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Abstract— Given a target image as query, person
re-identification systems retrieve a ranked list of candidate
matches on a per-camera basis. In deployed systems, a human
operator scans these lists and labels sighted targets by
touch or mouse-based selection. However, classical re-id
approaches generate per-camera lists independently. Therefore,
target identifications by operator in a subset of cameras cannot
be utilized to improve ranking of the target in remaining set
of network cameras. To address this shortcoming, we propose
a novel sequential multi-camera re-id approach. The proposed
approach can accommodate human operator inputs and provides
early gains via a monotonic improvement in target ranking.
At the heart of our approach is a fusion function which operates
on deep feature representations of query and candidate matches.
We formulate an optimization procedure custom-designed to
incrementally improve query representation. Since existing
evaluation methods cannot be directly adopted to our setting,
we also propose two novel evaluation protocols. The results on
two large-scale re-id datasets (Market-1501, DukeMTMC-reID)
demonstrate that our multi-camera method significantly
outperforms baselines and other popular feature fusion schemes.
Additionally, we conduct a comparative subject-based study
of human operator performance. The superior operator
performance enabled by our approach makes a compelling case
for its integration into deployable video-surveillance systems.

Index Terms— Person re-identification, surveillance,
operator-in-the-loop, cross-camera, feature fusion.

I. INTRODUCTION

IN RECENT times, the development of intelligent video sur-
veillance platforms to monitor large crowded settings such

as shopping malls, railway stations, airports etc. has become
a priority to ensure public safety and security. A crucial
component of such a platform is the person re-identification
(re-id) system. Given a query image, a re-id system searches
through all the camera Field-of-Views (FoVs) and returns a
per-camera ranked list of candidate matches. However, due to
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large variation in illumination, viewpoint, target resolution and
other challenges arising from occluded targets, re-id methods
are often unable to retrieve the correct match within a short
enough ranked list. This imposes a significant burden on
human operators of the surveillance system who now need
to laboriously scan large lists per camera. The problem is
further compounded when a large number of cameras are
present. Such factors have kept person re-id an open problem
in computer vision.

In a deployment scenario, it is fairly typical to observe a
person in more than one camera FoV. Since each observation
may provide complementary information, the human operator
must seek the target in every per-camera ranked list generated
by a re-id system. If the target is identified in a particular list,
the operator may choose to ‘label’ the same via a simple haptic
operation (e.g. touch or mouse-based selection). However,
in a classical re-id scheme, the per-camera lists are generated
independently [1]–[3] without taking actions of the human
operator into account. In other words, target labeling by the
operator in a subset of cameras cannot be leveraged to improve
the ranking of the query target in the remaining set of cameras
(see ‘Classical re-id scheme’ in Figure 1).

It is certainly desirable to exploit the complementary infor-
mation on target appearance from multiple camera FoVs and
consequent operator labeling. To this end, we propose a novel
sequential and iterative approach which improves ranking of
the target as additional cameras are queried across the network.
Towards the success of our approach, we develop a sequential
multi-camera fusion scheme. The fusion scheme operates on
feature representations of candidate matches (see ‘Proposed
re-id scheme’ in Figure 1). Our approach has three major
advantages. Firstly, it can accommodate an arbitrary number
of cameras. Secondly, the fusion scheme is flexible enough
to operate on cameras in any arbitrary order. Thirdly and
crucially, our approach is designed to produce a monotonic
improvement in re-id performance as additional target labels
from different cameras are fused.

In addition, the proposed approach naturally aligns
with the manner in which a human operator typi-
cally interacts with a re-id system. Therefore, it can be
seamlessly integrated into deployable video-surveillance sys-
tems. The proposed approach is also designed as plug-
and-play, i.e., it can be used atop any state-of-the-art
camera pairwise feature estimation/metric learning method

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 05,2023 at 07:25:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2420-3684
https://orcid.org/0000-0003-4134-1154
https://orcid.org/0000-0002-1926-1804
https://orcid.org/0000-0002-6946-9152


2376 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 1. (Top) Classical re-id scheme where query image’s feature representa-
tion is used to search each camera in the network independently. The retrieved
lists are returned to the human operator. (Bottom) A real-world deployment
scenario that motivates our proposed sequential re-id scheme where operator
feedback regarding target sighting is utilized towards better re-id performance
in an online fashion. In the figure, camera C1 is queried first and ranked list
of matches is obtained. The correct match (pink box) in the retrieved list is
identified by operator and is subsequently fused with query image at feature
level (orange block). This fused representation is used to query camera C2.
Notice that ranking of query target in C2’s list is expected to improve in the
sequential fusion-based approach unlike the classical version which cannot
exploit operator inputs to improve subsequent queries.

for re-id. Therefore, improvements in the camera-pairwise re-
id approaches can be utilized and further extended within our
framework. Concretely, we make the following contributions:

• We propose a novel framework for utilizing feedback
from human operators in a re-id pipeline deployed in a
real-world scenario. In this proposed framework, obser-
vations from query target in a subset of cameras can be
aggregated to obtain improved retrieval results for the
remaining cameras in the network (Sec. III).

• We propose a novel sequential feature fusion scheme
and a training strategy that learns to achieve monotonic
improvement in re-id performance as additional observa-
tions from the target are fused. (Sec. III-D).

• To demonstrate the effectiveness of our approach,
we define novel test protocols (Sec. IV-C) and per-
form extensive experiments (Sec. IV-D) on two large-
scale multi-camera benchmark datasets (Market-1501 [4],
DukeMTMC-reID [5]).

• We perform comparative analysis of human operator
performance obtained from interaction logs of a deployed
re-id user interface to demonstrate the superiority and
real-world feasibility of our approach.

We define two novel protocols to evaluate our proposed fusion
framework. While both these protocols are directly motivated
from the deployment scenario described in Fig. 1, they are also
carefully modified to enable quantitative evaluation of fusion
as well as comparison with traditional re-id approaches.

II. RELATED WORK

The problem of person re-identification has been well stud-
ied over the last decade [6]. An important class of person re-id
methods involve development of feature descriptions that are

discriminative between different targets and exhibit robustness
to variations in viewpoint, color, illumination etc. across dif-
ferent camera FoVs [7]–[13]. Popular discriminative signature-
based methods include ICT [14], SDALF [15], saliency based
methods [16], [17] , hierarchical Gaussian descriptors [18]
and many more. Besides these, a large volume of works
have focused on camera-pairwise metric learning techniques
[19]–[22]. Some widely used such techniques are LADF [23],
RankSVM [24], KISSME [1], LFDA [25], CFML [21] and
XQDA [2].

Recently, deep neural network based person re-id
approaches have shown significant performance improvements
by jointly learning the feature representation and the dis-
tance metric [26]–[33]. Unlike the classical hand-crafted tech-
niques where the feature extraction and the metric learning
methods were independently designed and cascaded, deep
learning approaches jointly optimize for these two inter-
connected components, outperforming the non-deep methods
in the process. Many such methods solve re-id as a ver-
ification/binary classification problem. A popular approach
involves Siamese networks with contrastive loss [3], [34].
In [26], LSTM modules were introduced into a Siamese
network to model spatial dependencies between image parts.
Reference [35] proposed a domain-guided dropout strategy to
make the learned re-id model robust to inter-dataset variations.
Even beyond Siamese, [36] provides an improved triplet
loss for obtaining a more discriminative feature representa-
tion. In datasets with large number of unique identities [4],
robust feature representations can be learned in an identi-
fication mode, i.e., training to map each image to an ID
and using the learned feature embedding to associate unseen
IDs during testing phase [6], [37], [38]. Specifically, in [6],
the authors implemented a modified ResNet-50 [39] model on
Market-1501 [4] dataset under both identification and veri-
fication setup. We adopt the verification based protocol and
baseline model in our experiments.

Recurrent Neural Networks have been used for feature
aggregation in various video-based applications [40]–[42].
Feature fusion for person re-id has also been considered,
but in a multi-query set-up where multiple images of a
target from the same camera are fused using simple pooling
operations on feature representations [4]. Multi-camera fusion
has been employed for object detection [43], tracking [44]
and activity classification [45]. While there are works in
other fields with operator/human-in-the-loop frameworks, they
essentially differ from our work in the manner in which the
human feedback is made use of. For e.g, [46] tries to learn
similarity between face images from probe and gallery sets
with human assistance. The work uses similarity labels as
feedback from humans to iteratively embed the query into
the learned feature set. Similarly, multi-camera feature fusion
has been considered in the literature, but in a way unlike
the proposed approach. Images from multiple cameras are
used either in training or during inference to obtain a single
fused representation which is then used for decision making
( [47], [48]). In contrast, the proposed fusion framework
involves sequential fusion of inputs from multiple cameras.
The current fused representation is used to query and retrieve
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images from gallery set and the retrieval features are then com-
bined with the existing fused feature to obtain the subsequent
query. To the best of our knowledge, ours is the first work to
utilize operator feedback in such a sequential framework to
perform fusion at the feature level.

III. PROPOSED APPROACH

In this section, we lay out details of our method. We begin
with a formal problem statement of our fusion approach
(Section III-A). Having done so, we identify three key prop-
erties that need to be satisfied during the fusion process
(Section III-B). We subsequently present the design of the
fusion function (Sec. III-C) and our novel modifications to
the default optimization procedure (Sec. III-D), all designed
to satisfy the properties mentioned previously. A GRU based
implementation of the proposed fusion function is described
in Sec. III-E.

A. Problem Statement

Obtaining discriminative person-specific representations is a
key component of any modern re-id approach. To obtain such
representations, we follow the standard convention of fine-
tuning pre-trained Convolutional Neural Networks (CNNs) on
person re-id datasets for classification/verification task. For a
given person image, we use the corresponding final, fully-
connected layer’s output of the fine-tuned CNN as the feature
representation and employ x or its subscripted variants to refer
to the same.

Our problem can now be stated as follows: Suppose the
total number of cameras is T and the human operator has
performed selection of the query target in k � T cameras.
Given the sequence of corresponding features {x1, x2, . . . , xk},
the aim is to learn a fusion function F that integrates operator
feedback and produces an optimal fused representation fk , i.e.
fk = F(x1, x2, . . . , xk).1

B. Desired Properties of the Fusion Function

The number of camera FoVs in which a query is visible
can vary from target to target. Therefore, the fusion function
F must be capable of handling a variable number of input
feature representations. In addition, images of the same target
in different camera FoVs often provide complementary visual
information. Hence, a proper fusion of these image features
should produce a more robust and holistic feature represen-
tation that leads to a better re-id accuracy/mAP. To achieve
these aims, the proposed fusion approach must ideally satisfy
the following properties:

1) F must be able to process camera (feature) sequences
of variable lengths, i.e. k can vary from target to target.

2) As the number (k) of feature representations being
aggregated increases, the fused representation fk should
improve, i.e. enable sustenance or increase in re-id
accuracy.

3) F should be invariant to relative ordering in the input
feature sequence, i.e. the order in which cameras are
considered should not matter.

1Please note the distinction between fixed feature representations (x)
obtained from CNN and the ‘learnt’ fused representations ( f ) produced by
our fusion function.

C. Design of the Fusion Function

A feature fusion module can be designed in a number
of possible ways. Among the popular early fusion/feature
fusion techniques, mean and max pooling (element-wise for
the feature vectors) can be suitable candidates for our fusion
function as both of these satisfy the desired properties-1 and
3 by design. However, these methods do not necessarily
guarantee the property-2, i.e., the fused representations result-
ing in sustenance or improvement in re-id accuracy when
longer sequences of features are input to the fusion function.
Towards this, the function should be designed such that
it contains learnable parameters and the desired properties
(e.g., property-2) can be implicitly enforced via minimization
of a suitable cost over these parameters. Most recurrent models
(e.g. recurrent neural nets) would be classified under this
category of functions. In the current and the following sub-
section, we describe the design of the suitable cost functions
for optimal estimation of the fusion function parameters.

During the training phase, we require F to transform
the sequence of image features {x1, x2, . . . , xk} from the
k different cameras to a corresponding sequence of fused
representations { f1, f2, . . . , fk} (Sec. III-A). To achieve this,
the image features are first transformed to an embedding
of pre-defined dimension to obtain {x̃1, x̃2, . . .}. To increase
the robustness of the fusion process, {x̃1, x̃2, . . .} up to and
including current camera index t are mean-pooled (purple
boxes in Fig. 2) and fed as input to a recurrent function block.

Suppose we choose an image from a training sequence
and define it as the anchor. We define positive instances
as those training images having the same id as that of the
anchor and negative instances as those images whose id differs
from anchor’s id. Ideally, we require that a positive instance’s
feature representation be closer to anchor’s representation than
the negative’s representation.

This objective can be achieved via minimization of a
hinge-style triplet loss [36], [49]–[51] defined on the anchor,
positive and negative instance representations.

L(tri) =
∑

{ f,p,n}
max(0, ‖ f − p‖2 − ‖ f − n‖2 + m) (1)

where m is the margin.
In our setting, we set up the triplet loss L(tri)

t for each
camera index t wherein the fused representation ft serves
as the anchor. The choice of positive instances is limited,
being confined to same sequence or at the most a handful
of other sequences. We omit the camera corresponding to the
positive instance during the fusion process since images from
the same camera have high similarity. We also choose to keep
the positive instance fixed for all indices of a given training
sequence. The negative instance for each index is chosen using
hard mining within a given training mini-batch [51]. To enable
comparison with the fused feature, the positive and negative
instances are processed by the fusion module F for a single
time-step to obtain the corresponding features p and nt . The
triplet loss at index t is defined as:

L(tri)
t =

∑
{ ft ,p,nt }

max(0, ‖ ft − p‖2 − ‖ ft − nt‖2 + m) (2)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 05,2023 at 07:25:04 UTC from IEEE Xplore.  Restrictions apply. 



2378 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 2. An illustration of our fusion architecture (Sec. III). The baseline CNN features (x1, x2, . . .) from camera images are fed to our fusion function.
Purple boxes indicate mean-pooling of corresponding inputs. The fusion network is optimized via a novel loss formulation Lk , applied at each time step k,
to improve the accumulated feature representation ( fk ). p and nt are the representations for positive and negative instances. Note that for a given training
sequence, the person id (anchor) and positive instance are held constant across the cameras, while negative instances vary.

We use soft-margin formulation as an approximation to the
hinge loss [51] as follows:

L(tri)
t =

∑
{ ft ,p,nt }

ln(1 + e‖ ft−p‖2−‖ ft −nt ‖2) (3)

D. Monotonic Representation Improvement

To specifically address the requirement of progressive
improvement in the quality of the fused representation ft

(property-2 in Section III-B), we introduce an additional per-
index loss term called monotonicity loss (m-loss). m-loss is
formulated as a sum of zero-margin hinge losses as follows:
L(mon)

t =
∑

{ ft ,p,nt }
max

(
0, d( ft , p) − d∗(t)

p

)

+ max
(
0, d∗(t)

n − d( ft , nt )
)

(4)

where d(.) is the euclidean distance metric. d∗(t)
p and d∗(t)

n are
defined as follows:

d∗(t)
p = min

τ∈{1,2,...,t−1} d( fτ , p) (5a)

d∗(t)
n = max

τ∈{1,2,...,t−1} d( fτ , nτ ) (5b)

Eq. 4 and eq. 5(a) ensure that the fused representation at
step t is closer to the positive instance than all the fused repre-
sentations till index t −1. Also, the negative instance is chosen
using hard-mining within a mini-batch and d∗(t)

n is chosen
as the maximum of distances from the fused representations
to the corresponding negative samples. Therefore eq. 4 and
eq. 5(b) enforce ft to be farther from all negative samples in
the mini-batch compared to any fused representation till step
t − 1.

The total loss at each time step t is formulated as a weighted
combination of the triplet loss and the monotonicity loss, i.e.

Lt = L(tri)
t + λλR

t L(mon)
t (6)

While λ is fixed for all indices t , λR
t is obtained using a lin-

ear weighting scheme to give more importance to monotonicity
loss for longer sequences. For a sequence of length T , λR

t =
t/T . Overall, the proposed loss formulation is designed to
ensure a decoupled optimization of the two desired prop-
erties – low triplet loss when a new feature representation
is aggregated and monotonic improvement in fused feature
representation.

E. Implementation of the Fusion Module

To meet the requirements for the fusion function as
described above, we judiciously design F around as a recur-
rent neural network. Specifically, out of many choices (RNNs,
LSTMs, GRUs etc.) for the recurrent architectures, we choose
to use a Gated Recurrent Unit (GRU) (Fig. 2) [52] - a popular
Recurrent Neural Network architecture (Sec. III-C). In GRU,
the following set of transformations are applied at each index
t of the sequence:

rt = σ(Wrx xt + Wrhht−1 + br ) (7a)

zt = σ(Wzx xt + Wzhht−1 + bz) (7b)

st = tanh(Whx xt + Whh(ht−1 � rt ) + bh) (7c)

ht = (1 − zt ) � ht−1 + zt � st (7d)

Here, � represents element-wise multiplication and
σ represents the sigmoid function. ht is formulated to serve
as an effective feature representation for the input feature
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sequence {x1, x2, . . . , xt } seen until that point, i.e., ft = ht .
The intermediate transformations rt , zt , st are formulated such
that the GRU effectively fuses only helpful aspects of the input
and ignores the rest. Our design choice of GRU is significantly
motivated by this property. Note that the subscripted W ’s and
b’s are shared across all the sequence indices and form the
trainable parameters of the GRU.

F. Training and Testing

The sequence-loss for GRU is computed as an average
across per-index total loss (eq. 6). During the fusion network
training, we nominally fix an input camera sequence ordering
and the inputs to the GRU are obtained on the basis of this
ordering. We emphasize that the choice of ordering is arbitrary.
In fact, we shall show later that the camera ordering has
negligible effect on re-id performance (Sec. IV-D). This result
also implies that the fusion function satisfies the third property
from the desirable properties of an ideal fusion function
(Sec III-B).

In the testing phase, query images from multiple cameras
are considered for fusion. We use the hidden state hk of the
GRU at the last camera index (Eq. 7(d)) as the fused feature fk .
Since the ids of images in the gallery set are unknown, it is not
possible to obtain a fused representation for them. To enable
comparison between query and gallery features, we construct
a sequence by repeating the gallery image and use it as the
input to the GRU. Additional details on this procedure are
presented in Sec. IV-C.

Other Fusion Functions: We explore mean-pooling and
max-pooling of features as two alternative fusion functions.
As discussed earlier in this section, both these functions (with
no trainable parameters) satisfy the desired properties 1 and
3 by design. These pooling operations are performed in ways
similar to multi query setting for person re-identification [4]
to obtain the fused representations. We present a detailed
comparative evaluation of the fusion functions in Sec. IV.
We also show how the early/feature fusion based sequential re-
id compares in performance with two late-fusion approaches
(Sec. IV-D.4).

IV. EXPERIMENTS

A. Datasets

Since the focus of the work is on fusion of features
from multiple cameras, we evaluate performance on
datasets with a minimum of three cameras in the net-
work. We report our results on two such datasets,
Market-1501 and DukeMTMC-ReID, which contain 6 and 8
cameras respectively.

Market-1501 [4]: This dataset has 12,936 images from 751
IDs in the training set and another 750 test IDs with 3,368
and 19,732 images in the query and gallery sets respectively.
Each ID is present in a minimum of two and a maximum
of six cameras (see left plot in Fig. 3). The gallery set has
multiple instances of an ID from a camera while the query set
has only one. All the images are of dimensions 128 × 64.

DukeMTMC-ReID [53]: This dataset is organized similar to
Market-1501. It has 702 IDs each in the train and test sets.

Fig. 3. Histogram of maximum number of cameras each target is
observed in Market-1501 [4] (left) and DukeMTMC-reID [53] (right) datasets.
In DukeMTMC-reID, there are very few samples with query sequence lengths
greater than 4.

There are 16,522, 2,228 and 17,661 images in train, query
and gallery sets respectively. All the images are obtained using
manually annotated bounding boxes. In the training set, each
ID is present in a minimum of 2 and a maximum of 6 cameras,
even though the network has 8 cameras (Fig. 3). The gallery
set has 408 distractor IDs, not present in more than one camera
FoV.

B. Implementation Details

1) Feature Extraction: For our experiments, we use
ResNet-50 [39] and AlexNet [54] as the base (per camera
image) CNN feature extractor models. Note that these choices
are nominal and any off-the-shelf model can be used as the
baseline feature extractor.

For the ResNet-50 baseline, we use the network
pre-trained on ImageNet [55] for fine-tuning on reID datasets.
An additional fully-connected (FC) layer is used at the end
of Pool-5 layer of ResNet-50 to reduce the feature dimension
to 512. For the AlexNet baseline, we remove Local Response
Normalization and employ batch-normalization at every layer
before the non-linearity. Similar to the ResNet-50 set-up,
the output embedding dimension is set to 512. During the
baseline network training, dropout with rate 0.5 is employed
for the fully-connected layers. We use Adam optimizer with
an initial learning rate of 0.0001. β1 and β2 parameters in the
optimizer are set to 0.9 and 0.999 in all experiments. As done
in [51], the learning rate is decreased as the training progresses
according to the following schedule:

ε(t) =

⎧⎪⎨
⎪⎩

ε0 if t � t0

ε0 × 0.001

(
t − t0
t1 − t0

)
if t0 � t � t1

(8)

Here, ε0, t0 and t1 are set to 0.0001, 15000 and 25000
respectively.

The input dimensions for ResNet-50 and AlexNet are fixed
to 256 ×128 and 227 ×227 respectively and the input images
are accordingly resized. To maintain the aspect ratio of input in
ResNet-50, the pooling layer is modified to enable an input of
dimension 256×128. Following [54], we augment our training
set with 5 random crops and their mirrored images. The size
of crop is set to 89% of the original image size.

2) Fusion Function: The GRU is initialized with random
weights and hidden state length is set to 512 in all
our experiments. As in CNN training, we use the Adam
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Fig. 4. Comparison of camera subset and ID selection in FSP and
VSP evaluation protocols. An illustration of the protocols is provided for
a sample camera network with four cameras and five unique identities,
denoted by different colored circles. Different query-gallery camera subsets
and corresponding IDs for querying are shown for each protocol. Note that
for VSP, only a subset of all possible camera combinations are shown for
brevity.

optimizer to perform gradient descent. For the experiments
with monotonicity loss (Sec. III-D), the weighting factor λ is
calculated using the scheduling scheme similar to that in Eq. 8
(ε, ε0 replaced with λ, λ0) with λ0 equal to 0.01.

C. Evaluation Protocols

In the protocol generally followed for evaluation in multi-
camera setting [6], single query and single gallery sets are
used irrespective of number of cameras in the network. The
images from all the cameras are binned together in the gallery
and for a given query, predictions from the same camera
are treated as inadmissible, i.e. not considered for evaluation.
In our work, we tackle the novel task of cross-camera fusion
which requires a minimum of two camera inputs into the
fusion function and at least one gallery camera to compare
the fused representations against. This setting is different
from traditional protocols and hence the existing evaluation
procedures cannot be directly adopted.

Therefore, we modify the traditional protocols under the
constraints present in re-id datasets and propose two new
evaluation protocols – Variable Set Protocol (VSP) and Fixed
Set Protocol (FSP). These two protocols are explained in
detail in the following sections. The suitability aspect towards
evaluation of our proposed framework and design justifications
for each of these protocols are also discussed in detail.

1) Variable Set Protocol (VSP): Note that we require a
comparison of the proposed approach with traditional re-id
methods used as baselines in this work (along with alternative
fusion approaches). Therefore, we develop a protocol char-
acteristically very similar to the traditional re-id evaluation
setups, while suitably modified to align with our sequential
re-id philosophy. For this, we partition the dataset into two
sets of observations, which are not only mutually exclusive in
terms of their image contents, but are also disjoint in terms
of camera field-of-views (FoVs) from which the observations
are sourced.

Let C be the set of cameras present in the network
(Fig. 4 a). A subset of C is considered as the gallery camera
set {GC}. The complementary set of {GC} is considered to
be the query camera set {QC}. For evaluation, a set of query
person IDs from {QC } are selected such that they are present
in a minimum of one camera in {GC} (Fig. 4 c). This proce-
dure is repeated for all possible gallery camera sets. Finally
results are averaged over query subsets of same cardinality.

Fig. 5. Rank-1 accuracies for variable set protocol on Market-1501 dataset
with ResNet-50 (left) and AlexNet (right) CNN baselines. GRU based
fusion outperforms mean and max-pooling based fusion methods. All fusion
techniques are significantly better than the CNN baselines.

The total number of such query-gallery combinations is given
by N = ∑n−1

i=1

(n
i

) = 2n − 2 where n is the number of
cameras in the network. Note that the size and contents of
both the query and gallery sets change based on the selection
of number of cameras for fusion (each cluster of bars in Fig. 5).
Hence, it is not possible to compare the performance of
fusion function for different lengths of sequences across these
different sets of partitions, following this protocol. We have
designed the FSP protocol specifically to study this.

2) Fixed Set Protocol (FSP): We design this protocol to
specifically evaluate the fusion approaches. In an example
deployment setup, shown in Fig. 1, the retrieved image from
a camera is fused with the query and a different camera
with non-overlapping field-of-view is queried to obtain the
subsequent retrieval. This procedure is repeated to obtain
fusions of growing number of images until all the cameras in
the network are exhausted. Thus the query set before and after
a certain fusion step changes in size and contents. To evaluate
the proposed fusion scheme, one needs to freeze the gallery
set to allow for a fair comparison of fusion performance across
different query subsets. This practical constraint of having
the same evaluation setting for comparing different lengths of
fusion compels us to design an alternative evaluation protocol,
termed ‘Fixed Set Protocol’ (FSP). Instead of fusing query
images with the retrieved images from gallery, images of
the same target from the query camera subsets are used for
fusion and then evaluation of the performance of this fusion
is performed on the fixed gallery set ({GC}). Note that the
inputs to be fused are selected using ground truth labels, and
can be thought of as the ‘virtual’ human operator’s feedback.
To evaluate the fusion function’s performance, we consider
all possible subsets of cameras within the query set ({QC}),
starting with one camera (no fusion) and progressively increas-
ing until NQ , the number of cameras within the query set.
For further clarifying these motivations as well as towards
better understanding of this protocol, refer to Fig. 4 (a,b).
Let there be four cameras in a network, numbered 1, 2, 3, 4.
Cameras 1, 2 and 3 are query cameras, fused in this particular
order and the camera 4 constitutes the gallery. In the first step,
query from camera 1 is combined with a ‘retrieved’ (we use
ground truth labels to simulate retrieval by human operator)
image from camera 2 to query the gallery set. Subsequently
input from camera 3 is combined with the previous fused
representation to again query the same gallery set. This proce-
dure is repeated for all possible query camera combinations.
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TABLE I

CLASSIFICATION-BASED BASELINE CNN PERFORMANCE

The total number of such possible query camera combinations
in any camera network is N = |P(QC )| − 1 where P(S) and
|S| are the power set and the cardinality of {S} respectively.
Note that we choose only those IDs which are present in all
the cameras in both {QC } and {GC } so as to enable fusion
in any query camera subset (Fig. 4). Thus the set of query
IDs is fixed for a given gallery set regardless of the query
subset used, rendering the metrics for different query subset
combinations comparable.

In the test phase for both protocols, feature fusion is
performed only on the query subset of the dataset. To enable
comparison of query and gallery features during testing,
we mimic the multi-camera scenario by constructing a
sequence of repeated gallery image features. Our decision is
motivated by the fact that our fusion function is optimized for
sequences and also by better performance observed in practice.
We empirically set the number of gallery image repetitions to
be same as the query sequence length. In the following sub-
sections, we report results for the GRU based fusion function
trained only with triplet loss (termed GRU) in both VSP and
FSP protocols. To show the efficacy of m-loss, we would
need to compare performance across different query sequence
lengths and thus report results for GRU trained with both
triplet and m-loss (termed GRU+m-loss) only on the FSP
protocol.

Overall, the proposed VSP and FSP protocols enable us
to evaluate a realistic deployment scenario and quantitatively
compare such a scenario with traditional baseline schemes.
More specifically, FSP has been designed to compare the
utility of fusion and the proposed ‘m-loss’ (Section III-D)
across variable-length observation sequences. In contrast, VSP
is aimed broadly towards comparison of the proposed GRU
based fusion framework with traditional re-id models used as
baselines in this work.

D. Results

1) Baseline CNN Performance: Table I shows the
rank-1 and mAP metrics for the ResNet-50 and AlexNet CNN
baselines on Market-1501 and DukeMTMC-ReID datasets.
The ResNet based network significantly outperforms the
AlexNet based network. The above pre-trained baseline net-
works are used as the feature extractors for the fusion module
in all our experiments. Since ResNet based network achieves
better retrieval performance, we primarily show results using
the ResNet baseline.

2) Results With VSP: The results for VSP on
Market-1501 are shown in Fig. 5. Since the baseline
feature extractor methods take in inputs from only one
camera at a time, we independently query from each of the
cameras in the query set. The scores are computed for each

TABLE II

COMPARISON OF AVERAGED MAP ON MARKET-1501 WITH UNIT LENGTH
GALLERIES. THE PROPOSED FUSION METHODOLOGY CONSISTENTLY

OUTPERFORMS THE OTHER FEATURE FUSION TECHNIQUES. NOTE

THAT THE BASELINE CNN PERFORMANCE FOR VSP IS 54.31%
AND 51.05% RESPECTIVELY FOR RESNET-50 AND ALEXNET

BASED ARCHITECTURES

TABLE III

COMPARISON OF AVERAGED FSP RANK-1 ACCURACIES OF

RESNET-50 AND ALEXNET BASED FUSION WITH VARYING

QUERY SET LENGTHS. EVALUATION IS PERFORMED ON

THE GRU+M-LOSS BASED FUSION. RESULTS ARE
AVERAGED OVER ALL SIX UNIT LENGTH

GALLERY CAMERA SETS

of these individual queries and their average is considered
for comparison with feature fusion based methods. In this
protocol, we report results for GRU based fusion function
trained with just the triplet loss.

For better representation, we average the results based
on the number of cameras present in the query set. From
the results (Fig. 5), we observe that our approach (fusion
of queries) performs significantly better than baseline – for
ResNet-50, on average, fusion outperforms baseline by 13.5%
and mean-pool based fusion by 3.6% in Rank-1 accuracy. The
mAP performances (Table II) are more noteworthy with 17.5%
and 7.2% improvement over baseline CNN and mean-pool
based fusion respectively. In the case of AlexNet as baseline
CNN, mean-pool based fusion performs slightly better than
our approach for sequences of length two. However, as the
number of cameras increase, our approach outperforms all
other approaches, thereby satisfying a design objective of
our fusion function. Additionally, the figures show that the
improvement obtained using feature fusion increases as more
query cameras are considered, as expected.

3) Results With FSP: To show the efficacy of fusion,
we compare fusion performance for varying query sequence
lengths with fixed gallery sets. The query sequence length
refers to the cardinality of the query camera combination.
In this protocol, we compare both the GRU (triplet only)
as well as the same trained using the additional m-loss to
show the utility of the latter as the length of sequence
of observations to be fused increases. Table III presents
the comparison of the proposed fusion based re-id using
ResNet-50 and AlexNet baselines on Market-1501 dataset
using FSP for different query sequence lengths. The gallery
camera set length is fixed to one. Hence, at most five images
can be used for feature fusion. The average rank-1 accuracies
over six such galleries is shown in the table. ResNet-50 based
fusion network performs significantly better due to better
baseline features. Hence, in the remaining experiments on FSP,
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Fig. 6. Effect of query sequence lengths on accuracy. Rank-1 accuracies
on three different gallery sets are shown for fusion with ResNet-50 baseline
on Market-1501 dataset. Feature fusion using GRU performs significantly
better than other fusion techniques in rank-1 accuracies, while m-loss helps
in maintaining monotonicity with increasing sequence lengths.

Fig. 7. Averaged FSP results for size 2 gallery sets using ResNet-50 based
network on Market-1501 [4] dataset. The fusion based approaches result in
monotonic improvement with increase in query sequence length. The proposed
GRU based fusion significantly outperforms the other fusion techniques.

we present results mainly on ResNet-50 architecture. The
effect of number of query images on fusion accuracy can also
be viewed in Fig. 6. The monotonic trend of accuracies with
increase in number of query cameras holds in the case of
GRU alone, but is further enhanced when trained with m-loss,
leading to improved accuracy at the later time-steps. On an
average, our fusion approach achieves 5.8% improvement in
Rank-1 accuracy over mean-pooling. Table II provides a com-
parison of mAP with ResNet-50 and AlexNet architectures on
Market-1501. For ResNet-50, our fusion approach outperforms
mean-pool based fusion in mAP by about 8%. The significant
improvement in mAP indicates that the fused representation is
able to effectively combine images, leading to better low-rank
retrievals. The results also crucially highlight the advantage of
our GRU-based fusion over simple pooling approaches. Fig. 7
presents averaged FSP results on gallery sets with two cameras
on Market-1501 dataset. Since there are two cameras in the
gallery set, the maximum possible query sequence length is
four. As in the case of length one gallery sets, we observe
a monotonic improvement in the retrieval performance of all
fusion methodologies as more images are fused. In summary,
the proposed GRU based fusion techniques with and without
m-loss significantly outperform the baseline fusion approaches
and the effect is pronounced with increasing query sequence
lengths, especially, when m-loss is additionally imposed while
training the GRU.

Fig. 8 presents rank-1 accuracy results on the
DukeMTMC-reID dataset following the FSP protocol.

Fig. 8. Rank-1 accuracy for fixed set protocol on DukeMTMC-reID dataset
with ResNet-50 (left) and AlexNet (right) CNN baselines.

TABLE IV

RANK-1 ACCURACY COMPARISON WITH LATE FUSION APPROACHES

ON MARKET-1501 DATASET. PROPOSED GRU BASED FUSION

SCHEME CONSISTENTLY OUTPERFORMS ALL THE OTHER BASE-
LINE FUSION SCHEMES BY A LARGE MARGIN

Due to dearth of query sequences with length greater than
four, we consider query sets with a maximum of four
cameras, while gallery size is fixed to two. The results are
averaged over all such possible gallery sets. Our approach
consistently outperforms other fusion techniques on both
ResNet-50 and AlexNet baselines, while increasing the
accuracy with fusion. We provide additional results on a third
dataset (MSMT17 [56]) in Section 4 of supplementary.

4) Comparison With Late Fusion Baselines: In
sections IV-D.2 and IV-D.3, we compared the proposed
GRU based fusion with other early fusion schemes, namely
mean and max pooling. We further substantiate our choice
of fusion function through comparison with late fusion
based approaches too. Specifically, we use the features from
the baseline CNN and perform score fusion and maximum
probability based fusion. In both these schemes, fusion is
done on the distances between query-gallery image features
rather than at the feature level. That is, Euclidean distances
between query and gallery image features are calculated
independently for individual input features to be fused,
which are subsequently combined using a weighted average
to obtain the final distance values after fusion. In score
fusion, equal weight is given to each of the input features
to be aggregated. In maximum probability fusion, a discrete
probability distribution over the gallery set is obtained by
normalizing the distance of the query from the gallery
images. The distance corresponding to the query input having
maximum probability for a given gallery image is considered
to be the fused distance. Quantitative results under both
FSP and VSP protocols on the Market-1501 dataset are
given in Table IV. In the case of FSP, we observe that the
performance of the late fusion techniques are similar to that
of other baseline mean pool based fusion scheme and better
than the max-pool scheme. In VSP, both the late fusion
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TABLE V

PORTABILITY OF THE PROPOSED FUSION FRAMEWORK: WE OBSERVE
THAT FUSION IMPROVES THE RETRIEVAL ACCURACY WHEN USED

ATOP HA-CNN [57], A STATE-OF-THE-ART RE-ID FEATURE

EXTRACTION PIPELINE

schemes are significantly better than mean/max pool for all
query sequence lengths. However, the proposed GRU based
fusion scheme consistently outperforms all the other baseline
fusion schemes (early/late fusion) by a large margin.

5) Portability of the Fusion Scheme: In the proposed fusion
framework, the fusion function training is independent of the
choice of feature extraction pipeline. The feature extraction
network parameters are not updated during the training of
fusion network. Though we choose a ResNet-50 based model
trained on camera-pairwise re-identification tasks, the frame-
work can easily accommodate any other general feature
extraction pipeline. This plug-and-play nature of the proposed
pipeline would enable us to seamlessly integrate any fea-
ture extractor that is used in traditional re-id setup, and the
overall retrieval performance would surely benefit from any
progress in the classical/traditional re-id. To further substan-
tiate this claim, we show retrieval results of the proposed
framework atop a state-of-the-art conventional person re-
id approach. Specifically, we use the pre-trained model of
HA-CNN [57] to obtain the image feature representations
as input to the GRU based fusion function. HA-CNN learns
soft attention at the pixel level and hard attention at the
region level and improves the feature representation through
the use of a ‘harmonious attention’ module. The training
of our proposed fusion module with HA-CNN as feature
extractor is done in a manner identical to that explained
in the previous sections and the retrieval results are shown
on Market-1501 dataset in Table V. We observe that the
results are consistent with that obtained using the ResNet-
50 baseline, i.e., the proposed re-id framework with the GRU
fusion scheme achieving impressive improvements in retrieval
performance over the baseline HA-CNN based re-id across
both the FSP and VSP protocols. Also, it can be noted that
the superiority of the fusion framework is apparent even in
scenarios where the baseline achieves high retrieval accuracy.

6) Advantages of Fusion in Deployed Systems: To study the
performance advantages of employing fusion-based algorithms
in practical surveillance systems, we designed a prototype
GUI system (Fig. 6 in supplementary materials) for human-
operator-in-the-loop re-id and conducted a comparative user
study to determine the relative time spent in retrieval with and
without the fusion of queries.

We showed 15 different identities on an average to
a pool of subjects recruited for the study. In the GUI,
the query image is displayed on the left and the corresponding
top-k retrievals are displayed in the right panel in the order

Fig. 9. Ratio of human operator retrieval times with and without fusion (left)
and automated retrieval list length (right) plots on Market-1501 dataset.

of increasing ranks (Fig. 6 in supplementary). We display
25 retrievals (k = 25) per page on the GUI. The subject
searches through the retrievals and selects the matching image.
If the subject is unable to find the right match, the next k
(25) retrievals are displayed. This process continues until the
subject successfully locates a match. The retrieved image is
then fused with the query to obtain retrievals in the subse-
quently queried camera. A similar experiment is performed
without fusion, i.e., by querying each camera independently
with one single image or retrieved target image from the
preceding camera (without fusion). In Fig. 9 (left), we plot the
ratio of the average time taken for retrieval with and without
fusion (tr (fusion)/tr (baseline)) as a function of query sequence
lengths (i.e., the number of cameras queried). We observe
that retrieval times are significantly smaller and decrease
with increasing query sequence length with our fusion-based
approach in contrast to the conventional approach involving
independent querying, thereby reinforcing the practical utility
of the proposed framework.

The average rank of first correct retrieval (termed ‘minimum
retrieval list length’) as obtained by our algorithm is shown
in Fig. 9 (right). The retrieval list length decreases monotoni-
cally with query sequence length, emphasizing the advantage
of proposed approach.

In Fig. 10, we present two sample sequences of queries
and corresponding top-10 retrievals. As the fusion function
processes more images, the number of correct retrievals within
top-10 ranks increases. Fusion is especially beneficial in
challenging scenarios where multiple candidates with near-
identical appearances exist in the gallery with minute differ-
ences between them (Fig. 10 (right)). Note that, while more
correct retrievals are obtained within top-10 ranks as images
are fused, there is an improvement in the position (rank) of
the existing retrievals too. This indicates that our approach is
able to integrate new information while retaining the relevant
aspects of the existing representation.

7) Effect of Camera Ordering: As discussed in Sec. III,
we desire the fusion function to be agnostic to input order-
ing in both the training and testing phases. To verify this,
we train the fusion network with multiple sequence orders
corresponding to different camera arrangements. We observe
that the average FSP results on six unit length galleries are
similar across training orders (Fig. 11 (left)). Conversely, for
a fixed training order, we examined multiple orderings of
query cameras during testing. We sample 50 randomly ordered
sequences of length 5 and according to FSP (IV-C.2), consider
all possible combinations of sub-sequences for each sequence.
The mean rank-1 accuracy and the standard deviations are
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Fig. 10. Retrieved samples for two example targets from Market-1501 dataset. Correct retrievals are indicated with green box. More correct matches are
obtained at a lower rank as additional query images are combined (best viewed in color).

Fig. 11. Averaged FSP results for different input ordering sequences during
training (left) and testing (right).

plotted in Fig. 11 (right). As can be seen (Fig. 11 (right)),
the fusion performance is practically independent of camera
ordering in this case as well.

V. CONCLUSION

In this paper, we have proposed a novel sequential
multi-camera feature fusion approach for person re-id. Unlike
classical re-id methods, our approach can accommodate oper-
ator inputs in an online fashion, enabling early gains via a
monotonic improvement in target retrieval accuracy. These
capabilities are made possible by our choice of GRU as a
fusion function and our training strategy involving a cus-
tom formulation of the monotonicity loss. We also introduce
novel evaluation protocols and conduct extensive evaluations
on Market-1501 and DukeMTMC-reID datasets. The results
indicate that our multi-camera fusion method significantly out-
performs the corresponding baselines as well as other popular
feature fusion schemes. Additionally, our comparative analysis
of operator-in-the-loop performance showcases the potential
for seamless integration into deployable video-surveillance
systems.

Zheng et al. [58] proposed a temporal metric for evaluation
of re-id systems in a temporally changing dynamic gallery set
scenario. It would be interesting to examine the connections
between the temporal metric of Zheng et al. and the VSP
protocol proposed in our current work since both deal with
variable gallery sets. The current version of our work is not
designed to explicitly omit noisy/spurious features from a
camera, especially during the testing phase. One possibility

would be to incorporate attention mechanisms in future to
accomplish the same and further improve fusion during both
training and testing phases.
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