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Abstract—This paper deals with the problem of allocating
communication resources for Networked Control Systems
(NCSs). We consider an NCS consisting of a set of discrete-
time linear time-invariant plants whose stabilizing feedback
loops are closed through a shared communication channel.
Due to a limited communication capacity of the channel, not
all plants can exchange information with their controllers at
any instant of time. We propose a method to find periodic
scheduling policies under which global asymptotic stabil-
ity of each plant in the NCS is preserved. The individual
plants are represented as switched systems, and the NCS
is expressed as a weighted directed graph. We construct
stabilizing scheduling policies by employing cycles on the
underlying weighted directed graph of the NCS that satisfy
appropriate contractivity conditions. We also discuss algo-
rithmic design of these cycles.

Index Terms—Asymptotic stability, directed graphs, net-
worked control systems, scheduling policy, switched
systems.

I. INTRODUCTION

N ETWORKED Control Systems (NCSs) are omnipresent
in modern-day Cyber-Physical Systems (CPS) and Inter-

net of Things (IoT) applications. While these applications typ-
ically involve a large-scale setting, the network resources are
often limited. Consequently, multiple plants may need to share
a communication channel (or network) for exchanging informa-
tion with their remotely located controllers. Examples of com-
munication networks with limited bandwidth include wireless
networks (an important component of smart home, smart trans-
portation, smart city, remote surgery, platoons of autonomous
vehicles, etc.) and underwater acoustic communication systems.
The often encountered scenario wherein the number of plants
sharing a communication channel is higher than the capacity of
the channel is called medium access constraint.

In this paper, we consider an NCS consisting of multiple
discrete-time linear plants whose feedback loops are closed
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through a shared communication channel. A block diagram of
such an NCS is shown in Fig. 1.

We assume that the plants are unstable in open-loop and
asymptotically stable in closed-loop. Due to a limited commu-
nication capacity of the channel, only a few plants can exchange
information with their controllers at any instant of time. Con-
sequently, the remaining plants operate in open-loop at every
time instant. Our objective is to allocate the shared communica-
tion channel to the set of plants in a manner so that stability of
all plants is preserved. This task of efficient allocation of com-
munication resources is commonly referred to as a scheduling
problem, and the corresponding allocation scheme is called a
scheduling policy, see, for example, [6] and [23] for real-world
applications where scheduling problems arise naturally.

Scheduling policies that preserve the qualitative behavior of
an NCS under limited communication and/or computation re-
sources are widely researched upon, and tools from both control
theory and communication theory have been explored; see the
recent works [1], [9], [25], [30], [32] and the references therein.
These policies can be broadly classified into two categories:
static (also called periodic, fixed, or open-loop) and dynamic
(also called non-periodic, or closed-loop) scheduling. In case
of the former, a finite-length allocation scheme of the shared
communication channel is determined off-line and is applied
eternally in a periodic manner, while, in case of the latter, the
allocation is determined based on some information (e.g., states,
outputs, access status of sensors and actuators, etc.) about the
plant. In this paper, we will focus on periodic scheduling policies
that preserve global asymptotic stability (GAS) of all plants in an
NCS. We will call such scheduling policies stabilizing schedul-
ing policies. Static scheduling policies are easier to implement,
often near-optimal, and guarantee activation of each sensor and
actuator; see [13], [24], and [28] for detailed discussions. They
are preferred for safety-critical control systems [24, and §2.5.1].
It is also observed in [27] and [28] that periodic phenomenon
appears in non-periodic schedules.

For NCSs with continuous-time linear plants, stabilizing peri-
odic scheduling policies are characterized using common Lya-
punov functions [10] and piecewise Lyapunov-like functions
with average dwell-time switching [22]. A more general case of
co-designing a static scheduling policy and control action is ad-
dressed using combinatorial optimization with periodic control
theory in [29] and linear matrix inequalities (LMIs) optimiza-
tion with average dwell-time technique in [5]. In the discrete-
time setting, the authors of [33] characterize periodic switch-
ing sequences that ensure reachability and observability of the
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plants under limited communication, and design an observer-
based feedback controller for these periodic sequences. The
techniques were later extended to the case of constant transmis-
sion delays [11] and a linear quadratic Gaussian (LQG) control
problem [12]. Periodic sensor scheduling schemes that accom-
modate limited communication and adversary attacks have been
studied recently in [31].

The main contribution of this paper lies in combining
switched systems and graph theory to propose a new class of sta-
bilizing scheduling policies for NCSs. We represent the individ-
ual (open-loop unstable) plants of an NCS as switched systems,
where the switching is between their open-loop (unstable mode)
and closed-loop (stable mode) operations. Clearly, within our
setting, no switched system can operate in stable mode for the
entire time as that will destabilize some of the plants in the NCS.
The search for a stabilizing scheduling policy then becomes the
problem of finding switching logics that obey the limitations
of the shared channel and preserve stability. It is assumed that
the exchange of information between a plant and its controller
is not affected by communication uncertainties. In the recent
past, graph-theoretic techniques have played an important role
in designing stabilizing switching logics for switched systems
(see e.g., [16], [17] and the references therein). In this paper,
we associate a weighted directed graph with the NCS that cap-
tures the communication limitation of the shared channel, and
design stabilizing switching logics for each plant in the NCS.
Multiple Lyapunov-like functions are employed for analyzing
the stability of the switched systems. The stabilizing switching
logics form a stabilizing scheduling policy. The switching log-
ics are combined in terms of a class of cycles on the underlying
weighted directed graph of the NCS that satisfies appropriate
contractivity properties. We also discuss algorithmic construc-
tion of these cycles.

In brief, our contributions are as follows.
� Given an NCS with discrete-time linear plants that

exchange information with their stabilizing controllers
through a shared channel of limited communication ca-
pacity, we present an algorithm to design a scheduling
policy that preserves the GAS of each plant in the NCS.
Our scheduling policy is periodic in nature, and relies on
the existence of what we call a T -contractive cycle on
the underlying weighted directed graph of the NCS. Pe-
riodic scheduling policies have proven to be immensely
useful in process control, where many loops need to share
a common communication resource to avoid the neces-
sity of frequent network reconfigurations. In fact, periodic
scheduling is an inherent feature of IEEE 802.15.4 net-
works [28], which underlie commercial standards, such
as WirelessHart, ISA100.11a, and ZigBee. The use of cy-
cles on a weighted directed graph makes our techniques
numerically tractable; see Remark 11 for a detailed dis-
cussion.

� We address the algorithmic design of T -contractive cy-
cles. Given the connectivity of the underlying weighted
directed graph of the NCS and description of the individ-
ual plants, we fix a cycle on this graph and present an
algorithm that designs multiple Lyapunov-like functions

Fig. 1. Block diagram of NCS.

such that the above cycle isT -contractive. We also identify
sufficient conditions on the multiple Lyapunov-like func-
tions and channel constraints under which the existence
of a T -contractive cycle is guaranteed.

The remainder of this paper is organized as follows: in
Section II, we formulate the problem under consideration, and
describe the primary apparatus for our analysis. Our method for
constructing stabilizing periodic scheduling policies appears in
Section III. In Section IV, we discuss the algorithmic design
of T -contractive cycles. A numerical example is presented in
Section V to demonstrate our results. We conclude in Section
VI with a brief discussion of future research directions. Proofs
of our results appear in the Appendix.

Some notations used in this paper: N = {1, 2, . . .} is the set
of natural numbers, N0 = {0} ∪ N, and R is the set of real
numbers. We let ]k1 : k2 ] denote the set {n ∈ N | k1 < n ≤
k2}. For a scalar m, let |m| denote its absolute value, and for
a set M , let |M | denote its cardinality. Let ‖·‖ be the standard
2-norm and � denote the transpose operation.

II. PRELIMINARIES

We consider an NCS withN discrete-time linear plants. Each
plant communicates with its remotely located controller through
a shared communication channel (see Fig. 1). The plant dynam-
ics are

xi(t+ 1) = Aixi(t) +Biui(t), xi(0) = x0
i , t ∈ N0 (1)

where xi(t) ∈ Rd and ui(t) ∈ Rm are the vectors of states and
inputs of the i-th plant at time t, respectively, i = 1, 2, . . . , N .
Each plant i employs a state-feedback controller given by
ui(t) = Kixi(t), i = 1, 2, . . . , N . The matrices Ai ∈ Rd×d ,
Bi ∈ Rd×m , and Ki ∈ Rm×d , i = 1, 2, . . . , N are known. The
shared channel has limited communication capacity: at any
time instant, only M plants (0 < M < N ) can access the
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channel. Consequently, N–M plants operate in open-loop at
every time instant. We define S := {s ∈ {1, 2, . . . , N}M | all
elements of s are distinct} to be the set of vectors that consist
of M distinct elements from {1, 2, . . . , N}. We call the func-
tion γ : N0 → S a scheduling policy. There exists a diverg-
ing sequence of times 0 =: τ0 < τ1 < τ2 < · · · and a sequence
of indices s0 , s1 , s2 , . . . with sj ∈ S, j = 0, 1, 2, . . . such that
γ(t) = sj for t ∈ [τj : τj+1[, j = 0, 1, 2, . . .. The role of γ is
to specify, at every time t, M plants of the NCS which access
the communication channel at that time. The remaining N–M
plants operate in open-loop, in particular, with ui(t) = 0.

Remark 1: One may also study a scheduling problem in the
setting of the remainingN–M plants operating with ui(t) = u,
where u is the last control input received before time t. How-
ever, in this paper, we consider open-loop evolution of a plant
whenever it is not accessing the shared communication channel.

Assumption 1: The open-loop dynamics of each plant is
unstable and each controller is stabilizing. More specifically, the
matrices Ai +BiKi , i = 1, 2, . . . , N are Schur stable and the
matrices Ai , i = 1, 2, . . . , N are unstable.1

Assumption 2: The shared communication channel is ideal
in the sense that an exchange of information between plants and
their controllers is not affected by communication uncertainties.

In view of Assumption 1, each plant in (1) operates in two
modes: 1) stable mode when the plant has access to the shared
communication channel and 2) unstable mode when the plant
does not have access to the channel. Let us denote the stable
and unstable modes of the i-th plant as is and iu , respectively,
Ais = Ai +BiKi andAiu = Ai , i = 1, 2, . . . , N . In this paper,
we are interested in a scheduling policy that guarantees GAS of
each plant in (1). In particular, we study the following problem:

Problem 1: Given the matricesAi ,Bi ,Ki , i = 1, 2, . . . , N ,
and a number M(< N), find a scheduling policy that ensures
GAS of each plant i in (1).

We will call a scheduling policy γ that is a solution to Problem
1, as a stabilizing scheduling policy. Recall that

Definition 1 ([15, Lemma 4.4]): The i-th plant in (1) is
GAS for a given scheduling policy γ, if there exists a classKL
function βi such that the following inequality holds:

‖xi(t)‖ ≤ βi(‖xi(0)‖ , t) for all xi(0) ∈ Rd and t ≥ 0.2

(2)

Toward solving Problem 1, we express individual plants in
(1) as switched systems and associate a weighted directed graph
with the NCS under consideration. Our solution to Problem 1
involves two steps:

� first, we present an algorithm that constructs a scheduling
policy by employing what we call a T -contractive cycle
on the underlying weighted directed graph of the NCS;

� second, we show that a scheduling policy obtained from
our algorithm ensures GAS of each plant in (1).

1We call a matrix unstable, if it is not Schur stable.
2Recall classes of functions [15, Ch. 4]: K := {φ : [0,+∞[→ [0,+∞[|φ

is continuous, strictly increasing, φ(0) = 0},L := {ψ : [0,+∞[−→
[0,+∞[ | ψ is continuous and ψ(s) ↘ 0 as s ↗ +∞},KL := {χ : [0,+
∞[2−→ [0,+∞[ | χ(·, s) ∈ K for each s and χ(r, ·) ∈ L for each r}.

We also discuss the algorithmic design of T -contractive cy-
cles. In the remainder of this section, we catalog our analysis
tools.

A. Individual Plants and Switched Systems

The dynamics of the i-th plant in (1) can be expressed as a
switched system [21, §1.1.2]

xi(t+ 1) = Aσi (t)xi(t), xi(0) = x0
i , σi(t) ∈ {is , iu}, t ∈ N0

(3)

where the subsystems are {Ais , Aiu } and a switching logic σi :
N0 → {is , iu} satisfies

σi(t) =

{
is , if i is an element of γ(t)
iu , otherwise.

Clearly, a switching logic σi , i = 1, 2, . . . , N is a function of the
scheduling policy γ. In order to ensure GAS of the individual
plants, it therefore suffices to look for a γ that renders each σi
stabilizing in the following sense: σi guarantees the GAS of
the switched system (3) for each i = 1, 2, . . . , N . We recall the
following facts from recent literature:

Fact 1: [17, Fact 1] For each i = 1, 2, . . . , N , there exist
pairs (Pp, λp), p ∈ {is , iu}, where Pp ∈ Rd×d are symmetric
and positive definite matrices, and 0 < λis < 1, λiu ≥ 1, such
that with

Rd � ξ −→ Vp(ξ) := 〈Ppξ, ξ〉 ∈ [0,+∞[ (4)

we have

Vp(zp(t+ 1)) ≤ λpVp(zp(t)), t ∈ N0 (5)

and zp(·) solves the p-th recursion in (3), p ∈ {is , iu}.
Fact 2: [17, Fact 2] For each i = 1, 2, . . . , N , there exist

μpq ≥ 1 such that

Vq (ξ) ≤ μpqVp(ξ) for all ξ ∈ Rd and p, q ∈ {is , iu}. (6)

The functions Vp , p ∈ {is , iu}, i = 1, 2, . . . , N are called
Lyapunov-like functions, and they are widely used in stabil-
ity theory of switched and hybrid systems [4], [21]. We will
use properties of these functions described in Facts 1 and 2
in our analysis toward deriving a stabilizing scheduling pol-
icy. The scalars λp , p ∈ {is , iu} give quantitative measures of
(in)stability associated with (un)stable modes of operation of
the i-th plant. Linear comparability of Vp ’s in (6) follows from
the definition of Vp , p ∈ {is , iu} in (4). In [17, Prop. 1], a tight
estimate of the scalars μpq , p, q ∈ {is , iu} was proposed to be
λmax(PqP−1

p ), where λmax(M) denotes the maximum eigen-
value of a matrix M ∈ Rd×d .

B. NCS and Directed Graphs

Recall that a directed graph is a set of vertices connected by
edges, where each edge has a direction associated with it. We
connect a directed graph G(V,E) with the NCS under consid-
eration. G(V,E) contains:

� a vertex setV consisting of
(
N
M

)
vertices that are labeled

distinctly. The label associated with a vertex v is given
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by L(v) = {
v (1), 
v (2), . . . , 
v (N)}, where 
v (i) = is
for any M elements and 
v (i) = iu for the remaining
N–M elements. Two labels L(u) and L(v) are equal if

u (i) = 
v (i) for all i = 1, 2, . . . , N . By the term “distinct
labeling”, we mean that L(u) = L(v) whenever u = v ∈
V;

� an edge set E consisting of a directed edge (u, v) from
every vertex u ∈V to every vertex v ∈V, v �= u.

The label L(v) corresponding to a vertex v ∈V gives a com-
bination ofM plants operating in stable mode and the remaining
N–M plants operating in unstable mode. SinceV contains

(
N
M

)
vertices and the label associated with each vertex is distinct, it
follows that the set of vertex labels consists of all possible com-
binations of M plants accessing the communication channel
andN–M plants operating in open-loop. A directed edge (u, v)
from a vertex u to a vertex v (�= u) corresponds to a transition
from a set of M plants accessing the communication channel
(as specified by L(u)) to another set of M plants accessing the
communication channel (as specified by L(v)). In the sequel,
we may abbreviateG(V,E) asG if there is no risk of confusion.

We use functionsw :V→ RN andw : E→ RN to associate
weights to the vertices and edges of G, respectively. They are
defined as

w(v) =

⎛
⎜⎜⎜⎝
w1(v)
w2(v)

...
wN (v)

⎞
⎟⎟⎟⎠, v ∈V, where

wi(v) =

{
− |ln λis | , if 
v (i) = is ,

|ln λiu | , if 
v (i) = iu ,
i = 1, 2, . . . , N

(7)

and

w(u, v) =

⎛
⎜⎜⎜⎝
w1(u, v)
w2(u, v)

...
wN (u, v)

⎞
⎟⎟⎟⎠, (u, v) ∈ E, where

wi(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

lnμis iu , if 
u (i) = is and 
v (i) = iu

lnμiu is , if 
u (i) = iu and 
v (i) = is ,
i = 1, 2, . . . , N.

0, otherwise

(8)

Here λis , λiu , and μis iu , μiu is , i = 1, 2, . . . , N are as described
in Facts 1 and 2, respectively.

Remark 2: We will aim for achieving the GAS of each
switched system (3), i = 1, 2, . . . , N . For this purpose, we will
compensate the increase in Vp , p ∈ {is , iu} caused by activation
of unstable mode iu and switches between stable and unstable
modes (is to iu and iu to is) by the decrease in Vp , p ∈ {is , iu}
achieved by using the stable modes is , i = 1, 2, . . . , N . As a
natural choice, the vertex (subsystem) weights of G relate to
the rate of increase/decrease of the Lyapunov-like functions Vp
captured by the scalars λp , p ∈ {is , iu}, and the edge (switch)
weights of G relate to the “jump” between Lyapunov-like

functions Vp and Vq , p, q ∈ {is , iu} captured by the scalars μpq ,
p, q ∈ {is , iu}, i = 1, 2, . . . , N .3

The weights associated with the vertices and edges of G are

w(v1) =

⎛
⎝− |ln λ1s |

− |ln λ2s |
|ln λ3u |

⎞
⎠, w(v2) =

⎛
⎝− |ln λ1s |

|ln λ2u |
− |ln λ3s |

⎞
⎠,

w(v3) =

⎛
⎝ |ln λ1u |

− |ln λ2s |
− |ln λ3s |

⎞
⎠

and

w(v1 , v2) =

⎛
⎝ 0

lnμ2s 2u
lnμ3u 3s

⎞
⎠, w(v1 , v3) =

⎛
⎝ lnμ1s 1u

0
lnμ3u 3s

⎞
⎠

w(v2 , v1) =

⎛
⎝ 0

lnμ2u 2s
lnμ3s 3u

⎞
⎠, w(v2 , v3) =

⎛
⎝ lnμ1s 1u

lnμ2u 2s
0

⎞
⎠

w(v3 , v1) =

⎛
⎝ lnμ1u 1s

0
lnμ3s 3u

⎞
⎠, w(v3 , v2) =

⎛
⎝ lnμ1u 1s

lnμ2s 2u
0

⎞
⎠.

Remark 3: With the construction of G, it contains two
directed edges (u, v) and (v, u) between every two vertices
u, v ∈V. Employing an undirected graph instead of a directed
one may appear to be a natural choice here. However, the use of
directed edges allows us to distinguish easily between the tran-
sitions is to iu and iu to is , i = 1, 2, . . . , N , and assign weights
to the corresponding edges accordingly. Notice that since the
vertex labels are distinct, for every two vertices u, v ∈V, there
exists at least one i for whichwi(u, v) andwi(v, u) are different,
i ∈ {1, 2, . . . , N}.

Recall that [3, p. 4] a walk on a directed graph G(V,E) is an
alternating sequence of vertices and edges W = ṽ0 , ẽ1 , ṽ1 , ẽ2 ,
ṽ2 , . . . , ṽ
−1 , ẽ
 , ṽ
 , where ṽm ∈ V , ẽm = (ṽm−1 , ṽm ) ∈ E,
0 < m ≤ 
. The length of a walk is its number of edges, count-
ing repetitions, for example, the length of W is 
. The initial
vertex of W is ṽ0 and the final vertex of W is ṽ
 . If ṽ
 = ṽ0 ,
we say that the walk is closed. A closed walk is called a cycle
if the vertices ṽk , 0 < k < n are distinct from each other and
ṽ0 . We will use the following class of cycles on G to construct
a stabilizing scheduling policy:

Definition 2: A cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 ,
(vn−1 , v0), v0 on G(V,E) is called T -contractive if there exist
integers Tvj > 0, j = 0, 1, . . . , n− 1, 2 ≤ n ≤ |V| such that
the following set of inequalities is satisfied:

Ξi(W ) :=
n−1∑
j=0

wi(vj )Tvj +
n−1∑
j=0

vn :=v0

wi(vj , vj+1) < 0 (9)

for all i = 1, 2, . . . , N , where n is the length of W , w(vj ) is
the weight associated with vertex vj , wi(vj ) is the i-th element
of w(vj ), and w(vj , vj+1) is the weight associated with edge

3The use of the absolute value and natural logarithm is explained in context;
see Remark 15.
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Algorithm 1: Construction of a Periodic Scheduling Policy.

Let G(V,E) be a directed graph representation of the NCS
described in Section II. Suppose that G(V,E) admits a
T -contractive cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 ,
(vn−1 , v0), v0 (of length n) with T -factors T0 , T1 , . . .,
Tn−1 .
Input: a T -contractive cycle W = v0 , (v0 , v1), v1 , . . . ,

vn−1 , (vn−1 , v0), v0 and corresponding T -factors
T0 , T1 , . . . , Tn−1

Output: a periodic scheduling policy γ
Step I: For each vertex vj , j = 0, 1, . . . , n− 1, pick the
elements i with label 
vj (i) = is , i = 1, 2, . . . , N , and
construct M - dimensional vectors sj , j = 0, 1, . . . , n− 1.

1: for j = 0, 1, . . . , n− 1 do
2: Set p = 0
3: for i = 1, 2, . . . , N do
4: if 
vj (i) = is then
5: Set p = p+ 1 and sj (p) = i
6: end if
7: end for
8: end for

Step II: Construct a scheduling policy using the vectors sj ,
j = 0, 1, . . . , n− 1 obtained in Step I and the T -factors
Tvj , j = 0, 1, . . . , n− 1

9: Set p = 0 and τ0 = 0
10: for q = pn, pn+ 1, . . . , (p+ 1)n− 1 do
11: Set γ(τq ) = sq−pn and τq+1 = τq + Tvq −p n
12: Output τq and γ(τq )
13: end for
14: Set p = p+ 1 and go to 10.

(vj , vj+1), and wi(vj , vj+1) is the i-th element of w(vj , vj+1),
i = 1, 2, . . . , N , j = 0, 1, . . . , n− 1. We call the scalar Tvj as
the T -factor of vertex vj , j = 0, 1, . . . , n− 1.

We will employ the integers Tvj , j = 0, 1, . . . , n− 1 to asso-
ciate a time duration with every vertex vj , j = 0, 1, . . . , n−
1 that appears in W . This time duration will determine
how long a set of M plants can access the shared com-
munication channel while preserving GAS of all plants in
the NCS under consideration. In the present discrete-time
setting, the association of integers with time durations is
natural.

Remark 4: Definition 2 is an extension of [16, Def. 2] to a
set of N -switched systems in the discrete-time setting. In [16],
the notion of a contractive cycle with T -factors chosen from a
given interval of real numbers was used to study input/output-
to-state stability (IOSS) of continuous-time-switched nonlinear
systems under dwell-time restrictions.

III. STABILIZING PERIODIC SCHEDULING POLICIES

The following algorithm is geared toward constructing a pe-
riodic scheduling policy. We will show that a scheduling policy
obtained from this algorithm is stabilizing.

Fig. 2. Example scheduling policy: the activation of sj corresponds to
activation of the plants whose indices appear in sj .

Given a set of matricesAi ,Bi ,Ki , i = 1, 2, . . . , N and a num-
ber M , Algorithm 1 employs a T -contractive cycle W = v0 ,
(v0 , v1), v1 , . . . , vn−1 , (vn−1 , v0), v0 on G(V,E) to construct a
scheduling policy γ that specifies, at every time,M(< N) plants
that access the shared communication channel. The construction
of γ involves two steps: in Step I, corresponding to each ver-
tex vj , j = 0, 1, . . . , n− 1, a vector sj , j = 0, 1, . . . , n− 1 is
created. The vector sj contains the elements i ∈ {1, 2, . . . , N}
for which 
vj (i) = is , where 
vj (i) denotes the i-th element of
the vertex label L(vj ). Recall that by construction, each L(vj )
contains 
vj (i) = is exactly forM i’s. Consequently, the length
of sj is M , j = 0, 1, . . . , n− 1. In Step II, a scheduling pol-
icy γ is obtained from the vectors sj , j = 0, 1, . . . , n− 1 and
the T -factors Tvj , j = 0, 1, . . . , n− 1. Sets of M plants corre-
sponding to the elements in sj access the shared communication
channel for Tvj duration of time, j = 0, 1, . . . , n− 1. In partic-
ular, the following mechanism is employed to construct values
of γ on the intervals [τpn : τ(p+1)n [, p = 0, 1, . . .:

γ(τq ) = sq−pn
τq+1 = τq + Tvq −pn

}
q = pn, pn+ 1, . . . , (p+ 1)n− 1.

Clearly, a scheduling policy γ constructed as above is periodic
with period

∑n−1
j=0 Tvj . A pictorial representation of a schedul-

ing policy obtained from Algorithm 1 is given in Fig. 2.
The following theorem asserts that a scheduling policy ob-

tained from Algorithm 1 is a solution to Problem 1.
Theorem 1: Consider an NCS described in Section II. Let

the matricesAi ,Bi ,Ki , i = 1, 2, . . . , N and a numberM(< N)
be given. Then each plant in (1) is GAS under a scheduling
policy γ obtained from Algorithm 1.

A proof of Theorem 1 is provided in the Appendix. For an
NCS consisting of N discrete-time linear plants that are open-
loop unstable and closed-loop stable, and a shared communica-
tion channel that allows access only toM(< N) plants at every
time instant, Algorithm 1 constructs a periodic scheduling pol-
icy that ensures the GAS of each plant in the NCS.

Remark 5: Our stabilizing scheduling policy is static and
thereby easy to implement: A T -contractive cycle on the under-
lying weighted directed graph of the NCS is computed offline,
and the scheduling policy is implemented by the following log-
ics involving this cycle.
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The existence of a stabilizing scheduling policy proposed in
this section depends on the existence of a T -contractive cycle on
the underlying directed graph G of the NCS. It is, therefore, of
importance to study how to detect/design a T -contractive cycle
on G. We address this matter next.

IV. ALGORITHMIC DESIGN OF T -CONTRACTIVE CYCLES

Given the weighted directed graph G, the existence of a T -
contractive cycle depends on two factors: connectivity ofG (for
existence of cycles) and the weights associated with the vertices
and edges ofG (for T -contractivity of cycles). SinceG is a com-
plete graph by construction, it necessarily admits cycles. Fix a
cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 , (vn−1 , v0), v0 on G. The
T -contractivity of W is guaranteed by the existence of integers
Tvj > 0, j = 0, 1, . . . , n− 1 such that condition (9) is satisfied.
The existence of such Tvj ’s depends upon the vertex and edge
weights w(v), v ∈V and w(u, v), (u, v) ∈ E associated with
G. These weights are functions of the matricesPp and the scalars
λp , p ∈ {is , iu}, i = 1, 2, . . . , N .

Remark 6: Notice that the Lyapunov-like functions Vp
and, consequently, the scalars λp , p ∈ {is , iu} and μpq , p, q ∈
{is , iu}, i = 1, 2, . . . , N used in (9) are not unique. For each
i ∈ {1, 2, . . . , N}, we have that Ais is Schur stable and Aiu is
unstable. It is known that a Schur stable matrix A ∈ Rd×d sat-
isfies the following [2, Prop. 11.10.5]: for every symmetric and
positive-definite matrixQ ∈ Rd×d , there exists a symmetric and
positive-definite matrix P ∈ Rd×d such that the discrete-time
Lyapunov equation

A�PA− P +Q = 0 (10)

holds. For a preselected symmetric and positive definite ma-
trix Qis , let Pis be the solution to (10) with A = Ais , P = Pis
and Q = Qis ; we put Vis (ξ) := ξ�Pis ξ as the corresponding
Lyapunov-like function. Direct calculations, along with an ap-
plication of the standard inequality [2, Lemma 8.4.3], lead to the
estimate λis = 1 − λm in (Qi s )

λm a x (Pi s ) , which satisfies 0 < λis < 1. Sim-
ilarly, for the unstable matrix Aiu , there exists 0 < η < 1 such
that ηAiu is Schur stable. Fix a symmetric and positive-definite
matrix Qiu . Let Piu be the solution to (10) with A = ηAiu ,
P = Piu and Q = Qiu ; we put Viu (ξ) := ξ�Piu ξ as the corre-
sponding Lyapunov-like function. A straightforward calculation
gives an estimate λiu = 1

η 2 > 1. Clearly, the choice of the matri-
ces Qp , p ∈ {is , iu} determines the choice of the matrices Pp ,
p ∈ {is , iu} and the scalars λp , p ∈ {is , iu}, i = 1, 2, . . . , N .
In addition, the matrices Pp , p ∈ {is , iu} determine the scalars
μpq , p, q ∈ {is , iu} as described in Section II. �

Recall that G has
(
N
M

)
vertices. Consequently, depending

on the values of N and M , one may need to design a T -
contractive cycle on a “large” directed graph to implement
the scheduling policy proposed in Section III. It is clear that
checking for existence of Tvj , j = 0, 1, . . . , n− 1 correspond-
ing to all possible values of λp , p ∈ {is , iu},μpq , p, q ∈ {is , iu},
i = 1, 2, . . . , N for every cycle W on G, is not numerically
tractable. To overcome this issue, we will next address the de-
sign of a T -contractive cycle on G in two steps:

1) first, we identify conditions on the scalars λp , p ∈ {is , iu}
and μpq , p, q ∈ {is , iu}, i = 1, 2, . . . , N under which a
cycle on G satisfying certain properties is T -contractive;

2) second, given the matrices Ai , Bi , Ki , i = 1, 2, . . . , N ,
we present an algorithm to design the scalars λp , p ∈
{is , iu} and μpq , p, q ∈ {is , iu}, i = 1, 2, . . . , N such
that the above conditions are met.

Definition 3: A cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 ,
(vn−1 , v0), v0 on G(V,E) is called candidate contractive, if
for each i = 1, 2, . . . , N , there exists at least one vj , j ∈ {0,
1, . . . , n− 1} such that 
vj (i) = is .

In view of Definition 2, for T -contractivity of W = v0 , (v0 ,
v1), v1 , . . . , (vn−1 , v0), v0 , we require that the condition Ξi(W )
< 0 holds for all i = 1, 2, . . . , N . Since for each i = 1, 2, . . . ,
N , the scalars ln λiu , lnμis iu , lnμiu is ≥ 0, the existence of at
least one vj , j ∈ {0, 1, . . . , n− 1} inW such that 
vj (i) = is is
necessary. A candidate contractive cycle satisfies this property.
Fix an i ∈ {1, 2, . . . , N}. We letNpq denote the total number of
times 
vj (i) = p and 
vj + 1 (i) = q appear in W , p, q ∈ {is , iu},
j = 0, 1, . . . , n− 1, vn := v0 .

Observation 1: LetW = v0 , (v0 , v1), v1 , . . . , vn−1 , (vn−1 ,
v0), v0 be a candidate contractive cycle on G. Suppose that
there exist integers Tvj > 0, j = 0, 1, . . . , n− 1 such that the
following set of inequalities holds:

− |ln λis |

⎛
⎜⎜⎜⎝

∑
j=0,1,...,n−1|

v j (i)=is

Tvj

⎞
⎟⎟⎟⎠+ |ln λiu |

⎛
⎜⎜⎜⎝

∑
j=0,1,...,n−1|

v j (i)=iu

Tvj

⎞
⎟⎟⎟⎠

+ (lnμis iu )Nis iu + (lnμiu is )Niu is < 0, i = 1, 2, . . . , N
(11)

where the scalars λp , p ∈ {is , iu} and μpq , p, q ∈ {is , iu},
i = 1, 2, . . . , N are as described in Facts 1 and 2, respectively.
ThenW is T -contractive with T -factors Tvj associated with the
vertices vj , j = 0, 1, . . . , n− 1. �

In view of the definitions of vertex and edge weights w(v),
v ∈V and w(u, v), (u, v) ∈ E of G, the above observation
follows immediately from (9). A stabilizing scheduling policy
γ constructed by employing cycle W is periodic with period∑n−1

j=0 Tvj . Notice that we do not consider the termsNpq , p, q ∈
{is , iu}, p = q for the candidate contractive cycle W , which is
no loss of generality. Indeed, from [17, Prop. 1], we have that
lnμis is = lnμiu iu = 0, i = 1, 2, . . . , N .

Given the matrices Ai , Bi , Ki , i = 1, 2, . . . , N , and a can-
didate contractive cycle W , our next algorithm finds pairs (Pp,
λp), p ∈ {is , iu}, i = 1, 2, . . . , N such that condition (11)
holds.

Remark 7: The pairs (Pp, λp), p ∈ {is , iu} are solutions to
the following set of bilinear matrix inequalities (BMIs):

A�
is
Pis Ais − λis Pis � 0, Pis � 0, 0 < λis < 1

A�
iu
Piu Aiu − λiu Piu � 0, Piu � 0, λiu ≥ 1. (12)

In general, solving BMIs is a numerically difficult task. We will
use a grid-based approach, where the BMIs are transformed into
LMIs—solution tools which are widely available.
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Algorithm 2: Design of a T -contractive Cycle.
Consider the NCS described in Section II, and its
underlying weighted directed graph G(V,E).
Input: matrices Ai , Bi , Ki , i = 1, 2, . . . , N , a candidate

contractive cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 ,
(vn−1 , v0), v0

Output: T -factors for W
Step I: Compute the matrices Ais and Aiu , i = 1, 2, . . . , N

1: for i = 1, 2, . . . , N do
2: Set Ais = Ai +BiKi and Aiu = Ai

3: end for
Step II: Compute the integers Npq , p, q ∈ {is , iu}, i = 1, 2,
. . . , N

4: for i = 1, 2, . . . , N do
5: Compute Npq , p, q ∈ {is , iu} from W
6: end for

Step III: Fix a set of values for λis ∈]0, 1[, i = 1, 2, . . . , N
7: Fix a step-size hs > 0 (small enough) and compute
ks > 0 such that ks is the maximum integer satisfying
kshs < 1

8: for i = 1, 2, . . . , N do
9: Set ΛS

i = {hs, 2hs, . . . , kshs}
10: end for

Step IV: Fix a set of values for λiu ∈ [1,+∞[, i = 1, 2,
. . . , N
11: Fix a step-size hu > 0 (small enough) and compute

ku > 0 such that ku is the maximum integer
satisfying kuhu < 1

12: for i = 1, 2, . . . , N do
13: Set ΛU

i = ∅
14: for ηi = hu , 2hu , . . . , kuhu do
15: if ηiAi is Schur stable then
16: Add element 1

η 2
i

to the set ΛU
i

17: end if
18: end for
19: end for

Step V: Check for pairs (Pp, λp), p ∈ {is , iu}, i = 1, 2,
. . . , N under which W is T -contractive
20: for all pairs (λis , λiu ), λis ∈ ΛS

i , iu ∈ ΛU
i , i = 1, 2,

. . . , N do
21: Solve the following feasibility problem in Pp ,

p ∈ {is , iu}:

minimize 1

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A�
is
Pis Ais − λis Pis � 0,

A�
iu
Piu Aiu − λiu Piu � 0,

Pis , Piu � 0,

κI � Pis , Piu � I, κ > 0

(13)

22: if there is a solution to (13) then
23: Compute μis iu = λmax(Piu P

−1
is

) and μiu is
= λmax(Pis P

−1
iu

)

Algorithm 2: Continued.
24: Solve the following feasibility problem in Tvj ,

j = 0, 1, . . . , n− 1:

minimize 1

subject to

{
Tvj > 0, j = 0, 1, . . . , n− 1,
condition (11).

(14)

25: if there is a solution to (14) then
26: Output Tvj , j = 0, 1, . . . , n− 1 and exit

Algorithm 2
27: end if
28: end if
29: end for

In Algorithm 2, we employ a grid-based approach to design
the pairs (Pis , λis ) and (Piu , λiu ) such that with the definition
(4), inequality (5) holds.4 Scalars λis and λiu vary over the
sets ΛS

i and ΛU
i , respectively. The elements of ΛS

i belong to
the interval ]0,1[, while the set ΛU

i is determined as follows: a
scalar ηi varies over ]0,1[ with step-size hu , and the estimates
1
η 2
i

satisfying ηiAi is Schur stable are stored in ΛU
i . For a fixed

pair (λis , λiu ) with λis ∈ ΛS
i and λiu ∈ ΛS

i , the following set
of LMIs is solved:

A�
is
Pis Ais − λis Pis � 0

A�
iu
Piu Aiu − λiu Piu � 0. (15)

If a solution to (15) is found, then the scalars μis iu and μiu is
are computed using the estimates given in [17, Prop. 1]. The
feasibility problem (14) is then solved with the above estimates
of λis , λiu , μis iu , μiu is . If there is a solution to (14), then the
values of Tvj , j = 0, 1, . . . , n− 1 are stored and Algorithm 2
terminates. Otherwise, the pair (λis , λiu ) is updated and the
above process is repeated.

Remark 8: The condition κI � Pis , Piu � I in the feasi-
bility problem (13) is not inherent to the inequalities (12). It
is included for numerical reasons, in particular, κI � Pis , Piu
limits the condition numbers of Pis and Piu to κ−1 , and the con-
dition Pis , Piu � I guarantees that the set of feasible Pis , Piu
is bounded.

Remark 9: Notice that even if the step-sizes hs and hu
are chosen to be very small, only a finite number of possi-
bilities for (Pp, λp), p ∈ {is , iu}, i = 1, 2, . . . , N are explored
in Algorithm 2. Consequently, if no solution to the feasibility
problem (14) is found, then it is not immediate whether there
are indeed no pairs (Pis , λis ) and (Piu , λiu ), i = 1, 2, . . . , N
for the given matrices Ai , Bi , Ki such that there are integers
Tvj , j = 0, 1, . . . , n− 1 satisfying condition (11). Algorithm
2, therefore, offers only a partial solution to the problem of
designing suitable matrices Pp and the scalars λp , p ∈ {is , iu},
i = 1, 2, . . . , N in the sense that the algorithm does not conclude
about their nonexistence. It is, therefore, of interest to identify

4Alternatively, one could also use the path-following method proposed in [8].
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sufficient conditions under which the feasibility problem (14)
admits a solution. We discuss this matter next.

The existence of a solution to the feasibility problem (14)
depends on the choice of a candidate contractive cycleW and the
scalars λp , p ∈ {is , iu}, i = 1, 2, . . . , N .5 The first component
above is governed by the given numbers M and N . Recall
that for a vertex v ∈V, 
v (m) denotes the m-th element of its
label L(v). Let vs denote the set of elements j1 , j2 , . . . , jM ∈
{1, 2, . . . , N} satisfying 
v (jp) = jps , p = 1, 2, . . . , N . Below,
we propose a set of sufficient conditions on the scalars λp ,
p ∈ {is , iu}, i = 1, 2, . . . , N and the number M under which
the feasibility problem (14) admits a solution.

Proposition 1: LetM=1. Consider a candidate contractive
cycle W = v0 , (v0 , v1), v1 , . . . , vN−1 , (vN−1 , v0), v0 on G(V,
E) that satisfies vsk ∩ vs
 = ∅ for all k, 
 = 0, 1, . . . , N − 1, k �=

. Suppose that the scalars λp , p ∈ {is , iu}, i = 1, 2, . . . , N
satisfy

|ln λis | − (N − 1) |ln λiu | > 0, i = 1, 2, . . . , N. (16)

Then there exists T̃ ∈ N such that the cycleW is T -contractive
with Tvj = T̃ > 0, j = 0, 1, . . . , N − 1.

Proposition 2: Let M ≥ N/2. Consider a candidate con-
tractive cycleW = v0 , (v0 , v1), v1 , (v1 , v0), v0 onG(V,E) that
satisfies vs1 ⊃ {1, 2, . . . , N} \ vs0 . Suppose that the scalars λp ,
p ∈ {is , iu}, i = 1, 2, . . . , N satisfy

|ln λis | − |ln λiu | > 0, i = 1, 2, . . . , N. (17)

Then there exists T̃ ∈ N such that the cycleW is T -contractive
with Tv0 = Tv1 = T̃ .

Proposition 1 deals with the case when exactly one plant
is allowed to access the shared communication channel at any
time instant, while Proposition 2 deals with the case where
at least half of the total number of plants have access to the
shared communication channel. In case of the former, a T -
contractive cycle contains exactly one vertex vj with 
vj (i) =
is for each i, j = 0, 1, . . . , N − 1, while in case of the latter,

vj (i) = is for each i is accommodated in two vertices, j =
0, 1, i = 1, 2, . . . , N . Condition (17) is a relaxation of condition
(16). We present concise proofs of Propositions 1 and 2 in the
Appendix.

Example 1: Consider N = 3 with

(A1 , B1 ,K1) =

((
0.2 0.7
1.6 0.1

)
,

(
1
0

)
,
(−0.2752 −0.6705

))

(A2 , B2 ,K2) =

((
1 0.1

0.1 1

)
,

(
0
1

)
,
(−0.9137 −0.9505

))

(A3 , B3 ,K3) =

((
1.2 0.2
0.1 0.9

)
,

(
1
0

)
,
(−1.0757 −0.4839

))
.

5Notice that while the scalars μpq , p, q ∈ {is , iu }, i = 1, 2, . . . , N affect
the choice of T -factors that solve the feasibility problem (14), they do not affect
the existence of a solution to (14). Indeed, given the scalars λp , p ∈ {is , iu }
and μpq , p, q ∈ {is , iu }, i = 1, 2, . . . , N , and a candidate contractive cycle
W = v0 , (v0 , v1 ), v1 , . . . , vn−1 , (vn−1 , v0 ), v0 on G, if there exists Tvj =
T̃ , j = 0, 1, . . . , n − 1 such that condition (11) holds, then it follows that
condition (11) holds for any T ′ ≥ T̃ .

Corresponding to Vp(ξ) = ξ�Ppξ, p ∈ {is , iu}, i = 1, 2, 3, we
obtain the following estimates of the scalars λp , p ∈ {is , iu}
and μpq , p, q ∈ {is , iu}, i = 1, 2, 3:

λ1s = 0.2787, λ1u = 1.5625, μ1s 1u = 4.1786,

μ1u 1s = 1.5338, λ2s = 0.0859, λ2u = 1.2346,

μ2s 2u = 23.5578, μ2u 2s = 1.9130, λ3s = 0.2147,

λ3u = 2.0408, μ3s 3u = 3.6524, μ3u 3s = 2.5238.

Let M = 1. We have that condition (16) holds. Indeed,
| ln λ1s | − 2|ln λ1u |=0.3850 > 0, |ln λ2s |−2|ln λ2u |=2.0331
> 0, |ln λ3s | − 2 |ln λ3u | = 0.1118 > 0. The cycle W1 = v0 ,
(v0 , v1), v1 , (v1 , v2), v2 , (v2 , v0), v0 , where 
v0 (1) = 1s , 
v1 (2)
= 2s and 
v2 (3) = 3s , is T -contractive with Tv0 = Tv1 =
Tv2 = T̃ = 20. We have Ξ1(W1) = −6.0596, Ξ2(W1) =
−36.85, Ξ3(W1) = −0.0154.

Now, let M = 2(> N/2). Since the scalars λp , p ∈ {is , iu},
i = 1, 2, 3 satisfy (16), it is immediate that (17) holds. The
cycle W2 = v0 , (v0 , v1), v1 , (v1 , v0), v0 , where 
v0 (1) = 1s ,

v0 (2) = 2s and 
v1 (2) = 2s , 
v1 (3) = 3s , isT -contractive with
Tv0 = Tv1 = T̃ = 5. Indeed, Ξ1(W2) = −2.2990, Ξ2(W2) =
−24.5457, Ξ3(W2) = −1.9047.

Remark 10: Both in Propositions 1 and 2, we consider the
simplest setting where the T -factors associated with all vertices
that appear in W = v0 , (v0 , v1), v1 , . . . , vn−1 , (vn−1 , v0), v0 ,
are the same. However, this choice of T -factors can also be
extended to non-equal Tvj , j = 0, 1, . . . , n− 1. For instance, in
Example 1, the candidate contractive cycle W2 = v0 , (v0 , v1),
v1 , (v1 , v0), v0 is also T -contractive with Tv0 = 5 and Tv1 =
4. It follows that Ξ1(W2) = −2.7452, Ξ2(W2) = −22.0911,
Ξ3(W2) = −0.3662.

Remark 11: Switched systems have appeared before in
NCSs literature, see, for example, [5], [14], [22], [33], and
average dwell-time switching logic has proven to be a useful
tool. In the presence of unstable systems, stabilizing average
dwell-time switching involves two conditions on ]0 : t] for ev-
ery t ∈ N [26]: i) an upper bound on the number of switches
and ii) a lower bound on the ratio of durations of activation of
stable to unstable subsystems. In contrast, our design of a stabi-
lizing scheduling policy involves the design of a T -contractive
cycle on the underlying weighted directed graph of the NCS.
To design these cycles, we solve the feasibility problems (13)
and (14). Condition (9) does not involve nor imply restrictions
on the behavior of a scheduling policy on every interval ]0 : t],
t ∈ N.

Remark 12: In the recent past, multiple Lyapunov-like func-
tions and graph-theoretic tools are widely used to construct sta-
bilizing switching logics for switched systems, see, for example,
[16]–[18]. A weighted directed graph is associated with a family
of systems and the admissible transitions between them, and a
switching logic is expressed as an infinite walk on this weighted
directed graph. Infinite walks, whose corresponding switching
logics preserve stability, are constructed by employing negative
weight cycles; see [16, §3], [17, §3], [18, §3] for details. In
this paper, instead of studying GAS of a switched system, we
analyze “simultaneous” GAS ofN -switched systems, each con-
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taining one asymptotically stable and one unstable subsystem.
For that purpose, a stabilizing scheduling policy is designed
by incorporating multiple switching logics, each of which is
stabilizing. Not surprisingly, the design of T -contractive cy-
cles transcends beyond identifying negative weight cycles on a
weighted directed graph: it involves the selection of T -factors
that preserve GAS of all N plants, where every T -factor adds
to the negativity of Ξi(W ) for M plants and to the positiv-
ity of Ξi(W ) for the remaining N–M plants. In addition, so
far in the literature, negative weight cycles for the stability of
a switched system are designed under the assumption that the
Lyapunov-like functions Vp , p ∈ {is , iu} and the correspond-
ing scalars λp , p ∈ {is , iu}, i ∈ {1, 2, . . . , N} are “given”; see,
for example, [16, Remark 9], [17, Remark 9], [18, §2.2] for
discussions. In contrast, in this paper, we deal with the harder
problem of identifying T -contractive cycles on G, and design
multiple Lyapunov-like functions Vp and the corresponding
scalars λp , p ∈ {is , iu}, i = 1, 2, . . . , N such that these cycles
exist.

Remark 13: Optimal scheduling policies for remote state
estimation in sensor networks have been studied recently in [7],
[19], and [20]. In the context of our results, one can utilize
properties of T -contractive cycles on G to achieve the optimal
stability margin for a scheduling policy. Notice that the choice of
T -factors for a T -contractive cycle on the underlying weighted
directed graph of the NCS under consideration is not unique.
In addition, the choice of a T -contractive cycle itself is not
unique. It is clear that employing “any” T -contractive cycle W
on G is sufficient to construct a stabilizing periodic scheduling
policy as far as GAS of each plant i in (1) is concerned. Fix i ∈
{1, 2, . . . , N}. Any T -contractive cycle yields Ξi(W ) = −εi
for some εi > 0. We observe that as εi increases, the rate of
convergence of ‖xi(t)‖ improves; see also the experimental
results in Section V.

Remark 14: The nonuniqueness of T -factors and T -
contractive cycles described in Remark 13 can be exploited
to extend our results to the setting of a static scheduling policy
with a nonperiodic structure. Indeed, suppose that W1 and W2
are two distinct (different in terms of either T -factors or ver-
tices) T -contractive cycles on G. Then a scheduling policy of
a nonperiodic structure can be generated by concatenating W1
and W2 , for example, W1W2W1W2W2W1W2W2W2 . . .. Such
a scheduling policy is static because the allocation sequences
of the shared communication channel are computed offline, but
the sequences are applied in a nonperiodic manner.

V. NUMERICAL EXPERIMENT

A. The NCS

Consider an NCS withN = 5 discrete-time linear plants and a
shared communication channel of limited capacity. The matrices
Ai ∈ R2×2 , Bi ∈ R2×1 , and Ki ∈ R1×2 , i = 1, 2, 3, 4, 5 are
chosen as follows; numerical values are given in Table I.

� Elements of Ai are selected from the interval [−2, 2] uni-
formly at random.

� Elements of Bi are selected by picking values from the
{0, 1}.

TABLE I
DESCRIPTION OF INDIVIDUAL PLANTS IN THE NCS

Fig. 3. Not all plants are GAS under round-robin scheduling.

TABLE II
DESCRIPTION OF SCALARS ADMITTING A SOLUTION TO THE FEASIBILITY

PROBLEM (14)

� It is ensured that the pair (Ai,Bi) is controllable; Ki is
the discrete-time linear quadratic regulator for (Ai,Bi)
with Qi = Q = 5I2×2 and Ri = R = 1.

Suppose that M = 2 plants are allowed to access the com-
munication channel at every instant of time.

B. Non-triviality

We note that designing a stabilizing scheduling policy in
the above setting is not a trivial problem. Indeed, consider a
round-robin scheduling policy plants 1 and 2 followed by plants
2 and 3, and then followed by plants 4 and 5 accessing the
channel, each combination being active for 1 unit of time. In
Fig. 3, we demonstrate that plants 4 and 5 are unstable under
this scheduling policy, and consequently, a careful design of γ
is essential.

C. The Underlying Weighted Directed Graph

We construct the underlying directed graph G(V,E) of
the NCS under consideration. For the given setting, we have
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TABLE III
DESCRIPTION OF DIFFERENT T -CONTRACTIVE CYCLES ON G

Fig. 4. Scheduling policy γ obtained from Algorithm 1.

(
N
M

)
= 10. G consists of

� V = {v1 , v2 , . . . , v10} with
L(v1)={1s , 2s , 3u , 4u , 5u}, L(v2)={1s , 2u , 3s , 4u , 5u},
L(v3)={1s , 2u , 3u , 4s , 5u}, L(v4)={1s , 2u , 3u , 4u , 5s},
L(v5)={1u , 2s , 3s , 4u , 5u}, L(v6)={1u , 2s , 3u , 4s , 5u},
L(v7)={1u , 2s , 3u , 4u , 5s}, L(v8)={1u , 2u , 3s , 4s , 5u},
L(v9)={1u , 2u , 3s , 4u , 5s}, L(v10)={1u , 2u , 3u , 4s , 5s},
and

� E = {(vp , vq ), p, q = 1, 2, . . . , 10, p �= q}.

D. A T -contractive Cycle

Fix a candidate contractive cycle W = v0 , (v0 , v1), v1 , (v1 ,
v2), v2 , (v2 , v0), v0 on G, where v0 = v5 , v1 = v4 , v2 = v10 .
We apply Algorithm 2 with hs = 0.0001 and hu = 0.1, and
obtain that W is T -contractive with T -factors: Tv0 = 4,
Tv1 = 3, Tv2 = 5. Indeed, Ξ1(W ) = −2.7629, Ξ2(W ) =
−8.0877, Ξ3(W ) = −7.9572, Ξ4(W ) = −0.2626, and Ξ5(W )
= −5.8414. The corresponding values of the scalars λp , p ∈
{is , iu} and μpq , p, q ∈ {is , iu}, i = 1, 2, . . . , N are given in
Table II.

E. The Scheduling Policy

A scheduling policy γ is obtained from Algorithm 1. γ is
constructed by employing W , and it is periodic with period
Tv0 + Tv1 + Tv2 = 12 units of time. In Fig. 4, we illustrate γ
until time t = 60.

F. GAS of NCS

We choose 100 different initial conditions from the interval
[−10, 10]2 uniformly at random, and plot (‖xi(t)‖)t∈N0 under
the scheduling policy γ, i = 1, 2, 3, 4, 5. Fig. 5 contains plots

Fig. 5. Plot for ‖xi (t)‖ versus t for each plant i = 1, 2, 3, 4, 5.

Fig. 6. Plot for averagex 3 (0) ‖x3 (t)‖ versus t corresponding to cycles
Wj .

for ‖xi(t)‖, i = 1, 2, 3, 4, 5 until time t = 60. It is observed that
the individual plants of the NCS under consideration are GAS
under our scheduling policy.
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G. Comparison

We choose three distinct T -contractive cycles Wj = v
(j )
0 ,

(v(j )
0 , v

(j )
1 ), v(j )

1 , (v(j )
1 , v

(j )
2 ), v(j )

2 , (v(j )
2 , v

(j )
0 ), v(j )

0 on G. The
description of the cycles and the corresponding values of
Ξi(Wj ), j = 1, 2, 3, i = 1, 2, 3, 4, 5 are given in Table III. We
now illustrate that with smaller values of Ξi(Wj ), the rate of
convergence of ‖xi(t)‖ to 0 becomes faster. For this purpose,
we pick 10 different initial conditions xi(0) from the interval
[−1, 1]2 uniformly at random and simulate (‖xi(t)‖)t∈N0 for the
cycles Wj . Fig. 6 contains plots for averagexi (0)(‖xi(t)‖)t∈N0

for the plant i = 3 corresponding to the cycles Wj .

VI. CONCLUDING REMARK

In this paper, we presented a stabilizing scheduling policy
for NCSs under medium-access constraints. A switched sys-
tem representation is associated with the individual plants, and
a weighted directed graph is associated with the NCS. Our
scheduling policy is designed by employing a T -contractive
cycle on the underlying weighted directed graph of the NCS.
We also address an algorithmic construction of T -contractive
cycles. Since our algorithm for designing T -contractive cycles
does not conclude about their nonexistence, an important ques-
tion is regarding the design of such cycles when our algorithm
does not yield a solution for all choices of candidate contractive
cycle on a weighted directed graph. Also, a natural extension
of our work is to accommodate network-induced uncertainties,
such as access delays and packet dropouts, in the feedback con-
trol loop. These aspects are currently under investigation and
will be reported elsewhere.

APPENDIX

Proof of Theorem 1: Consider the NCS described in Sec-
tion II and its underlying directed graph G(V,E). Let W =
v0 , (v0 , v1), v1 , . . . , vn−1 , (vn−1 , v0), v0 be a T -contractive cy-
cle on G. Consider a scheduling policy γ obtained from Algo-
rithm 1 constructed by employing W . We will show that each
plant in (1) is GAS under γ.

Fix an arbitrary plant i ∈ {1, 2, . . . , N}. In view of the
switched systems representation of plant i in (3), it suffices
to show that the switching logic σi corresponding to γ ensures
GAS of plant i.

Fix a time t ∈ N. Recall that 0 =: τ0 < τ1 < · · · are the
points in time at which γ changes values. Let Nγ

t be the total
number of times γ has changed its values on ]0 : t]. In view of
(5), we have

Vσi (t)(xi(t)) ≤ λ
t−τN γ

t

σi (τN γ
t

)Vσi (τN γ
t

)(xi(τN γ
t
)). (18)

A straightforward iteration of (18) using (5) and (6) gives

Vσi (t)(xi(t)) ≤

⎛
⎜⎜⎜⎝

N γ
t∏

j=0
τN γ

t
+ 1 :=t

λ
τj + 1 −τj
σi (τj ) ·

N γ
t −1∏
j=0

μσi (τj )σi (τj + 1 )

⎞
⎟⎟⎟⎠

Vσi (0)(xi(0)). (19)

The first term on the right-hand side of the above inequality is

exp

⎛
⎜⎜⎜⎝ln

⎛
⎜⎜⎜⎝

N γ
t∏

j=0
τN γ

t
+ 1 :=t

λ
τj + 1 −τj
σi (τj )

⎞
⎟⎟⎟⎠+ ln

⎛
⎝N γ

t −1∏
j=0

μσi (τj )σi (τj + 1 )

⎞
⎠
⎞
⎟⎟⎟⎠.

Now

ln

⎛
⎜⎜⎜⎝

N γ
t∏

j=0
τN γ

t
+ 1 :=t

λ
τj + 1 −τj
σi (τj )

⎞
⎟⎟⎟⎠

=
N γ
t∑

j=0
τN γ

t
+ 1 :=t

⎛
⎝ ∑
p∈{is ,iu }

1σi (τj )(p)(τj+1 − τj ) ln λp

⎞
⎠ . (20)

Let Ds(s, t) and Du (s, t) denote the total durations number
of time-steps of activation of the stable and unstable modes of
i on ]s : t], respectively. Recall that 0 < λis < 1 and λiu ≥ 1.
Consequently, ln λis < 0 and ln λiu ≥ 0. Thus, the right-hand
side of (20) is equal to

− |ln λis |Ds(0, t) + |ln λiu |Du (0, t). (21)

LetNpq (s, t) denote the total number of transitions from subsys-
tem (mode) p to subsystem (mode) q, p, q ∈ {is , iu} on ]s : t].
We have

ln

⎛
⎝N γ

t −1∏
j=0

μσi (τj )σi (τj + 1 )

⎞
⎠

= lnμis iu Nis iu (0, t) + lnμiu is Niu is (0, t) (22)

since μis is = μiu iu = 1. Substituting (21) and (22) in (19), we
obtain Vσi (t)(xi(t)) ≤ ψi(t)Vσi (0)(xi(0)), where

N � t → ψi(t) := exp (− |ln λis |Ds(0, t) + |ln λiu |Du (0, t)

+ lnμis iu Nis iu (0, t) + lnμiuis Niuis (0, t)) .

From the definition of Vp , p ∈ {is , iu} in (4) and properties
of positive definite matrices [2, Lemma 8.4.3], it follows
that ‖xi(t)‖ ≤ cψi(t) ‖xi(0)‖ for all t ∈ N0 , where c =√

(maxp∈{is ,iu } λmax(Pp))/(minp∈{is ,iu } λmin(Pp)), where
for a matrix A ∈ Rd×d , λmin(A) denotes the minimum
eigenvalue of A. By Definition 1, to establish GAS of (3),
we need to show that c ‖xi(0)‖ψi(t) can be bounded above
by a class KL function. Toward this end, we already see that
c ‖xi(0)‖ is a classK∞ function. Therefore, it remains to show
that ψi(t) is bounded above by a function in class L.

Recall that γ is constructed by employing a T -contractive
cycle W = v0 , (v0 , v1), v1 , . . . , vn−1 , (vn−1 , v0), v0 on G, and
Tvj , j = 0, 1, . . . , n− 1 are the T -factors associated with ver-
tices vj , j = 0, 1, . . . , n− 1. Let TW :=

∑n−1
j=0 Tvj , t ≥ mTW ,

m ∈ N0 , and Ξi(W ) = −εi , εi > 0, where Ξi(W ) is as defined
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in (9). With the construction of γ, we have

ψi(t) = exp(− |ln λis |Ds(0, t) + |ln λiu |Du (0, t)

+ lnμis iu Nis iu (0, t) + lnμiu is Niu is (0, t))

= − |ln λis |Ds(0,mTW ) − |ln λis |Ds(mTW , t)

+ |ln λiu |Du (0,mTW ) + |ln λiu |Du (mTW , t)

+ lnμis iu Nis iu (0,mTW ) + lnμis iu Nis iu (mTW , t)

+ lnμiu is Niu is (0,mTW ) + lnμiu is Niu is (mTW , t). (23)

Notice that −|ln λis |Ds(0,mTW ) + |ln λiu |Du (0,mTW ) +
ln μis iu Nis iu (0,mTW ) + lnμiu is Niu is (0,mTW ) = −|ln λis |
m
∑

j :
v j (i)=is
j=0,1,...,n−1

Tvj +|ln λiu |m
∑

j :
v j (i)=iu
j=0,1,...,n−1

Tvj + lnμis iu

m#(is → iu )W + lnμiu is m#(iu → is)W , where #(p→
q)W denotes the number of times a transition from a vertex
vj to a vertex vj+1 has occurred in W such that 
vj (i) = p and

vj + 1 (i) = q, p, q ∈ {is , iu}, p �= q. The right-hand side of the
above equality can be rewritten as

m

⎛
⎜⎜⎜⎝− |ln λis |

∑
j :
v j (i)=is
j=0,1,...,n−1

Tvj + |ln λiu |
∑

j :
v j (i)=iu
j=0,1,...,n−1

Tvj

+ lnμis iu #(is → iu )W + lnμiu is #(iu → is)W

)
.

(24)

From the definition of weights associated with vertices and
edges ofG, we have that the above expression is equal to −mεi .
Also

− |ln λis |Ds(mTW , t) + |ln λiu |Du (mTW , t)

+ lnμis iu Nis iu (mTW , t) + lnμiu is Niu is (mTW , t)

≤ |ln λiu | (t−mTW ) +mn(lnμis iu + lnμiu is ) := a (say).
(25)

From (24) and (25), we obtain that the right-hand side of (23) is
bounded above by exp

(−mεi + a
)
.

Let ϕi : [0, t] → R be a function connecting (0, exp(a) +
TW ), (rTW , exp(−(r − 1)εi + a)), (t, exp(−mεi + a)), r =
1, 2, . . . ,m, with straight line segments. By construction, ϕi
is an upper envelope of T → ψi(T ) on [0,t], is continuous,
decreasing, and tends to 0 as t→ +∞. Hence, ϕi ∈ L.

Recall that i ∈ {1, 2, . . . , N} was selected arbitrarily. It fol-
lows that our assertion holds for all plants i in (1).

Remark 15: The definition of the functions ψt , i =
1, 2, . . . , N clarifies the association of the natural logarithm
with the scalars λp , p ∈ {is , iu} and μpq , p, q ∈ {is , iu} in the
vertex and edge weights ofG, respectively, i = 1, 2, . . . , N . The
use of absolute values with ln λp , p ∈ {is , iu}, i = 1, 2, . . . , N
allows for easy distinction between the positive and negative
terms in ψi , i = 1, 2, . . . , N .

Proof of Proposition 1: Let M = 1. Fix a cycle W =
v0 , (v0 , v1), v1 , . . . , vN−1 , (vN−1 , v0), v0 on G that satisfies

vsk ∩ vs
 = ∅ for all k, 
 = 0, 1, . . . , N − 1, l �= 
. Clearly, W
is a candidate contractive cycle on G.

Without loss of generality, let us assume that 
vi−1 (i) = is ,
i = 1, 2, . . . , N . Suppose that Tvj = T̃ , j = 0, 1, . . . , N − 1.
By construction ofW , the left-hand side of (11) is−|ln λis |Tvi−1

+ |ln λiu |(
∑N−1

j=0
j �=i−1

Tvj ) + lnμis iu + lnμiu is = (−|ln λis | +
(N − 1)|ln λiu |)T̃ + lnμis iu +lnμiu is , i=1, 2, . . . , N . Since
(16) holds, it is possible to choose an integer T̃ > 0 such that
the above expression is strictly less than 0.

Proof of Proposition 2: Let M ≥ N/2. Fix a cycle W =
v0 , (v0 , v1), v1 , (v1 , v0), v0 on G that satisfies vs1 ⊃ {1, 2, . . . ,
N} \ V s

0 . Let j1 , j2 , . . . , jM and k1 , k2 , . . . , kN−M ∈ {1, 2,
. . . , N} be the elements for which 
v0 (jp) = jps , p = 1, 2, . . . ,
M and 
v1 (kq ) = kqs , q = 1, 2, . . . , N −M , respectively. We
have |{j1 , j2 , . . . , jM }| ≥ |k1 , k2 , . . . , kN−M |. It is immediate
that W is a candidate contractive cycle.

Suppose that Tv0 = Tv1 = T̃ . By construction ofW , we have
Nis iu , Niu is ∈ {0, 1}, i = 1, 2, . . . , N . The left-hand side of
(11) is bounded above by (−|ln λis | + |ln λiu |)T̃ + lnμis iu +
lnμiu is . Since condition (17) holds, there exists T̃ > 0 such that
the above expression is strictly less than 0. �
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