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Abstract
Themachine learningmodels developed on a dataset comprising particular class ofmaterials show
poor transferability across different classes. The problem can be partially solved by increasing the
variability in the dataset at the cost of prediction accuracy. To develop amodel on a highly variable
database, we propose a localized regression based patchwork kriging approach for capturingmost of
the complex details in the data. In this approach, the data is partitioned into smaller regionswith
shared patches of few datapoints across the neighboring boundaries. Local regression functions are
developed in each partitionwith a constrain to give similar performance at the boundary. Out of 17
different properties tried for partitioning the data, the decompositionwith respect to target outputκl
gave localmodels with unprecedented accuracies. The partitioningwith respect toκl, however,
requires its estimate for any unknown compound beforehand. To address this, we developed a global
model for the entire database. The globalmodel accurately predicts the order ofmagnitude ofκl for
the compounds in the dataset and hence, directs them towards a particular partition formore accurate
prediction.We define this stepwise approach as guided patchwork kriging, which can be applied to
develop highly accurate transferable predictionmodels.

1. Introduction

Fueled by the developments in algorithms andadvancement in computational resources, data-drivenmachine
learning (ML)methods are revolutionizing thematerials sciencedomain.Using theseML-based approaches, there
is a rich profusionof predictionmodels for resource extensivematerials properties [1–11]. Among these, lattice
thermal conductivityκl is of great relevance in variety of applications such as thermoelectrics, barrier coatings, and
electronic devices [12–16]. Significant efforts andnotable contributionshave beenmadeby the scientific
community for the efficient and accelerated prediction ofκl, using data-assistedmethods. For example, high-
throughputmodelingwas employedon adataset of half-Heuslers fromAFLOWrepository and three lowκl
materialswere proposed for experimental verification [9]. AutomaticGibbs Library has been implementedwithin
theAFLOWandMaterials Project frameworks for high-throughput screening of desiredκlmaterials, calculated
under quasiharmonic Slackmodel [17]. 221 lowκl candidateswere proposedusingBayesian optimization, starting
from the rocksalt, zincblende, andwurtzite-type 101 compounds [10]. By combiningfinite-temperature phonon
calculationswith high-throughput screening,κlwas estimated for oxide andfluoride perovskites.Moreover,
physical insights such as the variation ofκl slower thanusual T

−1 dependence for cubic perovskiteswere unraveled
[18]. Semiempiricalmodels for isotropic and anisotropicκlhave been proposed for accelerated high-throughput
screening [19–21]. Recently, amachine learningmodelwas developedusing four high-throughput assisted
descriptors directly related to the physics ofκl, which outperformed the Slackmodel [22].Undoubtedly, these
studies over thepast few years present a significant advance in expediting the search for desiredκlmaterials and
provide several newphysical insights.However, for the single target output property such asκl, the developed
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predictionmodels are different. Thesemodels differmainlywith respect to the class of compounds and type of
descriptors in thedataset.

TheML-based predictions depend solely on the type of data employed for training.Hence, themodels
focused on particular class ofmaterials showpoor transferability across different classes. Increasing the
variability in the data, however, will result in high prediction errors compared to focusedmodels due to its
incapability to adapt every complex detail in the dataset. So far, there has been no approach discussed in
literature, which addresses the generalizability of predictionmodels for a given target output property of
interest. In this work, for the target outputκl, we propose the use of a localized regression based patchwork
kriging approach for a class independent dataset. The compilation of dataset is done such that it covers diverse
chemical and structural space, having compoundswith elements belonging to any group of the periodic table,
covering all the 7 crystal systems, and having 4 orders ofmagnitude variation in the target outputκl. As expected,
themodel developed on this data using elemental and structural descriptors gives high train/test rootmean
square error (RMSE) of 0.24/0.25 for the log-scaledκl. To improve the prediction accuracy, we employ the
patchwork kriging, where the dataset is partitioned into smaller local subsets with respect to a property [23, 24].
The neighboring local regions are patched together to share some datapoints at the boundary and the local
models on either side of the boundary are expected to produce the same response at the boundary points. Out of
17 different possible properties tested for creating partitions, the target propertyκl turns out to be the best in
terms of providing unprecedented accuracies. Since the decomposition of data is with respect to target output, it
requires an estimation ofκl for the unknown compounds. For that, globalmodel developed on the entire dataset
was used, which predicts the correct order ofmagnitude ofκl and thus can direct the datapoints to specific
partitions for improved predictions by localmodels. The developed approach is therefore guided patchwork
kriging, where the globalmodel directs the datapoints to specific partitions formore accurate prediction of
target output.

2.Methodology

The electronic structure calculations were performed using density functional theory [25, 26], as implemented
in theVASP package [27, 28]. Generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE)
was employed to account for electronic exchange and correlation. The projector augmentedwave (PAW)
potentials were used to represent the ion-electron interactions [29, 30]. The energy cutoff for the planewaves
was taken to be 1.3 times the default value specified in the PAWpseudopotentials. The criteria for energy
convergence was set to 10−8 eV. The dynamical stability was assessed by phonon dispersion calculated using
finite differencemethod, as implemented in the PHONOPY [31]. By solving the phononBoltzmann transport
equation, lattice thermal conductivity is calculated, as implemented in the PHONO3PY [32, 33].

Formaking the generalizedmodel for capturingwide variation ofκl, patchwork krigingmethod is employed
[23, 24]. Patchwork kriging regression is a supplement to the family of well established kriging/Gaussian process
regression (GPR) [34–36]. Instead offitting a particular parametric function to the input data, theGaussian
processes (GP) provide a non-parametric approach for constructing a regressor function by using the input data
based onBayesian inferences. InGP, to each input vector x, a randomvariable f (x) is assigned, which is assumed
to follow aGaussian distribution defined by amean functionm(x) and covariance function k(x, x′). For afinite
number of variablesX=(x1, x2, ..., xN), the joint prior distribution is alsoGaussian:

( ∣ ) ( ∣ )m= p f X f K, ,

where f=( f (x1), f (x2), ..., f (xN)), ( ( ) ( ) ( ))m = m m mx x x, ,..., N1 2 andKij=k(xi, xj). Themean function
m(x) are generally taken to be 0. The covariance k are positive definite symmetric kernel functions, which decide
the shape/smoothness of functions. TheGPprior combinedwith the observations y gives theGP posterior
distribution ( ∣ )p f X y, . The posterior distribution is used to obtain posterior predictive distribution of f at an

arbitrary new input x*, denoted by f*. The joint distribution of observations y and predictions f* is
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whereKy=k(X,X+σ2I),K*=k(X,X*), andK**=k(X*,X*). Using theGaussian conditioning rules, the
predictive posterior distribution of f* is given by
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The posterior predictive distribution is also aGaussianwithmeanm
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In Patchwork kriging, the input domain of f (x) is partitioned into P local regions {Ωp:p=1, 2, ..., P} and
inferences aremade in each partitionwith additional continuity constraints. fp(x) is defined as local
approximation of f (x) in the p th partition, which followsGaussian prior distribution. The continuity conditions
are imposed in such away that two neighboring partitions share some datapoints, so that predictions of local
models does not showdiscontinuity at the boundary.

Now to develop the predictionmodels, the input domainX, also known as descriptors, and the covariance
function k(xi, xj)needs to be selected. The performance of themodel depends crucially on the choice of
descriptors and the covariance function. Thefiltering ofmost relevant subset of features was carried out using
the least absolute shrinkage and selection operator (LASSO) [34, 35]. Itminimizes the sumof squared errors
alongwith a constraint on the sumof the absolute values ofmodel parameters (L1 norm). Assuming the linear
relationship between the predicted variable vector y and the input feature vectorsX, the LASSO estimate is
defined by [34, 35]

ˆ ( ) (∣∣ ∣∣ ∣∣ ∣∣ ) ( )b l b l b= - +
b

y Xarg min , 42
2

1

whereλ�0 is the shrinkage parameter. Depending upon the value ofλ, some of the coefficientsβmay become
zero, thereby providing the reduced set of relevant features. Out of different possibilities for the covariance
functions, the automatic relevance determination (ARD) squared exponential covariance function gave best
accuracy. For the given data points xi and xj and hyperparameter vector θ, it is given by [36]
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whereσf, d, andσm are the standard deviation, number of predictors in the data, and length scale for each
predictorm. The statistical parameters namely standard deviation and length scale are also known as
hyperparameters θ [36]. TheARD covariance function has the advantage of providing a separate length scale for
each predictor, which improves the flexibility of themodel. The parameterσ controls the numerical stability of
the covariance function and length scale captures impact of each data point. The hyperparameters for the
covariance functionswere optimized using Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [37]. The
performance of the developedmodel was assessed by statistical regressionmetric such as rootmean square error
(RMSE) and the coefficient of determination (R2), which determines the proportion of variability captured by
input descriptors in the target output values.

3. Results and discussion

With the objective to develop a generalized predictionmodel forκl, we utilized the original dataset of 2162
compounds [22] alongwith additional 676 compounds from theMaterials Project [38, 39]. These additional
compounds further diversify the spanned structural and chemical space. The dataset is independent of any
particular class ofmaterials and covers wide variability in various aspects. For instance, it consists of compounds
with elements belonging to different groups of the periodic table (alkali, alkaline earth, transitionmetals,
lanthanides, actinides, anions) and covering all 7 crystal systemswith different possible space groups. After the
high-throughput screening for fully optimized, non-metallic, and dynamically stable compounds, a total of 185
candidates arefiltered. The screened compounds cover all the 7 crystal systems, as seen infigure 1. There are 20
monoclinic, 8 triclinic, 23 orthorhombic, 15 tetragonal, 14 trigonal, 14 hexagonal, and 91 cubic compounds in
the screened dataset. Additionally, the response variableκl at room temperature for these screened compounds
covers four orders ofmagnitude variation, thereby further enriching the diversity in the dataset. The phonon
dispersion andκl for the dynamically stable additional compounds are shown in the supporting information
figures S1–S2 and S3–S4, respectively available atstacks.iop.org/JPMATER/3/024006/mmedia.

To check the prediction accuracy for this dataset, we developed theMLmodel for the log-scaledκl at room
temperature. For developing theMLpredictionmodel, a certain set of descriptorsX for the constituent
compounds are required, which aremapped to the target property of interest y. These descriptors can be either
directly related to the physics of target output [22] or they can be in the formof elemental and structural
properties to represent the compounds. Forκl, Seko et al [6] have proposed a combination of elemental and
structural descriptors, which result inMLmodels with unprecedented accuracies for the log-scaledκl. The
elemental descriptors include themean and standard deviation of various physical properties of constituent
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elements such as boiling point (B.P.), melting point (M.P.), specific heat (cp
g), molar specific heat (cp), molar

volume (Vm), heat of fusion (Hf), heat of vaporization (Hv), Pauling electronegativity (χp),first ionization energy
(I.E.1), group and period in the periodic table, elemental thermal conductivity (κele), atomicmass (M), covalent
radius (rcov), van derWaals radius (rvdw), and density (ρ). The structural features include generalized radial
distribution function (GRDF) and bond order parameter (BOP). The large variance among descriptors is
nullified by standardizing them to have zeromean and unit variance. The relevant set of descriptors was selected
via ten-fold cross-validated LASSO.Using this descriptor set, a GPRmodel is developed for predicting the log-
scaledκl. Out of various covariance functions, ARD squared exponential covariance function turns out to be the
best performing. The training of themodel is carried out on 90%of the data and the remaining 10% is used for
the testing of the developedmodel. The splitting of data into training and test set is done over 2000 random trials
and the hyperparameters of the covariance function are tuned for each random trial. The performance of the
developedmodels is estimated by evaluating RMSE andR2 for the training aswell as the test sets. The best

Figure 1. Schematic showing the high-throughput filtration of non-metallic and dynamically stable compounds. Thefiltered 185
compounds are classified according to their crystal systems as shown in the lower part of the funnel.
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optimizedmodel has train/test RMSE andR2 of 0.27/0.28 and 0.98/0.98, respectively. Figure 2(a) presents the
regression plot showing the variation of true versus predicted log-scaledκl for the developedmodel, where the
triangles and empty squares correspond to the training set and the test set, respectively. The difference between
true and predicted log-scaledκl, also known as residuals, for thewhole data set is shown infigure 2(b), which is
very high.

Since the structural descriptors such asGRDF andBOP are relatively complex to calculate, we searched for
alternative simpler descriptors, which can provide the similar information about the structure without
compromising the performance of the predictionmodel. For example, theGRDF is calculated by defining a
pairwise function gn(rij) for distance rij [6] between atom i and neighboring atom j as

( ) ( )å= g rGRDF . 6n
i

j
n ij

GRDF represents the variation in density as a function of distance from a reference atom,which could possibly
be captured by quantifying bonding and anti-bonding strength.We calculated the average bond strength by
integrating the crystal orbitalHamilton population (COHP) [40, 41]. The bond strength has been shown to be
directly correlatedwithκl for zincblende, rock salt andCsCl structure classes [42], where increasing bond
strength results in highκl. The another structural descriptor BOP is evaluated by calculating the average
spherical harmonicsQlm as [6]

Figure 2.The scatter plot of true versus predicted log-scaledκl for the training and test set for themodel developed on entire dataset
using (a) elemental and structural descriptors and (c) elemental and calculated simpler structural information. The triangles and
empty squares correspond to training and test set, respectively. (b) and (d) are the corresponding residual plots showing the difference
between true and predicted values.
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BOP represents the local environment around a reference atomdue to its surrounding atoms, which could
alternatively be described by average coordination number and average bond distances.While bond distances
are inversely related toκl [42], coordination number has been shown as a potential descriptor for capturing
anharmonicity [19]. Other simpler parameter volume, which has inverse correlation [22]withκl has also been
included as descriptor. Hence, we replaced the complex structural descriptorsGRDF andBOPwith the new
simpler descriptors average bond distances, average bond strength, average coordination number, and volume
of cell, which have strong correlationswithκl. TheGPRmodel developedwith these newdescriptors gives the
improved accuracy compared to previously developedmodel usingGRDF andBOP, thereby implying that the
newdescriptors can provide better structural representation for compoundswithout any additional
computational complexity. In this case, the best optimizedmodel has train/test RMSE andR2 of 0.24/0.25 and
0.99/0.99, respectively. Figure 2(c) presents the regression plot showing the variation of true versus predicted
log-scaledκl by the developedmodel andfigure 2(d) shows the corresponding residuals plot.

As expected, themodel developed on the entire dataset gives high prediction errors compared to state-of-the
artmodels reported forκl [6, 22]. To develop a generalizedmodel with improved prediction accuracy, we
propose the use of localized regression-based approach. The underlying notion is that in a dataset withwide
variability, the local details of the input spacemay have significant effect on the prediction of target output.
Several local approximations have been developed in the literature for capturing the large variability in the input
space of big datasets. For example, sparse approximations such as sparseGaussian process (SGP), where the full
dataset is replaced by a smaller subset of relevant inputs [43–45]; local approximations such asmixture of experts
[46–48], where input data is divided into smaller subspaces to build localmodels. Themajor advantage of the
local approaches is to take into consideration every possible detail in the data.However, the disadvantage is
discontinuity in the prediction by localmodels at the boundary between the local regions. There have been
several ways to smooth out the discontinuity [47, 49–51]. One of such approaches with high numerical stability
is patchwork kriging [23, 24], where the neighboring local regions are patched together to share some datapoints
at the boundary and the localmodels on either side of the boundary are expected to produce the same response
at the boundary points. Inspired by the success of patchwork kriging for the capturing the complexities in the big
datasets [23, 24], we applied this algorithm to our dataset.

Efficient identification of the property with respect towhich data is partitioned to build several localmodels
is one of the key factors deciding the prediction accuracy.Here, we tried several properties for partitioning the
data, which include elemental descriptors such asB.P.,M.P., cp

g, cp,Hf,Hv,χp, I.E.1,κele,M, rcov, rvdw, and ρ; and
structural descriptors such asB.S.,B.D., andVcell. Partitioningwith respect to the target outputκlwas also
considered. Since the dataset size in the present case is not very large, we created only two partitions
corresponding to each of these properties. As the large number of partitions would result in very less datapoints
in each partition, itmay lead to overfitted local predictionmodels. The schematic representation of the
patchwork kriging is illustrated infigure 3. The two partitions corresponding to all the 17 properties are created
in the ascending order of themagnitude of the properties with some common points (CP) at the shared
boundary. For example, in the case of partitions corresponding toκl, partition 1 and 2 contain compoundswith
log-scaledκl ranging from−3.16 to 1.96 and 1.18 to 6.81, respectively. At the shared boundary of these two
partitions, therewere 13 datapoints commonwith log-scaledκl ranging from1.18 to 1.91. The choice of the
range for creating the common boundary and the corresponding number of commondatappoints across
partitionswas decided in such away to have nearly equal and sufficient data in each partition. For all the
properties, the selected range and corresponding number of commondatapoints are given in the supporting
information table S1.

To develop the local predictionmodels in each partition corresponding to all the considered properties, a set
of suitable descriptors has to be selected.We used ten-fold cross validated LASSO to select the relevant subset of
elemental and structural descriptors for all the partitions. The descriptor set for both partitions corresponding to
different properties is given in the supporting information table S2.

The descriptor set in the partitions createdwith respect to 17 properties is different. Thismay be attributed
to the fact that each partition contains different local information. By using the descriptor sets for respective
partitions, the predictionmodels are developed usingGPR for the log-scaledκl. For all the cases, theARD
squared exponential covariance function turns out to be the best performing. The training of themodel in each
case is carried out on 90%of the data and the remaining 10% is used for the testing of the developedmodel. The
splitting of data into training and testing set is done over 2000 random trials and the hyperparameters of the
covariance function are tuned for each random trial. The performance of the developedmodels is estimated by
RMSE andR2 for the training and the test sets, which is given for all the cases in table 1.
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The notable differences observed in the prediction accuracies corresponding to different partitions with
respect to various properties indicate the effect of local structure of the data on the performance of themodel.
Formost of the cases, themodel performswell only in one of the partitions. However, the partitioning
corresponding toB.P., cp

g , rcov, andκl gives localmodels with high accuracies in both the partitions. Among
these, decompositionwith respect to target outputκl leads to localmodels with the highest accuracy. The
partition 1 in this case has train/test RMSE andR2 of 0.13/0.13 and 0.99/0.99, while partition 2 has train/test
RMSE andR2 of 0.11/0.12 and 0.99/0.99. Figure 4(a)presents the regression plot showing the variation of true
versus predicted log-scaledκl for the developedmodel, where the triangles and empty squares correspond to the
training set and test set, respectively. The high value ofR2 clearly indicates the good predictive capability of our
model coveringwide variability. The difference between true and predicted log-scaledκl for thewhole data set is

Figure 3. Schematic representation of patchwork kriging. The input dataset is divided into two partitions with respect to different
properties, where the boundaries are patched together with commonpoints (CP).

Table 1.Performance ofGPRmodels developed on each partition corresponding to different properties.

Properties
Partition 1 Partition 2

RMSE (train/test) R2 (train/test) RMSE (train/test) R2 (train/test)

Boiling point (B.P.) 0.16/0.17 0.99/0.99 0.14/0.15 0.99/0.99

Melting point (M.P.) 0.20/0.21 0.99/0.99 0.14/0.15 0.99/0.99

Specific heat (cp
g ) 0.15/0.15 0.99/0.99 0.16/0.16 0.99/0.99

Molar specific heat (cp) 0.20/0.21 0.99/0.99 0.21/0.21 0.98/0.98

Heat of fusion (Hf) 0.25/0.26 0.98/0.98 0.21/0.21 0.99/0.99

Heat of vaporization (Hv) 0.14/0.15 0.99/0.99 0.18/0.20 0.99/0.99

Pauling electronegativity (χp) 0.12/0.13 0.99/0.99 0.20/0.22 0.99/0.99

First ionization energy (I.E.1) 0.16/0.17 0.99/0.99 0.19/0.20 0.99/0.99

Elemental thermal conductivity (κele) 0.27/0.28 0.98/0.98 0.12/0.13 0.99/0.99

Atomicmass (M) 0.14/0.15 0.99/0.99 0.23/0.24 0.98/0.98

Covalent radius (rcov) 0.16/0.17 0.99/0.99 0.11/0.13 0.99/0.99

van derWaals radius (rvdw) 0.27/0.28 0.98/0.98 0.12/0.13 0.99/0.99

Density (ρ) 0.16/0.17 0.99/0.99 0.26/0.27 0.98/0.98

Bond strength (B.S.) 0.26/0.27 0.98/0.98 0.20/0.20 0.99/0.99

Bond distance (B.D.) 0.19/0.19 0.99/0.99 0.15/0.16 0.99/0.99

Volume of cell (Vcell) 0.21/0.22 0.99/0.99 0.16/0.16 0.99/0.99

Log-scaled lattice thermal conductivity (κl) 0.13/0.13 0.99/0.99 0.11/0.12 0.99/0.99
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shown infigure 4(b). Figure 4(c) presents the regression plot showing the variation of true versus predicted log-
scaledκl by the developedmodel for partition 2 and figure 4(d) shows the corresponding residual plot. The
prediction accuracies achieved for the highly variable data using this approach are comparable tomodels
developed on particular class and type ofmaterials. For example, using themean and standard deviation of
elemental descriptors and BOP, the bestmodel developed on 110 compounds for log-scaledκl gives RMSE of
0.096 [6]. In anothermodel developed on 93 compounds, the difference between experimental and predicted
values ofκl has been reported to lie within a factor of 1.5–2 [52]. Using the descriptors related directly to the
physics ofκl, a predictionmodel developed on 120 compounds gives RMSEof 0.21 [22]. A predictionmodel
developed on 100 experimentally availableκl compounds, a train/test RMSE andR2 of 0.17/0.21 and 0.93/0.93,
respectively, has been reported [53].

Since the highly accuratemodels are obtained by partitioning the data with respect to target outputκl,
employing this patchwork kriging approach for unknown compounds needs an estimation of itsκl so as to
decide the particular partition for its accurate prediction. For that, we used themodel developed on the entire
dataset for classification of compounds to particular partitions (figure 2(c)). Thismodel is named as global
model. The globalmodel predicts correct order ofmagnitude ofκl for all the compounds in the dataset.
Therefore, themodel can be used to direct/guide unknown data to particular partition for accurate prediction of
κl. The globalmodel is tested on 10 independent data points, whichwere not present in initial training set. The
globalmodel accurately guides each datapoint to the correct partition, as presented in the supporting
information table S4.Hence, we propose a two-step guided patchwork kriging approach, where the global

Figure 4.The scatter plot of true versus predicted log-scaledκl for the training and test set of (a) partition 1, and (c) partition 2. (b) and
(d) show the difference between true and predicted response for both the partitions by the respective residual plots.
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model will guide the datapoints to a particular partition for subsequent accurate prediction. The pseudo-code
for the guided patchwork kriging is summarized in table 2.

Tomake sure that the developedmodels are not overfitted, we checked the learning curves by plotting the
prediction accuracy as a function of increasing training data size. The learning curves for the best globalmodel,
partition 1, and partition 2model are shown in the supporting information figures S5(a), (b), and (c),
respectively. The convergence of train and test RMSE around 90%of training data size ensures no overfitting.
Furthermore, we checked the average performance of all the three bestmodels, as shown in the Supporting
Information figure S6. The average is taken for the developedmodel over 2000 different train-test splits. Figures
S6(a), (b), and (c) show the true versus predictedκl for the average global, partition 1, and partition 2model,
respectively. The average test RMSE of 2000models for global, partition 1, and partition 2model is 0.81, 0.56,
and 0.41, respectively. The average performance of localmodels are again better than the globalmodel. The
corresponding learning curves are shown infigures S6(d)–(f).

Analysis of themachine learning outcomes gives very useful physical insights and also a correct description
of the underlying physics related toκl. For all the partitions corresponding to 17 different properties, average
bond distances came out to be one of themost relevant descriptors. Additionally, the average bond strength,
average coordination number and volume of cell were also found to be relevant descriptors inmost of the
partitions. To get the intuitive insights, we plotted these three descriptors against each other as shown infigure 5,
where themagnitude ofκl is represented by the color bar. The smallerB.S. and largerB.D. give lowκl and
vice versa, as shown infigure 5(a). This is because large bond distances in a structure imply that the atoms in the
system are not tightly packed, hence the bonding strength between the atoms is weak. The group velocity of

Figure 5.Variation of (a)B.S. versusB.D., (b)B.S. versusV, (c)V versusB.D., (d)B.S. versusC.N., (e)B.D. versusC.N., and (f)V versus
C.N., withκl represented by contours.

Table 2. Steps for guided patchwork kriging.

Input:

1.DataDwith descriptorsX and location of target output y

Output1:

2. m
*
andS* from the globalmodel

Re-prediction:

3.Decomposition of data into partitions

Output2:

4. for each partition pdo

5. mp

*
andSp

*
6. end for
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phonons can be approximated as ~vg
k

M
[54]. Theweaker bond strengthwill lead toweaker force constant

and hence small phonon group velocities, whichwill result into lowκl. Themodel reveals this physical picture
accurately. Similar trend has been reported for zincblende, rock salt andCsCl structure basedmaterials [42].
Furthermore,figures 5(b) and (c) show the inverse correlation ofVcellwithκl.WeakB.S. or largeB.D. and large
Vcell gives lowκl. The inverse dependence ofVwithκlhas also been reported for a large class ofmaterials [22].
Figures 5(d)–(f) show, respectively, the behavior ofB.S.,B.D., andVcell as a function ofC.N.. HighC.N. and
weakerB.S. result in lowκl and vice versa, as shown infigure 5(d). The opposite trend is observed forC.N. andB.
D. (Figure 5(e)), asB.D. andB.S. are inversely related to each other. The observed behavior ofκl unravels thatC.
N. can shed some light on anharmonicity of a system. Anharmonicity in a system signifies deviation fromperfect
harmonic behavior. The systemswhere the atoms areweakly bonded usually havemore anharmonicity
compared to strongly bonded closely packed systems.Hence, for the soft anharmonic lattices,B.S. will beweak
andB.D. will be large, leading to highC.N. Hence,C.N. could be a good descriptor for anharmonicity. Figure 5(f)
shows the regions of highκl for smallVcell and lowC.N. This is because smaller volume corresponds to tightly
packed stiff lattice, whichwill result in large phonon group velocities and hence highκl. The effect of
coordination number onκlhas also been illustrated for group I–V–VI2 compounds, where octahedral-
coordinated compounds has lowerκl by a factor of 4 compared to tetrahedrally bonded compounds [55]. These
descriptors, thereby, provide a simpler route for screening low or highκl compounds. Hence, the developedML
model captures the relationship between bonding chemistry of structures andκl.

4. Conclusion

In summary, we proposed patchwork kriging approach for developing the predictionmodel for a dataset with
huge variability, where several localmodels are developed over the partitioned domainswith shared patches of
datapoints across neighboring boundaries. The partitioning of the data with respect to 17 properties is carried
out. The best localmodels were obtained, when the data was partitioned based onmagnitude ofκl. The
involvement of the target output for creating the partitions requires its estimate beforehand.We used a global
model developed on the entire dataset, which directs the data points to a specific partitions for accurate
prediction ofκl.When applied to 10 unseen datapoints, the globalmodel accurately guides them to correct
partitions.We call this step-wise property prediction approach as guided patchwork kriging. Additionally, the
analysis ofmachine learningmodels and descriptors correctly captures the expected correlations between
chemistry of bonding characteristics andκl. Our approach can be extended to develop highly transferable
models for prediction of any physical or chemical properties of class-independent, highly variable,
comprehensive datasets.
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