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Abstract

Deep learning models have shown impressive perfor-
mance across a spectrum of computer vision applications
including medical diagnosis and autonomous driving. One
of the major concerns that these models face is their sus-
ceptibility to adversarial attacks. Realizing the importance
of this issue, more researchers are working towards devel-
oping robust models that are less affected by adversarial
attacks. Adversarial training method shows promising re-
sults in this direction. In adversarial training regime, mod-
els are trained with mini-batches augmented with adversar-
ial samples. Fast and simple methods (e.g., single-step gra-
dient ascent) are used for generating adversarial samples,
in order to reduce computational complexity. It is shown
that models trained using single-step adversarial train-
ing method (adversarial samples are generated using non-
iterative method) are pseudo robust. Further, this pseudo
robustness of models is attributed to the gradient masking
effect. However, existing works fail to explain when and why
gradient masking effect occurs during single-step adversar-
ial training. In this work, (i) we show that models trained
using single-step adversarial training method learn to pre-
vent the generation of single-step adversaries, and this is
due to over-fitting of the model during the initial stages of
training, and (ii) to mitigate this effect, we propose a single-
step adversarial training method with dropout scheduling.
Unlike models trained using existing single-step adversar-
ial training methods, models trained using the proposed
single-step adversarial training method are robust against
both single-step and multi-step adversarial attacks, and the
performance is on par with models trained using computa-
tionally expensive multi-step adversarial training methods,
in white-box and black-box settings.

1. Introduction
Machine learning models are susceptible to adversarial

samples: samples with imperceptible, engineered noise de-

signed to manipulate model’s output [15, 2, 34, 3, 13, 27].

Further, Szegedy et al. [34] observed that these adversarial

samples are transferable across multiple models i.e., adver-

sarial samples generated on one model might mislead other

models. Due to which, models deployed in the real world

are susceptible to black-box attacks [20, 28], where limited

or no knowledge of the deployed model is available to the

attacker. Various schemes have been proposed to defend

against adversarial attacks (e.g., [13, 29, 23]), in this direc-

tion Adversarial Training (AT) procedure [13, 35, 22, 40]

shows promising results.

In adversarial training regime, models are trained with

mini-batches containing adversarial samples typically gen-

erated by the model being trained. Adversarial sample gen-

eration methods range from simple methods [13] to com-

plex optimization methods [24]. In order to reduce compu-

tational complexity, non-iterative methods such as Fast Gra-

dient Sign Method (FGSM) [13] are typically used for gen-

erating adversarial samples. Further, it has been shown that

models trained using single-step adversarial training meth-

ods are pseudo robust [35]:

• Although these models appears to be robust to single-

step attacks in white-box setting (complete knowledge

of the deployed model is available to the attacker), they

are susceptible to single-step attacks (non-iterative

methods) in black-box attack setting [35].

• Further, these models are susceptible to multi-step at-

tacks (iterative methods) in both white-box setting [18]

and black-box setting [10].

Tramer et al. [35] demonstrated that models trained using

single-step adversarial training method converges to degen-

erative minima, and exhibit gradient masking effect. Single-

step adversarial sample generation methods such as FGSM,

compute adversarial perturbations based on the linear ap-

proximation of the model’s loss function i.e., image is per-

turbed in the direction of the gradient of loss with respect

to the input image. Gradient masking effect causes this lin-

ear approximation of loss function to become unreliable for

generating adversarial samples during single-step adversar-

ial training. Madry et al. [22] demonstrated that models

trained using adversarial samples that maximize the train-

ing loss are robust against single-step and multi-step at-
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tacks. Such samples could be generated using the Projected

Gradient Descent (PGD). However, PGD method is an it-

erative method, due to which training time increases sub-

stantially. Though prior works have enabled to learn robust

models, they fail to answer the following important ques-

tions: (i) Why models trained using single-step adversarial
training method exhibit gradient masking effect? and (ii)

At what phase of the single-step adversarial training, the
model starts to exhibit gradient masking effect?

In this work, we attempt to answer these questions and

propose a novel single-step adversarial training method to

learn robust models. First, we show that models trained

using single-step adversarial training method learn to pre-

vent the generation of single-step adversaries, and this is

due to over-fitting of the model during the initial stages of

training. Over-fitting of the model on single-step adver-

saries causes linear approximation of loss function to be-

come unreliable for generating adversarial samples i.e., gra-

dient masking effect. Finally, we propose a single-step ad-

versarial training method with dropout scheduling to learn

robust models. Note that, just adding dropout layer (typ-

ical setting: dropout layer with fixed dropout probability

after FC+ReLU layer) does not help the model trained us-

ing single-step adversarial training method to gain robust-

ness. Prior works observed no significant improvement in

the robustness of models (with dropout layers in typical set-

ting), trained using normal training and single-step adver-

sarial training methods [13, 18]. Results for these settings

are shown in section 4.1. Unlike typical setting, we intro-

duce dropout layer after each non-linear layer (i.e., dropout-

2D after conv2D+ReLU, and dropout-1D after FC+ReLU)

of the model, and further decay its dropout probability as

training progress. Interestingly, we show that this proposed

dropout setting has significant impact on the model’s ro-

bustness. The major contributions of this work can be listed

as follows:

• We show that models trained using single-step adver-

sarial training method learns to prevent the generation

of single-step adversaries, and this is due to over-fitting

of the model during the initial stages of training.

• Harnessing on the above observation, we propose a

single-step adversarial training method with dropout

probability scheduling. Unlike models trained us-

ing existing single-step adversarial training methods,

models trained using the proposed method are robust

against both single-step and multi-step attacks.

• The proposed single-step adversarial training method

is much faster than multi-step adversarial training

methods, and achieves on par results.

2. Notations
Consider a neural network f trained to perform image

classification task, and θ represents parameters of the neu-

ral network. Let x represents the image from the dataset and

ytrue be its corresponding ground truth label. The neural

network is trained using loss function J (e.g., cross-entropy

loss), and ∇xJ represents the gradient of loss with respect

to the input image x. Adversarial image xadv is generated

by adding norm-bounded perturbation δ to the image x. Per-

turbation size (ε) represents the l∞ norm constraint on the

generated adversarial perturbation i.e., ||δ||∞ ≤ ε. Please

refer to supplementary document for details on adversarial

training and attack generation methods.

3. Related Works
Following the findings of Szegedy et al. [34], various at-

tacks (e.g., [13, 24, 8, 26, 25, 10, 12] have been proposed.

Further, in order to defend against adversarial attacks, vari-

ous schemes such as adversarial training (e.g., [13, 18, 22,

40, 5, 4]) and input pre-processing (e.g., [14, 31]) have been

proposed. Athalye et al. [1] showed that obfuscated gradi-

ents give a false sense of robustness, and broke seven out

of nine defense papers [6, 21, 14, 38, 32, 31, 22, 21, 9] ac-

cepted to ICLR 2018. In this direction, adversarial training

method [22], shows promising results for learning robust

deep learning models. Kurakin et al. [18] observed that

models trained using single-step adversarial training meth-

ods are susceptible to multi-step attacks. Further, Tramer et
al. [35] demonstrated that these models exhibit gradient

masking effect, and proposed Ensemble Adversarial Train-

ing (EAT) method. However, models trained using EAT

are still susceptible to multi-step attacks in white-box set-

ting. Madry et al. [22] demonstrated that adversarially

trained model can be made robust against white-box at-

tacks, if perturbation crafted while training maximizes the

loss. Zhang et al. [40] proposed a regularizer for multi-step

adversarial training, that encourages the output of the net-

work to be smooth. On the other hand, works such as [30]

and [36] propose a method to learn models that are provably

robust against norm bounded adversarial attacks. However,

scaling these methods to deep networks and large perturba-

tion sizes is difficult. Whereas, in this work we show that

it is possible to learn robust models using single-step adver-

sarial training method, if over-fitting of the model on adver-

sarial samples is prevented during training. We achieve this

by introducing dropout layer after each non-linear layer of

the model with a dropout schedule.

4. Over-fitting and its effect during adversarial
training

In this section, we show that models trained using single-

step adversarial training method learn to prevent the genera-
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Figure 1: Single-step adversarial training: Trend of Rε, training loss, and validation loss during single-step adversarial

training, obtained for LeNet+ trained on MNIST dataset. Column-1: plot of Rε versus training iteration. Column-2: training

loss versus training iteration. Column-3: validation loss versus training iteration. Note that, when Rε starts to decay, loss on

adversarial validation set starts to increase indicating that the model is over-fitting on the adversarial samples.

Figure 2: Multi-step adversarial training: Trend of Rε, training loss, and validation loss during multi-step adversarial

training, obtained for LeNet+ trained on MNIST dataset. Column-1: plot of Rε versus training iteration. Column-2: training

loss versus training iteration. Column-3: validation loss versus training iteration. Note that, for the entire training duration

Rε does not decay, and no over-fitting effect can be observed.

tion of single-step adversaries, and this is due to over-fitting

of the model during the initial stages of training. First, we

discuss the criteria for learning robust models using adver-

sarial training method, and then we show that this criteria is

not satisfied during single-step adversarial training method.

Most importantly, we show that over-fitting effect is the rea-

son for failure to satisfy the criteria.

Madry et al. [22] demonstrated that it is possible to learn

robust models using adversarial training method, if adver-

sarial perturbations (l∞ norm bounded) crafted while train-

ing maximizes the model’s loss. This training objective

is formulated as a minimax optimization problem (Eq. 1).

Where ψ represents the feasible set e.g., for l∞ norm con-

straint attacks ψ = {δ : ||δ||∞ ≤ ε}, and D is the training

set.

min
θ

[
E(x,y)∈D

[
max
δ∈ψ

J
(
f(x+ δ; θ), ytrue

)]]
(1)

Rε =
lossadv
lossclean

(2)

At each iteration, norm bounded adversarial perturbations

that maximizes the training loss should be generated. Fur-

ther, the model’s parameters (θ) should be updated so as to

decrease the loss on such adversarial samples. Madry et al.
[22] solves the maximization step by generating adversarial

samples using an iterative method named Projected Gradi-

ent Descent (PGD). In order to quantify the extent of inner

maximization of Eq. (1), we compute loss ratio Rε using

Eq. (2). Loss ratio is defined as the ratio of loss on the ad-

versarial samples to the loss on its corresponding clean sam-

ples for a given perturbation size ε. The metric Rε captures

the extent of inner maximization achieved by the generated

adversarial samples i.e., factor by which loss has increased

by perturbing the clean samples.

A sample is said to be an adversarial sample if it is capa-

ble of manipulating the model’s prediction. Such manipu-

lations could be achieved by perturbing the samples along

the adversarial direction [13]. A perturbation is said to

be an adversarial perturbation when it causes loss on the

perturbed sample to increase. This implies that the loss
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on the adversarially perturbed samples should be greater

than the loss on the corresponding unperturbed samples i.e.,

lossadv > lossclean. Based on these facts, Rε can be inter-

preted in the following manner:

• Generated perturbation is said to be an adversarial per-
turbation if Rε >1 i.e., lossadv > lossclean

• Rε <1 i.e., lossadv < lossclean, implies that the gen-

erated perturbation is not an adversarial perturbation.

The attack method fails to generate adversarial per-
turbations for the given model.

We obtain the plot of Rε versus iteration for models

trained using single-step adversarial training method [13]

and multi-step adversarial training method [22]. Column-1

of Fig. 1 and Fig. 2 show these plots obtained for LeNet+

trained on MNIST dataset [19] using single-step and multi-

step adversarial training methods respectively. It can be

observed that during single-step adversarial training, Rε
initially increases and then starts to decay rapidly. Fur-

ther Rε becomes less than one after 20 (×100) iterations.

This implies that single-step adversarial sample generation

method is unable to generate adversarial perturbations for

the model, leading to adversarial training without useful ad-

versarial samples.

We demonstrate this behavior of the model to prevent the

inclusion of adversarial samples is due to over-fitting on the

adversarial samples. Typically during normal training, loss

on the validation set is monitored to detect over-fitting ef-

fect i.e., validation loss increases when the model starts to

over-fit on the training set. Unlike normal training, during

adversarial training we monitor the loss on the clean and

adversarial validation set. A normally trained model is used

for generating adversarial validation set, so as to ensure that

the generated adversarial validation samples are indepen-

dent of the model being trained. Column-2 and column-

3 of Fig. 1 shows the plot of loss versus iteration during

training of LeNet+ on MNIST dataset using single-step ad-

versarial training. It can be observed that, when Rε starts

to decay, loss on the adversarial validation set starts to in-

crease. This increase in the validation loss indicates over-

fitting of the model on the single-step adversaries. Whereas,

during multi-step adversarial training method, Rε initially

increases and then saturates (column-1, Fig. 2). Further, no

such over-fitting effect is observed for the entire training

duration (column-3, Fig. 2). Note that, a normally trained

model was used for generating FGSM (ε=0.3) adversarial

validation set, and we observe similar trend if a normally

trained model of different architecture is used for generat-

ing FGSM adversarial validation set, please refer to supple-

mentary document.

4.1. Effect of dropout layer

In the previous section, we showed that models trained

using single-step adversarial training learn to prevent the

generation of single-step adversaries. Further, we demon-

strated that this behavior of models is due to over-fitting.

Dropout layer [33] has been shown to be effective in miti-

gating over-fitting during training, and typically dropout-1D

layer is added after FC+ReLU layers in the networks. We

refer to this setting as typical setting. Prior works which

used dropout layer during single-step adversarial training

observed no significant improvement in the model’s robust-

ness. This is due to the use of dropout layer in typical set-
ting. Whereas, we empirically show that it is necessary

to introduce dropout layer after every non-linear layer of

the model (proposed dropout setting i.e., dropout-2D af-

ter Conv2D+ReLU layer and dropout-1D after FC+ReLU

layer) to mitigate over-fitting during single-step adversarial

training, and to enable the model to gain robustness against

adversarial attacks (single-step and multi-step attacks). We

train LeNet+ with dropout layer in typical setting and in

the proposed setting respectively, on MNIST dataset using

single-step adversarial training method for different values

of dropout probability. After training, we obtain the perfor-

mance of these resultant models against PGD attack (ε=0.3,

εstep=0.01, steps=40). Column-1 of Fig. 3 shows the trend

of accuracy of these models for PGD attack with respect

to the dropout probability used while training. It can be

observed that the gain in the robustness of adversarially

trained model with dropout layer in the proposed setting

is significantly better compared to the adversarially trained

model with dropout layer in typical setting (FAT-TS). From

column-2 of Fig. 3, it can be observed that the robustness of

adversarially trained model with dropout layer in the pro-

posed setting, increases with the increase in the dropout

probability (p) and reaches a peak value at p=0.4. Further

increase in the dropout probability causes decrease in the

accuracy on both clean and adversarial samples. Based on

this observation, we propose an improved single-step adver-

sarial training in the next subsection. Furthermore, we per-

form normal training of LeNet+ with dropout layers in typ-

ical setting and in the proposed setting, on MNIST dataset.

From column-1 of Fig. 3, it can be observed that there is no

significant improvement in the robustness of these normally

trained models.

4.2. SADS: Single-step Adversarial training with
Dropout Scheduling

Column-1 of Fig. 3 indicates that use of dropout layer in

typical setting is not sufficient to avoid over-fitting on adver-

sarial samples, and we need severe dropout regime involv-

ing all the layers (i.e., proposed setting: dropout layer after

Conv2D+ReLU and FC+ReLU layers) of the network in or-

der to avoid over-fitting. For the proposed dropout regime,
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Figure 3: Column-1: Effect of dropout probability of

dropout layers in typical setting and in the proposed set-

ting on the model’s robustness against PGD attack (ε=0.3,

εstep=0.01 and steps=40). Obtained for LeNet+ trained on

MNIST dataset. NT-TS: Normal training with dropout layer

in typical setting. FAT-TS: Single-step adversarial training

with dropout layer in typical setting. NT-PS: Normal train-

ing with dropout layer in the proposed setting. Proposed:

Single-step adversarial training with dropout layer in the

proposed setting. Column-2: Effect of dropout probabil-

ity on the model’s accuracy on clean and PGD adversar-

ial validation set (ε=0.3, εstep=0.01 and steps=40). Ob-

tained for LeNet+ with dropout layer in the proposed set-

ting, trained using single-step adversarial training method

on MNIST dataset.

determining exact dropout probability is network dependent

and is difficult. Further, having high dropout probability

causes under-fitting of the model, and having low dropout

probability causes the model to over-fit on the adversarial

samples.

Based on these observations, we propose a single-step

adversarial training method with dropout scheduling (Algo-

rithm 1). In the proposed training method, we introduce

dropout layer after each non-linear layer of the model to

be trained. We initialize these dropout layers with a high

dropout probability Pd. Further, during training we linearly

decay the dropout probability of all the dropout layers and

this decay in the dropout probability is controlled by the

hyper-parameter rd. The hyper-parameter, rd is expressed

in terms of maximum training iterations (e.g., rd =1/2 im-

plies that dropout probability reaches zero when the current

training iteration is equal to half of the maximum training

iterations). In experimental section 5, we show the effec-

tiveness of the proposed training method. Note that dropout

layer is only used while training.

5. Experiments

In this section, we show the effectiveness of models

trained using the proposed single-step adversarial train-

ing method (SADS) in white-box and black-box settings.

We perform the sanity tests described in [7], in order

to verify that models trained using SADS are robust and

Algorithm 1: Single-step Adversarial training with

Dropout Scheduling (SADS)

Input:
Training mini-batch size (m)

Maximum training iterations (Maxitertion)

Hyper-parameters: Pd, rd
1 Initialization

Randomly initialize network N
iteration = 0
prob = Pd
Insert dropout layer after each non-linear layer of

the network N
Set dropout probability (p) of all the dropout layers

with prob
while iteration ≤Maxitertion do

2 Read minibatch B = {x1, .., xm} from training

set

3 Compute FGSM adversarial sample

{x1adv, ..., xmadv} from corresponding clean

samples {x1, ..., xm} using the current state of

the network N
4 Make new minibatch B∗ = {x1adv, ..., xmadv}

/*Forward pass, compute loss, backward pass,

and update parameters*/

5 Do one training step of Network N using

minibatch B∗

/*Update dropout probability of Dropout-1D

and Dropout-2D layers with prob*/

6 prob = max( 0, Pd · (1− iteration
rd·Maxitertion

) )

7 iteration = iteration+ 1

8 end

does not exhibit obfuscated gradients (Athalye et al. [1]

demonstrated that models exhibiting obfuscated gradients

are not robust against adversarial attacks). We show re-

sults on MNIST [19], Fashion-MNIST [37] and CIFAR-

10 [16] datasets. We use LeNet+ (please refer to supple-

mentary document for details on network architecture) for

both MNIST and Fashion-MNIST datasets. For CIFAR-10

dataset, WideResNet-28-10 [39] is used. These models are

trained using SGD with momentum. Step-policy is used for

learning rate scheduling. For all datasets, images are pre-

processed to be in [0,1] range. For CIFAR-10, random crop

and horizontal flip are performed for data-augmentation.

Evaluation: We show the performance of models against

adversarial attacks in white-box and black-box setting. For

SADS, we report mean and standard deviation over three

runs.

Attacks: For l∞ based attacks, we use Fast Gradient Sign

Method (FGSM) [13], Iterative Fast Gradient Sign Method

(IFGSM) [17], Momentum Iterative Fast Gradient Sign
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Table 1: MNIST: White-Box setting. Classification accu-

racy (%) of models trained on MNIST dataset using differ-

ent training methods. For all attacks ε=0.3 is used and for

PGD attack εstep=0.01 is used. For both IFGSM and PGD

attacks, steps is set to 40.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 99.24 11.65 0.31 0.01

Multi-step adversarial training

PAT 98.41 95.56 92.64 92.08

TRADES 98.70 96.30 95.14 95.05

Single-step adversarial training

FAT 99.34 89.04 1.19 0.17

SADS 98.89 94.78 89.35 88.51

±0.01 ±0.19 ±0.09 ±0.22

Table 2: Fashion-MNIST: White-Box attack. Classifica-

tion accuracy (%) of models trained on Fashion-MNIST

dataset using different training methods. For all attacks

ε=0.1 is used and for PGD attack εstep=0.01 is used. For

both IFGSM and PGD attacks, steps is set to 40.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 91.42 6.46 1.01 0.16

Multi-step adversarial training

PAT 84.55 77.30 75.95 75.18

TRADES 86.69 80.39 78.94 78.04

Single-step adversarial training

FAT 90.45 83.43 21.26 16.65

SADS 85.21 75.81 71.14 69.51

±0.08 ±1.31 ±1.01 ±1.43

Method (MI-FGSM) [10] and Projected Gradient Descent

(PGD) [22]. For l2 based attack, we use DeepFool [24] and

Carlini & Wagner [8].

Perturbation size: For l∞ based attacks, we set pertur-

bation size (ε) to the values described in [22] i.e., ε=0.3,

0.1 and 8/255 for MNIST, Fashion-MNIST and CIFAR-10

datasets respectively.

Comparisons: We compare the performance of the pro-

posed single-step adversarial training method (SADS)

with Normal training (NT), FGSM adversarial training

(FAT) [18], Ensemble adversarial training (EAT) [35], PGD

adversarial training (PAT) [22], and TRADES [40]. Note

that, FAT, EAT and SADS (ours) are single-step adversarial

training methods, whereas PAT and TRADES are multi-step

adversarial training methods. Results for EAT are shown in

supplementary document.

Table 3: CIFAR-10: White-Box attack. Classification ac-

curacy (%) of models trained on CIFAR-10 dataset using

different training methods. For all attacks ε=8/255 is used

and for PGD attack εstep=2/255 is used. For both IFGSM

and PGD attacks, steps is set to 7.

Training Attack Method
Method Clean FGSM IFGSM PGD
NT 94.75 28.16 0.07 0.03

Multi-step adversarial training

PAT 85.70 53.96 48.65 47.23

TRADES 87.20 56.34 51.21 50.03

Single-step adversarial training

FAT 94.04 98.54 0.31 0.09

SADS 82.01 51.99 46.37 45.66

±0.06 ±1.02 ±1.17 ±1.26

5.1. Performance in White-box setting

We train models on MNIST, Fashion-MNIST and

CIFAR-10 datasets respectively, using NT, FAT, PAT,

TRADES and SADS (Algorithm 1) training methods. Mod-

els are trained for 50, 50 and 100 epochs on MNIST,

Fashion-MNIST and CIFAR-10 datasets respectively. For

SADS, we set the hyper-parameter Pd and rd to (0.8, 0.5),

(0.8, 0.75) and (0.5, 0.5) for MNIST, Fashion-MNIST and

CIFAR-10 datasets respectively. Table 1, 2 and 3 shows

the performance of these models against single-step and

multi-step attacks in white-box setting, rows represent the

training method and columns represent the attack genera-

tion method. It can be observed that models trained us-

ing FAT are not robust against multi-step attacks. Whereas,

models trained using PAT, TRADES and SADS are robust

against both single-step and multi-step attacks. Unlike PAT

and TRADES, the proposed SADS method is a single-step

adversarial training method.

PGD attack with large steps: Engstrom et al. [11] demon-

strated that the performance of models trained using certain

adversarial training methods degrade significantly with in-

crease in the number of steps of PGD attack. In order to ver-

ify that such behavior is not observed in models trained us-

ing SADS, we obtain the plot of classification accuracy on

PGD test-set versus steps of PGD attack. Fig. 4 shows these

plots obtained for models trained using PAT and SADS on

MNIST, Fashion-MNIST and CIFAR-10 datasets respec-

tively. It can be observed that the accuracy of models on

PGD test set initially decreases slightly and then saturates.

Even for PGD attack with large steps, there is no signifi-

cant degradation in the performance of models trained using

PAT and SADS methods. In supplementary document, we

show the effect of hyper-parameters of the proposed train-

ing method.
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Figure 4: Plot of accuracy of the model trained using PAT and SADS, on PGD adversarial test set versus steps of PGD attack

with fixed ε. For PGD attack we set (ε,εstep) to (0.3,0.01), (0.1,0.01) and (8/255,2/255) for MNIST, Fashion-MNIST and

CIFAR-10 datasets. Note, x-axis is in logarithmic scale.

Figure 5: Plot of accuracy versus perturbation size of PGD attack, obtained for models trained using SADS. It can be observed

that the accuracy of the model is zero for PGD attack with large perturbation size.

Table 4: Black-box setting: Performance of models trained

on MNIST, Fashion-MNIST and CIFAR-10 datasets us-

ing different training method, against adversarial attacks

in black-box setting. Source models are used for generat-

ing adversarial samples, and the target models are tested on

these generated adversarial samples.

MNIST

Source Model
Target Model

NT FAT PAT SADS

Model-A
FGSM (ε=0.3) 29.09 79.49 96.01 95.06

MI-FGSM (ε=0.3, steps=40) 10.69 72.44 95.83 94.80

Model-B
FGSM (ε=0.3) 28.13 72.39 96.15 95.11

MI-FGSM (ε=0.3, steps=40) 12.32 70.79 95.97 94.81

Fashion-MNIST

Model-A
FGSM (ε=0.1) 36.66 88.26 81.32 80.86

MI-FGSM (ε=0.1, steps=40) 33.04 88.36 81.20 80.68

Model-B
FGSM (ε=0.1) 39.03 85.40 80.01 78.94

MI-FGSM (ε=0.1, steps=40) 38.01 84.72 79.84 78.59

CIFAR-10

VGG-11
FGSM (ε=8/255) 48.46 78.70 78.12 77.97

MI-FGSM (ε=8/255, steps=7) 31.61 76.35 78.36 77.95

DenseNet- FGSM (ε=8/255) 39.58 86.90 80.29 80.06

BC-100 MI-FGSM (ε=8/255, steps=7) 28.50 86.42 80.42 80.28

5.2. Performance in Black-box setting

In this subsection, we show the performance of models

trained using different training methods against adversarial

attacks in black-box setting. Typically, a substitute model

(source model) is trained on the same task using normal

training method, and this trained substitute model is used

for generating adversarial samples. The generated adver-

sarial samples are transferred to the deployed model (tar-

get model). We use FGSM and MI-FGSM methods for

generating adversarial samples, since samples generated us-

ing these methods show good transfer rates [10]. Table 4

shows the performance of models trained using different

methods, in black-box setting. It can be observed that the

performance of models trained using PAT and SADS in

black-box setting is better than that in white-box setting.

Further, it can be observed that the performance of mod-

els trained on MNIST and CIFAR-10 datasets using FAT

is worse in black-box setting than compared in white-box

setting. Please refer to supplementary file for details on net-

work architecture of source models.

5.3. Performance against DeepFool and C&W at-
tacks

DeepFool [24] and C&W [8] attacks generate adversar-

ial perturbations with minimum l2 norm, that is required to

fool the classifier. These methods measure the robustness

of the model in terms of the average l2 norm of the gener-

ated adversarial perturbations for the test set. For an unde-

fended model, adversarial perturbation with small l2 norm
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Table 5: DeepFool and C&W attacks: Performance of models trained using different training methods against DeepFool

and C&W attacks. These attack methods measure the robustness of the model based on the average l2 norm of the generated

perturbations, higher the better. Success defines the percentage of samples of test set that has been misclassified. Note that,

for models trained using PAT and SADS, perturbations with relatively large l2 norm is required to fool the classifier.

Method

MNIST F-MNIST CIFAR-10

DeepFool CW DeepFool CW DeepFool CW

Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2 Success Mean l2
NT 99.35 1.837 100 1.659 93.73 0.796 100 0.709 96 0.20 100 0.12

FAT 99.37 1.455 100 0.798 93.11 1.514 100 1.167 96 0.25 100 0.10

PAT 85.68 4.633 99 2.779 90.29 2.635 100 1.572 92 1.22 100 0.88

SADS 95.89 3.692 100 2.321 90.68 2.305 100 1.308 93 0.97 100 0.71

±0.06 ±0.033 0± ±0.027 ±0.26 ±0.102 ±0 ±0.188 ±0.32 ±0.043 ±0 ±0.014

Table 6: Comparison of training time per epoch of mod-

els trained on MNIST and CIFAR-10 datasets respectively,

obtained for different training methods.

Method Training time per epoch (sec.)

MNIST CIFAR-10

NT ∼ 2.7 ∼ 104
FAT ∼ 4.1 ∼ 159
PAT ∼ 53 ∼ 820
TRADES ∼ 104 ∼ 1558
SADS ∼ 4.3 ∼ 187

is enough to fool the classifier. Whereas for robust models,

adversarial perturbation with relatively large l2 norm is re-

quired to fool the classifier. Table 5, shows the performance

of models trained using NT, FAT, PAT and SADS methods,

against DeepFool and C&W attacks. It can be observed that

models trained using PAT and SADS have relatively large

average l2 norm. Whereas, for models trained using NT

and FAT have small average l2 norm.

5.4. Sanity tests
We perform sanity tests described in [7] to verify

whether models trained using SADS are adversarially ro-

bust and are not exhibiting obfuscated gradients. We per-

form following sanity tests:

• Iterative attacks should perform better than non-
iterative attacks

• White-box attacks should perform better than black-
box attacks

• Unbounded attacks should reach 100% success
• Increasing distortion bound should increase attack

success rate

Models trained using SADS pass above tests. From ta-

ble 1, 2 and 3, it can be observed that iterative attacks

(IFGSM and PGD) are stronger than non-iterative attack

(FGSM) for models trained using SADS. Comparing results

in Tables 1, 2 and 3 with results in Table 4, it can be ob-

served that white-box attacks are stronger than black-box

attacks for models trained using SADS. Fig. 5 shows the ac-

curacy plot for the model on test set versus perturbation size

of PGD attack, obtained for models trained using SADS. It

can be observed that the model’s accuracy falls to zero for

large perturbation size (ε). From Fig. 5, it can be observed

that PGD attack success rate (attack success rate is equal to

(100 - model’s accuracy)%) increases with increase in the

distortion bound (perturbation size) of the attack.

5.5. Time Complexity
In order to quantify the complexity of different training

methods, we measure training time per epoch (seconds) for

models trained using different training methods. Table 6

shows the training time per epoch for models trained on

MNIST and CIFAR-10 datasets respectively. Note that the

training time of SADS and FAT is of the same order. The

increase in the training time for PAT and TRADES is due

to their iterative nature of generating adversarial samples.

We ran this timing experiment on a machine with NVIDIA

Titan Xp GPU, with no other jobs on this GPU.

6. Conclusion
In this work, we have demonstrated that models trained

using single-step adversarial training methods learn to
prevent the generation of adversaries due to over-fitting of
the model during the initial stages of training. To mitigate
this effect, we have proposed a novel single-step adversarial
training method with dropout scheduling. Unlike existing
single-step adversarial training methods, models trained
using the proposed method achieves robustness not only
against single-step attacks but also against multi-step
attacks. Further, the performance of models trained using
the proposed method is on par with models trained using
multi-step adversarial training methods, and is much faster
than multi-step adversarial training methods.
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