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ABSTRACT

We consider the problem of low light image restoration

through joint contrast enhancement and denoising. Deep con-

volutional neural networks (CNNs) based on residual learning

have been successful in achieving state of the art performance

in image denoising. However, their application to joint con-

trast enhancement and denoising poses challenges owing to

the nature of the distortion process involving both loss of

details and noise. Thus, we propose a multiscale learning

approach by learning the subbands obtained in a Laplacian

pyramid decomposition through a subband CNN (SCNN).

The enhanced subbands at multiple scales are then combined

to obtain the nal restored image using a recomposition CNN

(ReCNN). We refer to the overall network involving SCNN

and ReCNN as low light restoration network (LLRNet). We

show through extensive experiments based on the ‘See in the

Dark’ Dataset that our approach produces better quality re-

stored images when compared to other contrast enhancement

techniques and CNN based approaches.

Index Terms— Contrast enhancement, low light en-

hancement, denoising, CNN. Laplacian pyramid.

1. INTRODUCTION

The performance of a camera in low light scenarios is becom-

ing increasingly important in consumer electronic devices

such as smartphones. Variations in camera hardware settings

such as aperture size, sensor sensitivity (ISO) and shutter

speed may result in distortions such as noise, motion blur and

shallow depth of eld. Moreover, slow shutter speeds may

not be feasible during capture of highly dynamic scenes in

low light situations. While using a ash might be helpful,

it causes unwanted shadows and color distortions leading to

unnatural images. Thus there is a need to study the problem

of enhancing the quality of low light images through image

processing techniques. We focus on the problem of joint
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contrast enhancement and denoising in grey scale low light

images.

Several contrast enhancement algorithms for low light en-

hancement exist in literature. These can be classied as his-

togram modication approaches [1, 2, 3, 4] or retinex based

approaches [5, 6, 7]. Other approaches achieve contrast en-

hancement by enhancing the bandspass subbands [8, 9]. The

hazy appearance of inverted low light images has led to the

use of dehazing methods [10] for contrast enhancement. The

above approaches do not account for the noise in the low light

image.

The noise in low light images is commonly addressed

by performing post enhancement denoising using algorithms

such as BM3D [11]. However, the non-linearity of the con-

trast enhancement algorithms, might distort the Gaussian

noise assumption in denoising. Alternately, the low light

image can be rst denoised and then enhanced [12]. How-

ever, the low light conditions affect the assumption of natural

scene statistics of the clean image in denoising methods such

as [11]. Thus the problem of joint enhancement and denois-

ing appears to be challenging. Given the recent success of

convolutional neural networks (CNNs) in image restoration

[13], we explore the use of CNNs for this complex task.

Recently, DnCNN has been successfully applied to im-

age denoising by exploiting the benets of residual learning

[13]. However, this approach poses challenges in the low light

scenario due to the lack of knowledge of the residual noise.

In particular, the low light image can be modeled to account

for distortions due to the loss of details and additive noise.

Thus, given a low light image and well lit image pair, esti-

mating these distortion parameters is an ill posed problem.

Since residual learning appears difcult here, we seek to in-

vestigate other approaches that do not directly learn the pixel

domain image. Note that the formulation we consider is dif-

ferent from the problem of mapping raw sensor data to sRGB

images considered in [14] using architectures such as UNet

[15] and CAN [16].

Our main contribution is in the design of a CNN architec-

ture, LLRNet (or low light restoration network), to perform

joint contrast enhancement and denoising of low light im-
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ages. We adopt a multiscale learning approach where we rst

decompose an image using a Laplacian pyramid and learn to

jointly enhance and denoise the subbands. We believe this ap-

proach to be effective due to the well behaved statistical prop-

erties of the band pass cofeicients. The restored subbands

are then recomposed using a Recomposition CNN (ReCNN)

to produce a high quality restored image. We show through

experiments on the See in the Dark Dataset [14] that our archi-

tecture improves upon other existing enhancement algorithms

and CNN architectures for restoration.
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Fig. 1. Architecture of LLRNet
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Fig. 2. (a) ReCNN; (b) Architecture of the kth module of

ReCNN

2. PROPOSED METHOD

Motivated by the success of DnCNN in image denoising and

super resolution, we wish to apply DnCNN to the low light

image restoration problem. A low light image can be modeled

as

Y (i, j) = t(i, j)X(i, j) + Z(i, j), (1)

where X(i, j) is the input image at location (i, j), Y (i, j) is
the observed low light image, t(i, j) is a detail loss coef-

cient, and Z(i, j) represents the noise. The challenge in ap-

plying the residual noise learning approach of DnCNN for the

above model is that both the noise term Z(i, j) and the detail

loss coefcient are unknown. Therefore, we adopt a multi-

scale approach for learning subbands of a Laplacian pyramid

decomposition based on DnCNN.

2.1. Architecture

We apply a Laplacian pyramid to the low light image to ob-

tain multiple subbands at different scales. Bandpass subband

coefcients, when compared to the pixel domain image, have

well behaved statistics [17, 18]. We believe that this regular-

ity in statistics makes it easier for the CNN to learn a map-

ping from the distorted subband to the ground truth subband.

Therefore, we train CNNs to restore the bandpass subbands.

The low pass subband at the coarsest scale is potentially easier

to learn than the original image in the pixel domain. Thus we

apply the DnCNN to directly restore the low pass subband.

We use N subbands in the Laplacian pyramid decompo-

sition and train N CNNs, referred to as SCNN (or subband

CNN), one for each subband. In Figure 1, we show the pro-

posed architecture, where SCNN-0 to SCNN-(N-2) operate

on the bandpass subbands of the nest to the coarsest scales

respectively. SCNN-(N-1) operates on the low pass subband.

For each of the SCNNs, we use the same architecture as [13]

without residual learning. In Figure 1, X̂k denotes the out-

put of SCNN-k, where k ∈ {0, 1, . . . , N − 1}. To recom-

pose the enhanced subbands and obtain the nal restored im-

age, we train another CNN, which we refer to as ReCNN. We

use ReCNN instead of the default Laplacian recomposition

to learn how to combine the enhanced subbands to yield the

restored low light image.

In Figure 2(a), we show the architecture of ReCNN, the

design of which is based on the Laplacian recomposition al-

gorithm. ReCNN is composed ofN −1modules, where each

module takes as input, the image at a lower scale, and pro-

duces an image at the higher scale by using the lower scale

image upsampled by a factor of 2 and the band pass details.

We denote X̂G

k
as the image output by Module-(k+1) based

on the input X̂k and X̂G

k+1
. X̂G

k
has double the resolution of

X̂k. Note that Module-(N − 1) alone takes as input X̂N−1

and X̂N−2. Further, X̂G
0 is the same as X̂ , the restored im-

age. In Figure 2(b), we show the architecture of a module of

the ReCNN.

2.2. Training Methodology

We use the recently released See In the Dark dataset (SID)

[14] for training. This dataset has low light and well-lit im-

age pairs of 424 scenes from two cameras, SONY and FUJI.

The well-lit image for each scene has been collected using
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