]. For K local, the number of
nonzero commutators ½H̄a; H̄b� is Oðm2Þ and in that case
κm ¼ m2kþ1. However if the Hamiltonian is g local [15], then
we will have κm ¼ m. Here we have also assumed that H̄¼P

m
j¼1H̄j, which can be exponentiated easily and can be wri-

tten in terms of elementary gates and we have h≥maxjjH̄jjj.
Here, we have also divided each path interval [0, Δ] into r
intervals and S2kð−iΔ=rÞ is given by the recursion rela-
tion S2kð−iΔ=rÞ¼fS2k−2½qkð−iΔ=rÞ�g2S2k−2½ð1−4qkÞ×
ð−iΔ=rÞ�fS2k−2½qkð−iΔ=rÞ�g2 with qk ¼ ð4 − 41=2k−1Þ−1
for k > 1 [17,18] with the initial condition
S2ð−iΔ=rÞ ¼

Q
m
j¼1 e

−iH̄jΔ=2r
Q

1
j0¼m e−iH̄j0Δ=2r. The recur-

sion relation naturally gives a network structure of the circuit
which can be visualized in the form of the Fig. 1. The
recursion relation involves four S2k−2 (solid blue circles in
Fig. 1) with the same argument with another S2k−2 with a
different argument in the middle (solid red circles in Fig. 1).
The magenta solid circle represents the initial S2ð−iΔ=rÞ.
The iteration order k increases in the radial direction and
gives the network depth. As k becomes large, the error is
OðΔ2kþ1Þ andbecomes small. From (1), to have the total error
jjU −UAjj ≤ OðδÞ, where UA is the simulated unitary, we
need r ¼ ⌈2hΔ5k−1=2ð4hdκm=5δÞ1=2k⌉, where ⌈⌉ is the
ceiling function. Then using this value of r the total number
of gates becomes

Ngates ¼ O

�
hm52kd1þ1=2k

�
4hκm
5δ

�
1=2k

�
; ð2Þ

which gives a superlinear scalingwithd [20]. Inwhat follows,
we will take the Hamiltonian as g local, hence we take
κm ¼ m. Hence the number of gates becomes

NðlocalÞ
gates ¼ O

�
hΩ1þ1=2k52k

�
4h
5δ

�
1=2k

�
; ð3Þ

where Ω ¼ Vd, and V ∝ m is the spatial volume. If we
wanted to decompose further in terms of a universal set of
quantum gates, then the Solovay-Kitaev theorem would give
an additional lncð2Ω=δÞ factor with c ≈ 3.97 [15]. We will
drop this factor in what follows. We will also work with the
full Hamiltonian rather than the projected one—this will not
alter our conclusions. Notice that for k → ∞, the dependence
of Ngates on d becomes linear. However we can do better!
Optimization.—Following [17,18], one could optimize k

in (3) to minimize the number of gates, assuming Ω (i.e., d
and m) to be independent of k—one can think of this
assumption as defining a fixed point. Optimization gives

Nopt;ðlocalÞ
gates ¼ O½hΩ expð4 ln 5koptÞ�; ð4Þ

where Ω ¼ Vd and

kopt ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log5

�
4hΩ
5δ

�s
; ð5Þ

From Eq. (4), we see that the Ω dependence now is
manifestly linear [21] for fixed kopt as suggested by
holographic proposals [fixing kopt is like fixing the anti–
de Sitter (AdS) cutoff]. As the tolerance δ → 0, kopt → ∞.
In other words, the circuit for large kopt would have lower
error and small kopt would correspond to more coarse
graining. Further for at least small times t, it can be shown
[20], d ∝ t.
We suggest that Ω expð4 ln 5koptÞ is analogous to the

warped volume that one can expect to find in an AdS
background! kopt is the radial cutoff. Changing kopt corre-
sponds to changing the total number of gates via Eq. (4).
The dependence of kopt on Ω is artificial since we can

absorb that factor inside δ and think of δ as the error
tolerance per gate. Once we optimize, it is natural to think
in terms of kopt as the independent variable since it gives us
the optimum ST order to use for a given δ. This can be
thought of as a change of coordinates and further arguments
relating Fig. 1 to geometry can be found in [20]. An
important point to clarify is the following. From the
holographic results in [12], it follows that the UV cutoff
dependence should appear only along with the spatial
volume dependence and not with the time dependence.
In Eq. (4), the UV cutoff dependence arises through the

FIG. 1. The ST “holographic” network. The circuit above is a
“compactified” version of the circuit below and is a pictorial
representation of the ST recursion relation.
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warp factor, but as it stands it is not clear if it affects both
the spatial and time part (for small times, Ω ∼ Vt). The gate
counting argument clarifies what is happening. The reason
V needs to come with a UV cutoff dependence is that, as
discussed in the introduction, V ∝ m where m is the
number of simple terms in the Hamiltonian, a discrete
quantity. This motivates the introduction of a lattice cutoff
which discretizes V. However, for d the situation is
different. We divided d into N steps using N ¼ d=Δ but
after optimization, this Δ dependence dropped out. Hence,
we conclude that the UV cutoff dependence appears only
with the spatial volume, which is consistent with [12].
Penalty factor flows.—Crudely speaking, δ measures the

amount of coarse graining. If we considered d and the
penalty factors p to be independent of δ, this would mean

that as δ → 0, Nopt;ðlocalÞ
gates → ∞ as one would expect. It is a

legitimate question, however, to ask if we could attempt to

make Nopt;ðlocalÞ
gates independent of tolerance by making the

penalty factor a function of δ via kopt, p → pðkoptÞ. After
all, an experimentalist would not have access to an ever
increasing set of gates! The question then arises as to
what in this circumstance would be a good measure of
complexity.
The possibility mentioned above leads to flow equations

for the penalty factors since the only way d can depend on k
or the tolerance is through p. This is potentially a useful
way of using the penalty factors and, to distinguish from the
case where there is no correlation between the parameters
in the cost Hamiltonian and the error tolerance, we will call
this “renormalized circuit complexity.” We demand that

Nopt;ðlocalÞ
gates is independent of kopt, so differentiating with

respect to kopt and setting it to zero gives the differential
equation [22]

d ln dðkoptÞ
dkopt

¼ −4 ln 5; ð6Þ

which gives d ¼ d0 expð−4 ln 5koptÞ. Here d0 satisfies

Nopt;ðlocalÞ
gates ¼ hΩ0, where Ω0 ¼ Vd0. Recall that we are

taking dm=dkopt ¼ 0; i.e., in a sense we are talking about a
fixed point since the number of simple parts m that the
averaged hamiltonian H̄ splits into does not change. One
can also find d in terms of δ, but for pðkoptÞ, a general
solution to the differential Eq. (6) is rather hard—it would
need explicit knowledge of d as a function of p. Let us
focus on the situation when p can be large. Here we will
assume that dðpÞ ∼ pα and consider two logical possibil-
ities: α > 0, α < 0. Several examples are discussed in [20].
Let us write d ¼ d̃0pα. The α ¼ 0 case will be similar to
α < 0 since we can write d ¼ d̃0 þ d̃1pα here. Defining an
effective coupling g via g ¼ 1= ln p and kopt ¼ lnðΛ=Λ0Þ
where Λ0 is some reference scale, the differential equation
for g reads

βPðgÞ ¼ Λ
dg
dΛ

¼ 4 ln 5
α

g2; α ≠ 0; ð7Þ

where βPðgÞ can be termed as the “flow function” for the
effective coupling g. The sign of the flow function is solely
determined by the sign of α. The solution of this equation is
well known from standard quantum field theory results
[23]. It follows that for α > 0, the coupling is increasing
with kopt implying the corresponding theory is becoming
harder, while for α < 0, it is the reverse.
The respective plots are shown in Fig. 2. Where the

effective coupling g blows up, the usage of penalty factors
to suppress the hard gates, while keeping the total number
of gates fixed, no longer helps—at this point one will need
to switch to a dual description in terms of a different set of
gates if available. An important point to emphasize here is
that we could have considered a penalty factor in front of
any gate (which may be difficult to manufacture for
instance); the flow equation is not restricted to penalty
factors in front of interaction terms in the Hamiltonian.
Another point we emphasize is that whether we use the

ST scheme as we have done here or some other scheme [24]
does not appear to be vital. We just need an exponential
growth in the number of gates with k. If the growth was eγk

then the right-hand side of Eq. (6) would be replaced by
−2γ. Now notice that if we were to find the explicit circuit,
there would still be somework to do. First, we need to solve
the geodesic equation which gives d as a function of p.
Then we have d as a function of δ by solving Eq. (6)
and using the transcendental equation (5). d as a function
of δ is monotonically increasing, which would appear to be
counterintuitive. But recall that this is because we are

demanding that Nopt;ðlocalÞ
gates is independent of δ. At the same

time, intuitively we would expect the circuit to become
harder as the tolerance decreases. Then what is a good
measure of the hardness of the circuit? First notice

that Nopt;ðlocalÞ
gates =Ω ∝ expð4 ln 5koptÞ which monotonically

FIG. 2. Schematic flow of the coupling g ¼ 1= lnp with scale
kopt ¼ lnðΛ=Λ0Þ. Here gðΛ ¼ Λ0Þ ¼ 1.
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increases with kopt and hence with 1=δ. This in fact is true
irrespective ofwhetherwe choose to hold the total number of
gates fixed or not as can be easily seen from Eq. (4).

Nopt;ðlocalÞ
gates =Ω can be thought of as a density of gates. We can

also understand this by thinking of the total cost as given by
the total circuit time cost and the total memory cost used in
the computation [25]. In this language, d is the circuit time

(also called circuit depth) while Nopt;ðlocalÞ
gates =dðδÞ quantifies

the memory (space) needed (also called circuit width). We
are keeping total cost fixed by decreasing the time cost while

increasing the memory cost. We will argue that AðδÞ≡
1
2
lnðNopt;ðlocalÞ

gates =ΩÞ is connected to holographic c theorems
(e.g., [26]).
We can also correlate g with binding complexity intro-

duced [27]. This counts only entangling gates. In our
notation, this works out to be Cb ¼ d=pwhere p is taken to
be very large and the penalty factor is associated with
entangling gates. We could just use the same idea to count
the hard gates. For jαj < 1, Cb and the effective coupling g
have the same trend with respect to k. Hence the effective
coupling introduced before can be thought to be measuring
binding complexity and for 0 < α < 1 increases as a
function of 1=δ which bears out the intuition that the
circuit should become harder as tolerance decreases.
Relation with AdS/CFT.—Let us now make some obser-

vations about how our description ties up with the AdS/
CFT correspondence. In [28–31] a definition of complexity
(for 1þ 1 dimensions) of has been proposed based on the
path integral optimization technique. The complexity func-
tional is the Liouville action. Furthermore, in [32] inspired
by the continuous multiscale entanglement renormalization
Ansatz construction [33], it has been argued that the for a
certain type of operator, one can obtain a Liouville type
action as complexity functional at the leading order in a
derivative expansion. We start from the following action
[31,32],

Fholo ∝
Z

−ϵ

−∞
dt

Z
∞

−∞
dx½2e2ϕ þ pðϵÞ2ðð∂tϕÞ2 þ ð∂xϕÞ2Þ

þ � � ��: ð8Þ
pðϵÞ2 is the penalty factor to give higher cost to gradients.
Extremizing this action with respect to ϕ—with the
boundary condition e2ϕðt¼−ϵ;xÞ ¼ 2pðϵÞ2=ϵ2 [28,29,31]—
we get, e2ϕðt;xÞ ¼ 2pðϵÞ2=jtj2. This corresponds to the
complexity of the ground-state [30]. Then evaluating
Fholo on this solution and minimizing further with respect
to ϵ we get (to make the total number of gates independent
of ϵ similar to what we have done previously),

d
dϵ

�
pðϵÞ2
ϵ

�
¼ 0: ð9Þ

This can be solved using pðϵÞ ∝ ffiffiffi
ϵ

p
. Defining the effective

coupling, g ¼ 1= lnpðϵÞ and identifying ϵ ¼ 1=Λ as the

UV cutoff we get Λðdg=dΛÞ ¼ g2=2. Here we find a
positive flow function for the penalty factor pðΛÞ, sug-
gesting the fact that the bulk circuit is easier while the
boundary circuit is harder.
Furthermore, we compute the on shell Hamiltonian

density (hholo) at t ¼ ϵ corresponding to the action (8):

hholo ¼
c
8π

pðϵÞ2
ϵ2

; ð10Þ

where c is the central charge. Now using the solution from
(9) we can easily see that

dhholo
dϵ

< 0;
d2hholo
dϵ2

> 0: ð11Þ

Thus the Hamiltonian density evaluated at t ¼ ϵ is a
monotonically decreasing quantity in ϵ. Note that (9) which

was the analog of dNopt;ðlocalÞ
gates =dkopt ¼ 0 was vital in

reaching this conclusion. Now from (11), identifying

2pðϵÞ2=ϵ2 with Nopt;ðlocalÞ
gates =VdðδÞ, we see that AðδÞ≡

1
2
lnðNopt;ðlocalÞ

gates =VdðδÞÞ is also monotonic. It is tempting
to think that the monotonicity discussed above is connected
to c theorems in QFTs [26]. We will now establish a
connection with holographic c theorems following [26]. In
holographic c theorems, the renormalization group (RG)
flow metric for a QFT living in D dimensions is written as

ds2 ¼ dr2 þ e2AðrÞð−dt2 þ dx⃗2D−1Þ: ð12Þ
For Einstein gravity in the bulk, when the matter sector
inducing the flow satisfies the null energy condition,
aðrÞ ¼ πD=2=ΓðD=2Þ½A0ðrÞ�D−1, can be shown to be mon-
otonic a0ðrÞ ≥ 0. At the fixed points AðrÞ ∝ r and we have
an AdS metric. To connect with the previous discussion, we
need D ¼ 2 and it will be convenient to make a change of
coordinates r ¼ − ln z. In terms of this, it is easy to see that
we must have e2Aðz¼ϵÞ ¼ 2pðϵÞ2=ϵ2. This also follows by
realizing that the on shell Liouville field is related to the
warp factor [31]. Thus the density of gates is related to the
geometric RG flow function AðrÞ and the monotonicity in
hholo that we found is related to the monotonicity in AðrÞ. It
is easy to check using (9) that AðrÞ ∝ r in the r coordinate.
However, more generally in (9) we should have matter
contribution on the rhs. In such a circumstance, the fact that
AðrÞ should be monotonic in r was argued in [26] using the
null energy condition. In fact, it can be shown that to have
a0ðrÞ > 0 one needs to put in matter satisfying the null
energy condition to drive the flow. To model this using
circuits, we would need to consider m that changes

with k. After optimization, this would lead to Nopt;ðlocalÞ
gates ∝

exp½γfðkoptÞ� where f is no longer linear in kopt.
Discussion.—In this Letter, we have proposed a modi-

fication to Nielsen’s circuit complexity calculation by
introducing the Suzuki-Trotter iteration giving rise to what
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we call “renormalized circuit complexity.” First, we showed
that the optimized gate counting leads to a linear depend-
ence on the geodesic length and volume as suggested by
holographic calculations unlike the cubic dependence
found in [1]. While this is true for g-local Hamiltonians,
the scaling will change for more general cases as was
anticipated in [7]. The final form of the optimized gates

Nopt;ðlocalÞ
gates ∼ Ω h expðγ koptÞ appears to be universal for any

iteration scheme; an unsolved question which we hope to
return to in the near future is to prove that optimization
cannot lead to sublinear scaling with d in any quantum
algorithm. We found that kopt is related to the tolerance
hinting at an obvious connection with holography similar in
spirit to the connection between holography and Continuous
Multiscale Entanglement Renormalization Ansatz. We fur-
ther proposed using penalty factors to make the total number
of gates independent of tolerance thereby leading to flow
equations for the penalty factors. This picture also suggested
that the density of gates is a monotonically increasing
function with kopt. The same physics arises from holography
via the recent discussions on path-integral optimization
[29,31,32] leading to the Hamiltonian density of the
Liouville action playing the role of the monotonic flow
function, which we further correlated with holographic c
theorems [26]. Since there have been recent experimental
realizations of the three-site spinless Hubbard model [34]
and a proposal for realizing AdS/CFT using quantum
circuits [35], it will be very interesting to write down
efficient circuits in these cases using the ideas in this Letter.
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