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SINGULAR HILBERT MODULES ON JORDAN-KEPLER VARIETIES

GADADHAR MISRA AND HARALD UPMEIER

Abstract. We study submodules of analytic Hilbert modules defined over certain algebraic varieties

in bounded symmetric domains, the so-called Jordan-Kepler varieties Vℓ of arbitrary rank ℓ. For ℓ > 1

the singular set of Vℓ is not a complete intersection. Hence the usual monoidal transformations do

not suffice for the resolution of the singularities. Instead, we describe a new higher rank version of

the blow-up process, defined in terms of Jordan algebraic determinants, and apply this resolution to

obtain the rigidity of the submodules vanishing on the singular set.

0. Introduction

R. G. Douglas introduced the notion of Hilbert moduleM over a function algebraA and reformulated

several questions of multi-variable operator theory in the language of Hilbert modules. Having done

this, it is possible to use techniques from commutative algebra and algebraic geometry to answer some

of these questions. One of the very interesting examples is the proof of the Rigidity Theorem for Hilbert

modules [19, Section 3], which we discuss below.

A Hilbert module is a complex separable Hilbert space M equipped with a multiplication

m : A → B(M), mp(f) = p · f, f ∈ M, p ∈ A,
which is a continuous algebra homomorphism. Here B(M) denotes the algebra of all bounded linear

operators on M. The continuity of the module multiplication means

‖mpf‖ ≤ C ‖f‖, f ∈ M, p ∈ A
for some C > 0. Familiar examples are the Hardy and Bergman spaces defined on bounded domains in

Cd. Sometimes, it is convenient to consider the module multiplication over the polynomial ring C[z]

in d variables rather than a function algebra. In this case, we require that

‖mpf‖ ≤ Cp ‖f‖, f ∈ M, p ∈ A
for some Cp > 0. We make this “weak” continuity assumption through out the paper.

In what follows, we will consider a natural class of Hilbert modules consisting of holomorphic func-

tions, taking values in Cn, defined on a bounded domain Ω ⊆ Cd. Thus (i) we assume M ⊆ Hol(Ω,Cn).

A second assumption (ii) is to require that the evaluation functional

evz : M → Cn, evz(f) := f(z),

is continuous and surjective, see [2, Definition 2.5]. Set

K(z, w) := evzev
∗
w : Ω× Ω → Cn×n.

The function K, which is holomorphic in the first variable and anti-holomorphic in the second variable is

called the reproducing kernel of the Hilbert module M. A further assumption (iii) is that C[z] ⊆ M
is dense in M. A Hilbert module with these properties is said to be an analytic Hilbert module. In

this paper, we study a class of Hilbert modules which are submodules of analytic Hilbert modules.
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From the closed graph theorem, it follows that mpf ∈ M for any f ∈ M and p ∈ C[z]. Also, the

density of the polynomials implies that the eigenspace ker (mp − p(w))∗ is spanned by the vectors

Kw(·)ζ := K(·, w)ζ
for ζ ∈ Cn, i.e.,

ker (mp − p(w))∗ = Ran Kw,

see [15, Remark, p. 285]. Since the metric K(w,w) is invertible by our assumption, it follows that the

dimension of the kernel {Kw(·)ζ : ζ ∈ Cn} is exactly n for all w ∈ Ω. Clearly, the map w 7→ Kw(·)ζ,
ζ ∈ Cn is a holomorphic map on Ω∗ := {w ∈ Cd : w ∈ Ω}. It serves as a holomorphic section of the

trivial vector bundle

E := {(w, v) : w ∈ Ω∗, v ∈ ker (mp − p(w))∗} ⊆ Ω∗ ×M
with fibre

Ew = ker (mp − p(w))∗ = Ran Kw, w ∈ Ω∗.

A refinement of the argument given in [2] (which, in turn, is an adaptation of ideas from [12]), then shows

that the isomorphism class of the module M and the equivalence class of the holomorphic Hermitian

bundle E determine each other. The case d = 1, originally considered in [12], corresponds to Hilbert

modules over the polynomial ring in one variable. The proof in [12], in this particular case, has a slightly

different set of hypotheses. In the paper [12], among other things, a complete set of invariants for the

equivalence class of E is given. If n = 1, as is well known, this is just the curvature of the holomorphic

line bundle E .
There is a natural notion of module isomorphism, namely, the existence of a unitary linear map

U : M → M̃, which intertwines the module multiplications mp and m̃p, that is,

Ump = m̃pU.

Clearly, a Hilbert module M over the polynomial ring C[z] is determined by the commuting tuple of

multiplication by the coordinate functions onM and vice-versa. Thus the notion of module isomorphism

corresponds to the usual notion of unitary equivalence of two such d-tuples of multiplication operators

by a fixed unitary. If Γ : M1 → M2 is a module map, then it maps the eigenspace of M1 at w into

that of M2 at w. Thus Γ(K1(·, w)ζ) ⊆ {K2(z, w)ξ : ξ ∈ Cn}, where Ki are the reproducing kernels of

the Hilbert modules Mi, i= 1, 2, respectively. Hence we obtain a holomorphic map ΦΓ : Ω → Cn×n

with the property

ΓK1(z, w) = ΦΓ(w)
∗K2(z, w)

for any fixed but arbitrary w. Thus any module map between two analytic Hilbert modules is induced

by a holomorphic matrix-valued function Φ : Ω → Cn×n, see [14, Theorem 3.7]. Moreover, if the module

map is invertible, then ΦΓ(z) must be invertible. Finally, if the module map is assumed to be unitary,

then

K1(z, w) = ΦΓ(z) K2(z, w) Φ∗
Γ(w)

for all z, w ∈ Ω.

Let us describe an instance of the Sz.-Nagy – Foias theory in the language of Hilbert modules following

[17]. Let T be a contraction on some Hilbert space M. The module multiplication determined by this

operator is the map mp(f) = p(T )f , p ∈ C[z], f ∈ M. From the contractivity of T , it follows that

‖mp‖ ≤ ‖f‖ and in this case, the Hilbert module M is said to be contractive. Now, assume that

T ∗n → 0 as n→ ∞. Then Sz.-Nagy – Foias show that there exists an isometry R and a co-isometry R′

such that, for the unit disk D, the sequence

0 // H2
E(D)

R
// H2

E′(D)
R′

// M // 0 ,

where E and E ′ are a pair of (not necessarily finite dimensional) Hilbert spaces, is exact. The map R is

essentially the characteristic function of the contraction T and serves to identify the contractive module

M as a quotient module of H2
E′(D) by the image of H2

E(D) under the isometric map R.
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For any planar domain Ω, a model theory for completely contractive Hilbert modules over the function

algebra Rat(Ω), consisting of rational functions with poles off the closure Ω, has been developed by

Abrahamse and Douglas in the paper [1]. However, the situation is much more complicated for Hilbert

modules over the polynomial ring in d variables, d > 1.

0.1. The normalized kernel. We begin by recalling some notions from complex geometry. Let L
be a holomorphic Hermitian line bundle over a complex manifold Ω. The Hermitian metric of L is

given by some smooth choice of an inner product ‖ · ‖2w on the fibre Lw. There is a canonical (Chern)

connection on L which is compatible with both the Hermitian metric and the complex structure of L.
The curvature κ of the line bundle L on any fixed but arbitrary coordinate chart, with respect to the

canonical connection, is given by the formula

κ(w) := −∂∂ log ‖γ(w)‖2 = −
∑

i,j

∂i∂j log ‖γ(w)‖2dwi ∧ dwj ,

where γ is any non-vanishing holomorphic section of L. Since any two such sections differ by multi-

plication by a non-vanishing holomorphic function, it is clear that the definition of the curvature is

independent of the choice of the holomorphic section γ. Indeed, it is well known that two such line

bundles are locally equivalent if and only if their curvatures are equal. For holomorphic Hermitian

vector bundles (rank > 1) the local equivalence involves not only the curvature but also its covariant

derivatives, see [12].

In general, Lemma 2.3 of [31] singles out a frame γ(0) such that the metric has the form:

‖γ(0)(w)‖2 = I +O(|w|2)

and it follows that

κ(0) =
∑

i,j

(
∂i∂j‖γ(0)(w)‖2

)
|w=0

dwi ∧ dwj .

In a slightly different language, a normalized kernel K(0) at w0 is defined in [14, Remark 4.7(b)] by

requiring that K(0)(z, w0) ≡ I. Setting γ(0)(w) = K(0)
w , we see that the normalized kernel K(0) has no

linear terms. Fix w0 ∈ Ω. There is a neighborhood, say Ω0, of w0 on which K(z, w0) doesn’t vanish

(for n = 1) or is an invertible n× n-matrix (for n > 1). Set

Φ
(0)
Γ (z) = K(w0, w0)

1/2 K(z, w0)
−1, z ∈ Ω0.

Then

K(0)(z, w) := Φ
(0)
Γ (z) K(z, w) Φ

(0)
Γ (w)∗

is a normalized kernel on Ω0. Thus starting with an analytic Hilbert moduleM possessing a reproducing

kernel K, there is a Hilbert module M(0) possessing a normalized reproducing kernel K(0), isomorphic

to M. Now, it is evident that two Hilbert modules are isomorphic if and only if there is a unitary U

such that

K(0)
1 (z, w) = U K(0)

2 (z, w) U∗.

In other words, the normalized kernel is uniquely determined up to a fixed unitary. In particular, if

n = 1, then the two Hilbert modules are isomorphic if and only if the normalized kernels are equal. We

gather all this information in the following proposition.

Proposition 0.1. The following conditions on any pair of (scalar) analytic Hilbert modules over the

polynomial ring are equivalent.

(1) Two analytic Hilbert modules M1 and M2 are isomorphic.

(2) The holomorphic line bundles L1 and L2 determined by the eigenspaces of the analytic Hilbert

modules M1 and M2, respectively, are locally equivalent as Hermitian holomorphic bundles.

(3) The curvature of the two line bundles Li, i = 1, 2, are equal.

(4) The normalized kernels K(0)
i , i = 1, 2, at any fixed but arbitrary point w0 are equal.
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1. Invariants for submodules

In the paper [13], Cowen and Douglas pointed out that all submodules of the Hardy module H2(D)

are isomorphic. They used this observation to give a new proof of Beurling’s theorem describing all

invariant subspaces of H2(D). Although all submodules of the Hardy module H2(D) are isomorphic,

the quotient modules are not. Surprisingly enough, this phenomenon distinguishes the multi-variable

situation from the one variable case. Consider for instance the submodule H2
(0,0)(D

2) of all functions

vanishing at (0, 0) in the Hardy space H2(D2) over the bidisk D2. Then the module tensor product

of H2
(0,0)(D

2) over the polynomial ring C[z] in two variables with the one dimensional module Cw,

(p, w) 7→ p(w), is easily seen to be

H2
(0,0)(D

2)⊗C[z] Cw =

{
C⊕C if w = (0, 0)

C if w 6= (0, 0)
(1.1)

while H2(D2)⊗C[z]Cw = C. It follows that the submodule H2
(0,0)(D

2) is not isomorphic to the module

H2(D2), in stark contrast to the case of one variable.

The existence of non-isomorphic submodules of the Hardy module H2(D2) indicates that inner

functions alone may not suffice to characterize submodules in this case. It is therefore important to

determine when two submodules of the Hardy module, and also more general analytic Hilbert modules,

are isomorphic. This question was considered in [10] for the closure of some ideals I ⊆ C[z] in the Hardy

module H2(D2) with the common zero set {(0, 0)}. It was extended to a much larger class of ideals in

the paper [3]. A systematic study in a general setting culminated in the paper [19] describing a rigidity

phenomenon for submodules of analytic Hilbert modules in more than one variable. A different proof

of the Rigidity Theorem using the sheaf model was given in [9]. A slightly different approach to obtaining

invariants by resolving the singularity at (0, 0) was initiated in [16], and considerably expanded in [9].

We describe this approach briefly.

A systematic study of Hilbert submodules of analytic Hilbert modules was initiated in the papers

[8, 9]. If I is an ideal in C[z], consider the submodule M̃ = [I] in an analytic Hilbert module

M ⊆ Hol(Ω,C) obtained by taking the closure of I. Let

ΩI := {z ∈ Ω : f(z) = 0 ∀ f ∈ I}

denote the algebraic subvariety of Ω determined by I. For the reproducing kernel K(z, w) of M, the

vectors Kw ∈ M will in general not belong to the submodule M̃. However, one has a truncated kernel

K̃(z, w) = K̃w(z) such that K̃w ∈ M̃ for all w ∈ Ω, which induces a holomorphic Hermitian line bundle

L̃ defined on Ω \ ΩI , with fibre

L̃w = Ran K̃w, w ∈ Ω \ ΩI ,

and positive definite metric K̃(w,w). This line bundle L̃ does not necessarily extend to all of Ω. In

fact, on the singular set ΩI the eigenspace of the submodule M̃ will in general be higher dimensional.

However, in the paper [9], using the monoidal transform, a line bundle L̂ was constructed on a certain

blow-up space Ω̂, with a holomorphic map π : Ω̂ → Ω. (Actually, this construction holds locally, near

any given point w0 ∈ ΩI .) The restriction of this line bundle to the exceptional set π−1(ΩI) in the

blow-up space was shown to be an invariant for the submodule M̃.

For the submodule M̃ = H2
(0,0)(D

2) ⊆ H2(D2) of the Hardy module, corresponding to the point

singularity (0, 0) ∈ Ω := D2, the above construction can be made very explicit: The eigenspace of M̃
at w := (w1, w2) 6= (0, 0) is the one dimensional space spanned by the truncated kernel vector

K̃w(z) :=
1

(1− w1z1)(1 − w2z2)
− 1 =

w1z1 + w2z2 − w1z1w2z2
(1− w1z1)(1 − w2z2)

. (1.2)

At (0, 0), this vector is the zero vector while the eigenspace of M̃ is two dimensional, spanned by the

vectors z1 and z2. We observe, however, that for j = 1, 2 the limit K̃w(z)
wj

, along lines through the
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origin as w → 0, exists and is non-zero. Parametrizing the lines through (0, 0) in D2 by w2 = ϑ1w1 or

w1 = ϑ2w2, we obtain the coordinate charts for the Projective space P1(C). On these, we have

lim
w2=ϑ1w1, w→0

K̃w(z)

w1
= z1 + ϑ1z2.

Similarly, we have

lim
w1=ϑ2w2, w→0

K̃w(z)

w2
= z2 + ϑ2z1.

Setting s(ϑ1) := z1 + ϑ1z2 and s(ϑ2) = z2 + ϑ2z1 taking values in H2
(0,0)(D

2), we obtain a holomorphic

Hermitian line bundle L̂ over projective space P1(C). The metric of this line bundle is given by the

formula

‖s(ϑj)‖2M̃ = 1+ |ϑj |2

for j = 1, 2. It is shown in [16, Theorem 5.1], see also [9, Theorem 3.4], that for many submodules of

analytic Hilbert modules, the class of this holomorphic Hermitian line bundle on the projective space is

an invariant for the submodule. Since the curvature is a complete invariant, it follows that in our case

the curvature

κ(ϑj) = (1− |ϑj |2)−2dϑj ∧ dϑj
for the coordinate ϑj (j = 1, 2) is an invariant for the submodule H2

(0,0)(D
2).

Often it is possible to determine when two submodules of an analytic Hilbert module are isomorphic

without explicitly computing a set of invariants. A particular case is the class of submodules in an

analytic Hilbert modules which are obtained by taking the closure of an ideal in the polynomial ring.

Here the surprising discovery is that many of these submodules are isomorphic if and only if the ideals

are equal. Of course, one must impose some mild condition on the nature of the ideal. For instance,

principal ideals have to be excluded. Several different hypotheses that make this ”rigidity phenomenon”

possible are discussed in Section 3 of [19]. One of these is the theorem of [19, Theorem 3.6]. A slightly

different formulation given below is Theorem 3.1 of [9].

Let Ω ⊂ Cd be a bounded domain. For k = 1, 2, let [Ik] be the closure in an analytic Hilbert module

M ⊆ Hol(Ω) of the ideal Ik ⊆ C[z].

Theorem 1.1 (Theorem 3.1, [9]). Assume that the dimension of [Ik]/[Ik]w is finite and that the

dimension of the zero set of these modules is at most d−2. Also, assume that every algebraic component

of V (Ik) intersects Ω. Then [I1] and [I2] are isomorphic if and only if I1 = I2.

In this paper we study submodules of (scalar valued) analytic Hilbert modules (n = 1) which are

related to higher-dimensional singularities. Starting with the weighted Bergman spaces defined on a

bounded symmetric domain, the submodules are determined by a vanishing condition on the ”Kepler

variety”. The new feature is that the singularity set is not a complete intersection (in the sense of

algebraic geometry) which means that the usual projectivization involving monoidal transforms (blow-

up process) is not sufficient for the resolution of singularities. We will replace it by a higher-rank blow-

up process, having as exceptional fibres compact hermitian symmetric spaces of higher rank instead

of projective spaces. The charts and analytic continuation we use are adapted to the geometry of the

Kepler variety. The simplest case of rank 1 reduces to the usual blow-up process.

In this setting we again obtain a rigidity theorem which is not a special case of Theorem 1.1, since

we do not consider different ideals (i.e. different subvarieties) for the singular modules, but we consider

a fixed subvariety and vary the underlying ”big” Hilbert module, by choosing an arbitrary coefficient

sequence or, as a special case, a K-invariant probability measure. This situation is most interesting in

the symmetric case, where one has a full scale of different Hilbert modules like the weighted Bergman

spaces. Then we show that the ”truncated” kernel of the submodule can be recovered from the reduction

to the blow-up space. This is a kind of rigidity in the parameter space instead of selecting different

ideals.
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2. Jordan-Kepler Varieties

Hilbert modules and submodules defined by analytic varieties have been mostly studied for domains

Ω which are strongly pseudoconvex with smooth boundary, or a product of such domains. From an

operator-theoretic point of view, this is natural since for strongly pseudoconvex (bounded) domains,

Toeplitz operators with continuous symbols (in particular, with symbols given by the coordinate func-

tions) are essentially normal, so that the Toeplitz C∗-algebra generated by such operators is essentially

commutative and has a classical Fredholm and index theory. There are, however, interesting classes of

bounded domains which are only weakly pseudoconvex (and are therefore domains of holomorphy, by

the Cartan-Thullen theorem) with a non-smooth boundary. A prominent class of such domains are the

bounded symmetric domains of arbitrary rank r, which generalize the (strongly pseudoconvex) unit

ball, having rank r = 1. The Hardy space and the weighted Bergman spaces of holomorphic functions

on bounded symmetric domains have been extensively studied from various points of view (see, e.g.,

[6, 21, 29]. More recently, irreducible subvarieties of symmetric domains, given by certain determinant

type equations, have been studied in [20] under the name of ’Jordan-Kepler varieties.’ This terminology

is used since the rank r = 2 case corresponds to the classical Kepler variety in the cotangent bundle of

spheres [11]

In order to describe bounded symmetric domains and their determinantal subvarieties, we will use

the Jordan theoretic approach to bounded symmetric domains which is best suited for harmonic

and holomorphic analysis on symmetric domains. For background and details concerning the Jordan

theoretic approach, we refer to [22, 25, 29].

Let V be an irreducible hermitian Jordan triple of rank r, with Jordan triple product denoted by

{u; v;w}. The so-called spectral unit ball Ω ⊂ V is a bounded symmetric domain. Conversely, every

(irreducible) bounded symmetric domain can be realized in this way. An example is the matrix space

V = Cr×s with triple product

{u; v;w} := uv∗w + wv∗u,

giving rise to the matrix ball

Ω = {z ∈ Cr×s : Ir − zz∗ > 0}.
In particular, for rank r = 1 we obtain the triple product

{u; v;w} := (u|v)w + (w|v)u

on V = Cd, with inner product (u|v), giving rise to the unit ball

Ω = {z ∈ Cd : (z|z) < 1}.

Let G denote the identity component of the full holomorphic automorphism group of Ω. Its maximal

compact subgroup

K := {k ∈ G : k(0) = 0}
consists of linear transformations preserving the Jordan triple product. For z, w ∈ V define the

Bergman operator Bz,w acting on V by

Bz,wv = v − {z;w; v}+ 1

4
{z{w; v;w}z}.

We can also write

Bz,w = I −D(z, w) +QzQw, (2.1)

where

D(z, w)v = {z;w; v},
and

Qzw := {z;w; z}
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denotes the so-called quadratic representation (conjugate linear in w). For matrices, we haveD(z, w)v =

zw∗v + vw∗z, Qzw = zw∗z and hence

Bz,wv = (1r − zw∗)v(1s − w∗z). (2.2)

An element c ∈ V satisfying c = Qcc is called a tripotent. For matrices these are the partial isometries.

Any tripotent c induces a Peirce decomposition

V = V c
2 ⊕ V c

1 ⊕ V c
0 .

We have

dℓ := dim V̊ℓ = dc2 + dc1,

where

dc2 = dimV c
2 = ℓ(1 +

a

2
(ℓ − 1)),

dc1 = dimV c
1 = ℓ(a(r − ℓ) + b).

Here a, b are the so-called characteristic multiplicities defined in terms of a joint Peirce decomposition

[25]. Moreover,

2dc2 + dc1
ℓ

= 2(1 +
a

2
(ℓ− 1)) + a(r − ℓ) + b = 2 + a(r − 1) + b = p

is the genus. As a fundamental property, there exists a Jordan triple determinant

∆ : V × V → C, (2.3)

which is a (non-homogeneous) sesqui-polynomial satisfying

detBz,w = ∆(z, w)p.

For (r × s)-matrices, we have p = r + s and

∆(z, w) = det(1r − zw∗)

as a consequence of (2.2). In particular, ∆(z, w) = 1 − (z|w) in the rank 1 case V = Cd. A hermitian

Jordan triple U is called unital if it contains a (non-unique) tripotent u such that D(u, u) = 2 · I. In
this case U becomes a Jordan *-algebra with unit element u under the multiplication

z ◦ w :=
1

2
z;u;w

and involution

z∗ := Quz =
1

2
{u; z;u}.

This Jordan algebra has a homogeneous determinant polynomial N : U → C defined in analogy to

Cramer’s rule for square matrices. Every Peirce 2-space V c
2 is a unital Jordan triple with unit c.

Now we introduce certain K-invariant varieties. Every hermitian Jordan triple V has a natural

notion of rank defined via spectral theory. For fixed ℓ ≤ r let

V̊ℓ = {z ∈ V : rank(z) = ℓ}

denote the Jordan-Kepler manifold studied in [20]. It is a KC-homogeneous manifold whose closure

is the Jordan-Kepler variety

Vℓ = {z ∈ V : rank(z) ≤ ℓ}.
One can show that the smooth part of Vℓ (in the sense of algebraic geometry) is precisely given by V̊ℓ.

Thus the singular points of Vℓ form the closed subvariety Vℓ−1, which has codimension > 1, unless

we have the case ℓ = r for tube domains (b = 0). This case will be excluded in the sequel. The center

Sℓ ⊂ V̊ℓ consists of all tripotents of rank ℓ.
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3. Hilbert modules on Kepler varieties

Combining the Kepler variety and the spectral unit ball, we define the Kepler ball

Ωℓ := Ω ∩ Vℓ
for any 0 ≤ ℓ ≤ r. The Kepler ball Ωℓ has singularities exactly at Ωℓ−1, so that the smooth part of Ωℓ

is given by

Ω̊ℓ := V̊ℓ ∩ Ωℓ = Ωℓ \ Ωℓ−1.

Apart from the case ℓ = r on tube type domains, which we exclude here, the singular set Ωℓ−1 ⊂ Ωℓ has

codimension > 1. Combining this with the fact that Vℓ is a normal variety (so that the second Riemann

extension theorem holds) it follows that every holomorphic function on Ω̊ℓ has a unique holomorphic

extension to Ωℓ. Henceforth we will identify holomorphic functions on Ω̊ℓ with their unique holomorphic

extension to Ωℓ. For any K-invariant measure ρ on V̊ℓ we have a polar integration formula
∫

V̊ℓ

dρ(z) f(z) =

∫

Λc
2

dρc(t)

∫

K

dk f(k
√
t)

where ρc is a measure on the symmetric cone Λc
2 of V c

2 [22] called the radial part of ρ. Here
√
t denotes

the Jordan algebraic square root in Λc
2. As a special case, consider the Riemann measure λℓ(dz) on V̊ℓ

which is induced by the normalized inner product on V. Denoting by Φℓ the Koecher-Gindikin Gamma

function of Λc
2 [22], its polar decomposition is

∫

V̊ℓ

λℓ(dz)

πdℓ
f(z) =

Γℓ(
aℓ
2 )

Γℓ(
d
r )Γℓ(

ar
2 )

∫

Λc
2

dt Nc(t)
dc
1/ℓ

∫

K

dk f(k
√
t). (3.1)

Here Nc is the Jordan algebra determinant on V c
2 normalized by Nc(c) = 1. For ℓ = r the Riemann

measure on the open dense subset V̊r = V̊ ⊂ V agrees with the Lebesgue measure, and (3.1) gives the

well-known formula ∫

V

dz

πd
f(z) =

1

Γ(dr )

∫

Λe
2

dt Ne(t)
b

∫

K

dk f(k
√
t)

for any maximal tripotent e ∈ S = Sr. As a consequence of (3.1) we have for the Kepler ball
∫

Ω̊ℓ

λℓ(dz)

πdℓ
∆(z, z)ν−p f(z) =

Γℓ(
aℓ
2 )

Γℓ(
d
r )Γℓ(

ar
2 )

∫

Λc
2
∩(c−Λc

2
)

dt Nc(t)
dc
1/ℓ Nc(c− t)ν−p

∫

K

dk f(k
√
t) (3.2)

since ∆(k
√
t, k

√
t) = ∆(

√
t,
√
t) = Nc(c− t) for all t ∈ Λc

2 ∩ (c− Λc
2).

As a fundamental fact [22, 29] of harmonic analysis on Jordan algebras and Jordan triples, the

Fischer-Fock reproducing kernel e(z|w), for the normalized K-invariant inner product (z|w) on V, has a
”Taylor expansion”

e(z|w) =
∑

m

Em(z, w)

over all integer partitions m = m1 ≥ m2 ≥ . . . ≥ mr ≥ 0, where Em(z, w) = Ew(z) are sesqui-

polynomials which are K-invariant such that the finite-dimensional vector space

Pm(V ) = {Em

w : w ∈ V }
is an irreducibleK-module. TheseK-modules are pairwise inequivalent and span the polynomial algebra

P(V ). Let

(ν)m =

r∏

j=1

(ν − a

2
(j − 1))mj

denote the multi-variable Pochhammer symbol. Let Nr
+ denote the set of all partitions of length

≤ r. Restricted to the Kepler variety we only consider partitions in Nℓ
+ of length ≤ ℓ, completed by

zeroes at the end.
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Lemma 3.1. For any partition m ∈ Nℓ
+ of length ≤ ℓ we have

∫

Λc
2
∩(c−Λc

2
)

dt Nc(t)
dc
1/ℓ Nc(c− t)ν−p Nm(t) =

Γℓ(
dℓ

ℓ ) Γℓ(ν − dℓ

ℓ )

Γℓ(ν)

(dℓ/ℓ)m
(ν)m

. (3.3)

Proof. Applying [22, Theorem VII.1.7] to Λc
2 yields

∫

Λc
2
∩(c−Λc

2
)

dt Nc(t)
dc
1/ℓ Nc(c− t)ν−p Nm(t) =

Γℓ(m+
dc
1

ℓ +
dc
2

ℓ ) Γℓ(ν − p+
dc
2

ℓ )

Γℓ(m+ ν − p+
dc
1
+2dc

2

ℓ )

=
Γℓ(m+ dℓ

ℓ ) Γℓ(ν − dℓ

ℓ )

Γℓ(m+ ν)
=

Γℓ(
dℓ

ℓ ) Γℓ(ν − dℓ

ℓ )

Γℓ(ν)

(dℓ/ℓ)m
(ν)m

.

�

Let du be the K-invariant probability measure on Sℓ and put

(f |g)Sℓ
=

∫

Sℓ

du f(u) g(u) =

∫

K

dk f(kc) g(kc). (3.4)

Definition 3.2. Consider a coefficient sequence (ρm)m∈Nℓ
+

normalized by ρ0 = 1. Define a Hilbert

space M = Mρ of holomorphic functions on Ωℓ by imposing the K-invariant inner product

(f |g)ρ :=
∑

m∈Nℓ
+

ρm(fm|gm)Sℓ
. (3.5)

where fm ∈ Pm(V ) denotes the m-th component of f.

The subnormal case arises when the inner product (3.5) has the form

(f |g)ρ =

∫
dρ(z) f(z)g(z),

where ρ is a K-invariant probability measure on the closure of Ωℓ or a suitable K-invariant subset which

is a set of uniqueness for holomorphic functions. For the case ℓ = r, this was studied in detail for the

tube type domains in [7] and completed for all bounded symmetric domains in [5]. By [20, Proposition

4.4] the Hilbert space

M = Mρ := {φ ∈ L2(dρ) : φ holomorphic on Ωℓ}
has the coefficient sequence

ρm =

∫

Λc
2

dρc(t) Nm(t)

given by the moments of the radial part ρc, which is a probability measure on Λc
2 (not necessarily of

full support). As a special case the Hardy type inner product (3.4), corresponding to the K-invariant

probability measure du on Sℓ, has the point mass at c as its radial part, showing that all radial moments

ρm = 1.

It is clear that the Hilbert spaces Mρ defined by K-invariant measures are analytic Hilbert modules

as defined above (however, consisting of holomorphic functions on a manifold Ω̊ℓ instead of a domain).

For more general coefficient sequences ρm, one could in principle determine whether multiplication

operators by polynomials are bounded (using certain growth conditions on the coefficient sequence),

and whether the other requirements for analytic Hilbert modules hold. Important examples are listed

below where the reproducing kernels are given by hypergeometric series. For the classical case ℓ = r,

the well-understood analytic continuation of the scalar holomorphic discrete series of weighted Bergman

spaces on Ω = Ωr [21] shows that the Hilbert module property extends beyond the subnormal case.
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Proposition 3.3. For a given coefficient sequence ρm, M has the reproducing kernel

K(z, w) =
∑

m∈Nℓ
+

(d/r)m
ρm

(ra/2)m
(ℓa/2)m

Em(z, w). (3.6)

Proof. This follows from [20, Proposition 4.3] and the formula

dm
dc
m

=
(d/r)m
(dc2/ℓ)m

(ra/2)m
(ℓa/2)m

obtained in [20, equation (5.5) in the proof of Theorem 5.1]. �

We will now present some examples, where the reproducing kernel (3.6) can be expressed in closed

form as a multivariate hypergeometric series defined in general by
(
α1, . . . , αp

β1, . . . , βq

)

p q

(z, w) =
∑

m

(α1)m · · · (αp)m
(β1)m · · · (βq)m

Em(z, w).

Applying (3.3) to m = 0 it follows that

ρν(dz) =
Γℓ(

d
r )

Γℓ(
dℓ

ℓ )

Γℓ(
ra
2 )

Γℓ(
ℓa
2 )

Γℓ(ν)

Γℓ(ν − dℓ

ℓ )

λℓ(dz)

πdℓ
∆(z, z)ν−p

is a probability measure on Ω̊ℓ. Moreover, applying (3.3) to any m ∈ Nℓ
+ it follows that the measure

ρν has the coefficient sequence

ρνm =
(dℓ/ℓ)m
(ν)m

.

Thus the Hilbert space

Mν := {φ ∈ L2(dρν) : φ holomorphic on Ωℓ}
of holomorphic functions on Ωℓ has the reproducing kernel

K(z, w) =
∑

m∈Nℓ
+

(d/r)m
(dℓ/ℓ)m

(ra/2)m
(ℓa/2)m

(ν)m Em(z, w) =

(
d
r ,

ra
2 , ν

dℓ

ℓ ,
ℓa
2

)

3 2

(z, w).

In the classical case ℓ = r we have the probability measure

dρν(z) =
Γ(ν)

Γ(ν − d
r )

dz

πd
∆(z, z)ν−p

on Ω, whose reproducing kernel is given by

K(z, w) =
∑

m∈Nr
+

(ν)m Em(z, w) =

(
ν
)

1 0

(z, w) = ∆(z, w)−ν

according the Faraut-Korányi formula [21].

4. The Singular Set and its Resolution

The only strongly pseudoconvex symmetric domains are the unit balls of rank r = 1. Here the

singularity Ω0 consists of a single point {0}. The classical procedure to resolve this singularity is the

monoidal transformation (blow-up process) where a point is replaced by a projective space of appropriate

dimension. As the main geometric result in this paper, we obtain a generalization of the blow-up process

for higher dimensional Kepler varieties and domains of arbitrary rank. The Jordan theoretic approach

leads to quite explicit formulas which generalize the equations of the classical blow-up process of a

point.

The general procedure outlined in Section 1 using monoidal transformations works in the case where

the singularity is given by a regular sequence g1, . . . , gm of polynomials generating the vanishing ideal

I. In this case the variety is a smooth complete intersection. If m = d equals the dimension, this variety
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reduces to a single point. The usual blow-up process around a point 0 ∈ Cd is the proper holomorphic

map

π : Ĉd → Cd

where

Ĉd := {(w,U) : w ∈ Cd, U ∈ Pd−1, w ∈ U}
is the tautological bundle over Pd−1, with ’collapsing map’ π(w,U) := w. The map π is biholomorphic

outside the exceptional fibre π−1(0) = Pd−1. For the Kepler varieties studied here the singular set Ωℓ−1

has higher dimension and is not a complete intersection (unless ℓ = 1). Thus a regular generating

sequence of polynomials does not exist. Instead, we use the harmonic analysis of polynomials provided

by the Jordan theoretic approach to study the singular set. The main idea is to replace the projective

space (a compact hermitian symmetric space of rank 1) by a compact hermitian symmetric space of

higher rank, namely the Peirce manifold

Mℓ = {V c
2 : c ∈ Sℓ}

of all Peirce 2-spaces of rank ℓ in V. This can also be realized as the conformal compactification of the

Peirce 1-space V 1
c , for any rank ℓ tripotent c. For example, in the full matrix triple V = Cr×s the Peirce

1-space of c =

(
1ℓ 0

0 0

)
∈ Sℓ is given by

V c
1 =

(
0 Cℓ×(s−ℓ)

C(r−ℓ)×ℓ 0

)
.

Hence, in this case, the Peirce manifold Mℓ is the direct product of two Grassmann manifolds

Mℓ = Grassℓ(C
r)×Grassℓ(C

s).

In the simplest case r = 1 we have V = Cd and for the tripotent c = (1, 0d−1) we have V c
1 = (0,Cd−1).

Its conformal compactification is V̂ c
1 = Pd−1, which is the exceptional fibre of the usual blow-up process

for 0 ∈ Cd. More generally, for any non-zero tripotent c we have V c
2 = C · c and hence V c

1 becomes the

orhtogonal complement c⊥ = Cd−1, with conformal compactification V̂ c
1 = Pd−1.

The standard charts of projective space Pd−1 have the form

τi : C
d−1 → Pd−1, τi(t1, . . . , t̂i, . . . , td) := [t1 : . . . : 1i : . . . : td]

using homogeneous coordinates on Pd−1. Note that for 1 ≤ i ≤ d, the rank 1 tripotent ci :=

(0, . . . , 0, 1, 0, . . . , 0) ∈ Cd has the Peirce 1-space

V ci
1 := {(t1, . . . , ti−1, 0, ti+1, . . . , td) : (t1, . . . , t̂i, . . . , td) ∈ Cd−1}.

In the higher rank setting, the Bergman operators (2.1) serve to define canonical charts for the Peirce

manifolds. For each tripotent c ∈ Sℓ and every t ∈ V c
1 the transformation Bt,−c ∈ KC preserves the

rank. It follows that Bt,−cc ∈ V̊ℓ has a Peirce 2-space denoted by [Bt,−cc]. As shown in [28] the map

τc : V
c
1 →M, τc(t) := [Bt,−cc] (4.1)

is a holomorphic chart of M. The range of the chart τc is

Mc := {U ∈M : NU (c) 6= 0}.

Here NU : U → C denotes a Jordan algebra determinant of the Jordan triple U which, as a Peirce

2-space, is of tube type. The Jordan determinant is only defined after choosing a maximal tripotent in

U as a unit element, but any two such determinant functions differ by a non-zero multiple. It is shown

in [28] that the local charts τc of Mℓ, for different tripotents c, c
′ ∈ Sℓ, are compatible and hence form

a holomorphic atlas on Mℓ.
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One can make the passage z 7→ [z] to the Peirce 2-space more explicit by introducing the so-called

(Moore-Penrose) pseudo-inverse. Every element z ∈ V̊ℓ has a pseudo-inverse z̃ ∈ V̊ℓ determined by

the properties

Qzz̃ = z, Qz̃z = z̃, Qz Qz̃ = Qz̃ Qt.

Using the pseudo-inverse, the orthogonal projection onto the Peirce 2-space of V z
2 can be explicitly

written down.

Lemma 4.1. The pseudo-inverse of Bt,−cc is given by

τ̃c(t) = Bt,−cB
−1
t,−tc.

Thus the associated Peirce 2-space is

[τc(t) : τ̃c(t)] ∈ V̂ c
1 ⊂ V̂.

Combining these remarks, the chart (4.1) can be written down explicitly. It is also instructive

to embed Mℓ into the conformal compactification V̂ of the underlying Jordan triple V (the compact

hermitian symmetric space that is dual to the spectral unit ball Ω). According to [25] V̂ can elegantly

be described using a certain equivalence relation [z : w] for pairs z, w ∈ Z.As shown in [28], one may

identify the Peirce 2-space V z
2 with the equivalence class [z; z̃] ∈ V̂. Thus the local chart (4.1) associated

to a tripotent c ∈ Sℓ can also be expressed via the embedding

τc : V
c
1 → Mℓ ⊂ V̂

given by

τc(t) = [z; z̃],

where z := Bt,−cc ∈ V̊ℓ and z̃ is computed via Lemma 4.1. In the sequel these more refined descriptions

of the local charts will not be needed.

Having found the exceptional fibre Mℓ for the higher-rank blow-up process, we now consider the

tautological bundle

V̂ℓ = {(w,U) ∈ V ×Mℓ : w ∈ U} ⊂ Vℓ ×Mℓ

over Mℓ, together with the collapsing map

π : V̂ℓ → Vℓ, π(w,U) := w

whose range is Vℓ. In [20] this map is used to show that Vℓ is a normal variety. This property implies

the so-called second Riemann extension theorem for holomorphic functions, of crucial importance in

the following. For each s ∈ V c
2 the rank ℓ element

σc(s, t) := Bt,−cs (4.2)

has the same Peirce 2-space τc(t) as Bt,−cc. We define a local chart

ρc : V
c
2 × V c

1 → V̂ℓ

by

ρc(s, t) := (σc(s, t), τc(t)) (4.3)

By (4.2) the range of the chart ρc is

V̂ c
ℓ := {(w,U) ∈ V̂ℓ : U ∈ Ran τc} = {(w,U) ∈ V̂ℓ : NU (c) 6= 0}.

One shows that the charts ρc, for c ∈ Sℓ, define a holomorphic atlas on V̂ℓ, such that the collapsing map

π : V̂ℓ → Vℓ is holomorphic and is biholomorphic outside the singular set. We call V̂ℓ, together with the

collapsing map the (higher rank) blow-up of Vℓ.
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Proposition 4.2. For rank 1, let c := (1, 0). Then

ρc(s, t) := ((s, st), [1 : t]) = ((s, st),C(1, t)),

where s ∈ C and t ∈ Cd−1. Here [s : t] = [s : t1 : . . . : td−1] denotes the homogeneous coordinates in

Pd−1.

Proof. Clearly, V c
2 = C · c = (C, 0) = [1 :, 0] and V c

1 = (0,Cd−1). Then

σc(s, t) = Bt,−cs =
(
1 + (0, t)

(
1

0

))
(s, 0)

((
1 0

0 1

)
+

(
1

0

)(
0 t

) )
= (s, 0)

(
1 t

0 1

)
= (s, st).

In particular, σc(1, t) = (1, t) has the Peirce 2-space τc(t) = C · (1, t) = [1 : t]. It follows that

ρc(s, t) = (σc(s, t), τc(t)) = ((s, st),C · (1, t)) = ((s, st), [1 : t]).

�

More generally, taking for c = ei the i-th basis unit vector (1 ≤ i ≤ d) we obtain local charts

ρi(ζ
i, ζ′) = ((ζi, ζiζ′),C(1i, ζ′)) = ((ζi, ζiζ′), [1i : ζ′])

where ζ′ = (ζj)j 6=i. The finitely many charts ρi (1 ≤ i ≤ d) form already a covering of Q. Using the grid

approach to Jordan triples one can similarly choose finitely many charts in the general case. However,

for many arguments using K-invariance it is more convenient to take the continuous family of charts

(σc)c∈Sℓ
.

Since the analytic Hilbert modules considered here are supported on the Kepler ball Ωℓ = Ω∩ Vℓ we
restrict the tautological bundle to the open subset

Ω̂ℓ := {(w,U) ∈ V̂ℓ : w ∈ Ω}

and obtain a collapsing map π : Ω̂ℓ → Ω̂ℓ by restriction. The main idea to study singular submodules

M̃ is now to construct a hermitian holomorphic line bundle L̂ over Ω̂ℓ, whose curvature will be the

crucial invariant of M̃.

Proposition 4.3. There exists a holomorphic line bundle L̂ on Ω̂ℓ consisting of all equivalence classes

[s, t, λ Nc(s)]c =
[
s′, t′, λ Nc′(s′)

]
c′

(4.4)

with λ ∈ C. Here c, c′ ∈ Sℓ are tripotents such that

ρc(s, t) = ρc′(s
′, t′) (4.5)

for (s, t) ∈ V c
2 × V c

1 and (s′, t′) ∈ V c′

2 × V c′

1 .

Proof. The condition (4.5) implies σc(s, t) = σc′(s
′, t′) and [σc(1, t)] = τc(t) = τc′(t

′) = [σc′(1, t
′)]. This

implies that Nc(s) and Nc′(s
′) do not vanish. Since the quotient maps Nc′(s

′)

Nc(s)
satisfy a cocycle property,

it follows that

[s, t, λ]c =
[
s′, t′, λ

Nc′(s′)

Nc(s)

]
c′

defines an equivalence relation yielding a holomorphic line bundle. �

At this point we do not fix a hermitian metric the line bundle L over D̂ℓ. The metric depends on the

choice of singular submodules M̃ which will be defined below.
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5. Singular Hilbert Submodules

Consider the partition

1 := (1, . . . , 1, 0, . . . , 0)

of length ℓ, with 1 repeated ℓ times. Given the Hilbert module M = Mρ as above, consider the

K-invariant Hilbert submodule

M̃ = {ψ ∈ M : ψ|Vℓ−1
= 0}.

The formula (3.6) yields the truncated kernel in the form

K̃(z, w) =
∑

m∈Nℓ
+

(d/r)m+1

ρm+1

(ra/2)m+1

(ℓa/2)m+1

Em+1(z, w), (5.1)

corresponding to vanishing of order ≥ 1 on Vℓ−1. Using the identity

(ν)m+1 = (ν + 1)m (ν)1

one can also express this using Pochhammer symbols for m instead of m+ 1.

Lemma 5.1. Let V be a unital Jordan triple, with Jordan algebra determinant N. Then we have

Em+1(z, w) =
(d/r)m

(d/r)m+1

N(z)N(w) Em(z, w).

Proof. For tube type we have

Em(e, e) =
dm

(d/r)m
.

Writing

Em+1(z, w) = cm N(z)N(w) Em(z, w)

it follows that
dm+1

(d/r)m+1

= Em+1(e, e) = cm Em(e, e) = cm
dm

(d/r)m
.

Since dm+1 = dm in the unital case, it follows that

cm =
(d/r)m

(d/r)m+1

.

�

Lemma 5.2. For m ∈ Nℓ
+ we have for s ∈ V c

2 and t ∈ V c
1

Em+1(z,Bt,−cs) =
(dc2/ℓ)m

(dc2/ℓ)m+1

Nc(PcB
∗
t,−cz) Nc(s) E

m(z,Bt,−cs).

Proof. Applying Lemma 5.1 to the tube type Peirce 2-space V c
2 of rank ℓ implies

Em+1(z,Bt,−cs) = Em+1(B∗
t,−cz, s) = Em+1

c (PcB
∗
t,−cz, s)

=
(dc2/ℓ)m

(dc2/ℓ)m+1

Nc(PcB
∗
t,−cz) Nc(s) E

m

c (PcB
∗
t,−cz, s).

Since Em
c (PcB

∗
t,−cz, s) = Em(B∗

t,−cz, s) = Em(z,Bt,−cs), the assertion follows. �

Since the truncated kernel K̃ of M̃ vanishes on the singular set Vℓ−1 it cannot be used directly to

define a hermitian line bundle over Vℓ−1. Instead, we first consider the module tensor product of H2
0 (Ωℓ)

over the polynomial ring P(V ) with the one dimensional module Cw, (p, w) 7→ p(w). Similar as in (1.1)

we have, as a consequence of (5.1)

H2
0 (Ωℓ)⊗P(V ) Cw =

{
C if w ∈ Ω̊ℓ

P1(V ) if w ∈ Ωℓ−1

.

Here P1(V ) is the finite-dimensional K-module belonging to the partition 1. The K-module P1(V ) has

dimension > 1 (since we exclude the case ℓ = r for tube type, where P1(V ) is spanned by the Jordan
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algebra polynomial N). The ideal I associated to the variety Vℓ−1 is generated by P1(V ). For each

w ∈ Ωℓ there is a ’cross-section’ P1(V ) → H2
0 (Ωℓ) given by

p(z) 7→ p(z) ·Ψw(z)

where

Ψ(z, w) = K̂w(z) =
∑

m∈Nℓ
+

(d/r)m+1

ρm+1

(ra/2)m+1

(ℓa/2)m+1

(dc2/ℓ)m
(dc2/ℓ)m+1

Em(z, w). (5.2)

Then Ψw(z) ∈ M for each w ∈ Ωℓ. Let Ni, i ∈ I be an orthonormal basis of P1(V ). Then there is a

holomorphic vector subbundle E ⊂ Ωℓ ×M over the Kepler ball Ωℓ, whose fibre at w ∈ Vℓ is the span

Ew := 〈Ni(z) Ψw(z) : i ∈ I〉 = P1(V ) ·Ψw ⊂ M.

The vector bundle E is independent of the choice of orthonormal basis Ni. Consider the pull-back vector

bundle

π∗E

��

E

��

Ω̂ℓ π
// Ωℓ

over Ω̂ℓ, under the collapsing map π. We note that the ’canonical’ choice of higher rank vector bundle

E over Ωℓ, with typical fibre P1(V ) associated with the quotient module, is only possible for irreducible

domains. In the reducible case (1.2) of the bidisk there is no natural choice of a rank 2 vector bundle

having the fibre < z1, z2 > at the origin.

Proposition 5.3. For all (s, t) ∈ V c
2 ⊕ V c

1 we have

K̃(z,Bt,−cs) = Nc(PcB
∗
t,−cz) Nc(s) Ψ(z,Bt,−cs).

Proof. This follows from the computation

K̃(z,Bt,−cs) =
∑

m∈Nℓ
+

(d/r)m+1

ρm+1

(ra/2)m+1

(ℓa/2)m+1

Em+1(z,Bt,−cs)

=
∑

m∈Nℓ
+

(d/r)m+1

ρm+1

(ra/2)m+1

(ℓa/2)m+1

(dc2/ℓ)m
(dc2/ℓ)m+1

Nc(PcB
∗
t,−cz) Nc(s) E

m(z,Bt,−cs)

= Nc(PcB
∗
t,−cz) Nc(s)

∑

m∈Nℓ
+

(d/r)m+1

ρm+1

(ra/2)m+1

(ℓa/2)m+1

(dc2/ℓ)m
(dc2/ℓ)m+1

Em(z,Bt,−cs).

�

Now consider the holomorphic line bundle L̂ over the blow-up space Ω̂ℓ defined in Proposition 4.3.

Theorem 5.4. There exists an anti-holomorphic embedding L̂ ⊂ π∗E , defined on each fibre L̂w,U ⊂
(π∗E)w,U = Ew by

[s, t, 1]c 7→ Nc(B
∗
t,−cz) ΨBt,−cs(z). (5.3)

In short,

[s, t, 1]c 7→ Nc ◦B∗
t,−c ΨBt,−cs.

Proof. First we show that the map (5.3) is well-defined via the local charts (4.3). Suppose that c, c′ ∈ Sℓ

satisfy

ρc(s, t) = ρc′(s
′, t′),

where (s, t) ∈ V c
2 × V c

1 and (s′, t′) ∈ V c′

2 × V c′

1 . Then we have

Bt,−cs = σc(s, t) = σc′(s
′, t′) = Bt′,−c′s

′.
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It follows that K̃Bt,−cs = K̃Bt′,−c′s
′ and Proposition 5.3 implies

Nc(s) [s, t, 1]c = K̃Bt,−cs = K̃Bt′,−c′s
′ = Nc′(s′) [s

′, t′, 1]c′ .

Since Nc(s) and Nc′(s
′) don’t vanish on the overlap Vc ∩ Vc′ it follows that

[s, t, 1]c =
Nc′(s′)

Nc(s)
[s′, t′, 1]c′ =

[
s′, t′,

Nc′(s′)

Nc(s)

]
c′
.

Thus the map (5.3) respects the equivalence relation (4.4). Moreover, the map (5.3) is anti-holomorphic

in (s, t), with values in M. In order to see that the range belongs to the span of Ni(z) Ψw(z), where

w = Bt,−cs, choose holomorphic functions ci(t) such that

Nc(B
∗
t,−cz) =

∑

i∈I

ci(t) Ni(z)

for all t ∈ V c
1 . It follows that

Nc(B
∗
t,−cz) ΨBt,−cs(z) =

∑

i

Ni(z) ci(t) Ψ(z,Bt,−cs) ∈ EBt,−cs.

�

We are now able to define a hermitian metric on the line bundle L̂ over Ω̂ℓ. A Jordan theoretic

argument yields

Lemma 5.5. For t ∈ V c
1 we have

PcB
∗
t,−cBt,−cc = PcBt,−tc

and hence

Nc(B
∗
t,−cBt,−cc) = ∆(t, t).

Here ∆ denotes the Jordan triple determinant (2.3).

Proposition 5.6. For all (s, t) ∈ V c
2 ⊕ V c

1 we have

K̃(Bt,−cs,Bt,−cs) = ∆(t, t) |Nc(s)|2 Ψ(Bt,−cs,Bt,−cs).

Proof. Since PcBt,−cB
∗
t Pc belongs to the structure group of V 2

c it follows from Lemma 5.5 that

= Nc(B
∗
t,−cBt,−cs) = Nc(B

∗
t,−cBt,−cc) Nc(s) = ∆(t, t) Nc(s).

Now apply Proposition 5.3. �

Proposition 5.7. For each submodule M̃ ⊂ M, with truncated kernel (5.1), there exists a hermitian

metric on the line bundle L̂ over Ω̂ℓ, given by the local representatives

([s, t, 1]c|[s, t, 1]c) := ∆(t, t) Ψ(Bt,−cs,Bt,−cs).

For this metric, the embedding (5.3) is isometric.

Proof. Since Proposition 5.6 implies

‖Nc(B
∗
t,−cz) ΨBt,−cs(z)‖2 = ‖K̃Bt,−cs

Nc(s)
‖2 =

1

|Nc(s)|2
K̃(Bt,−cs,Bt,−cs) = ∆(t, t) Ψ(Bt,−cs,Bt,−cs)

it follows that the embedding (5.3) is isometric. �

Definition 5.8. The Hilbert module over Ω̂ℓ associated with the hermitian holomorphic line bundle L̂
will be called the reduction of M̃, and denoted by M̂. Note that this is different from the pull-back

π∗E which is a vector bundle containing L̂ as a subbundle.

The following rigidity theorem for singular submodules on Kepler varieties is our main analytic result.
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Theorem 5.9. Consider two K-invariant Hilbert modules M̃ρ and M̃ρ′ on Ωℓ, for given coefficient

sequences ρm and ρ′m, respectively. Suppose that the reduced Hilbert modules M̂ρ and M̂ρ′ on the

blow-up space Ω̂ℓ are equivalent. Then we have equality M̃ρ = M̃ρ′ .

Proof. The proof is an application of the ’normalized kernel argument’ summarized in Proposition 0.1.

Consider the reproducing kernels K̂ρ and K̂ρ′

of the reduced Hilbert modules. It suffices to consider a

local chart V c
2 × V c

1 of Ω̂ℓ for a given tripotent c ∈ Sℓ defined in (4.3). As a consequence of module

equivalence for line bundles, there exists a non-vanishing holomorphic function φ on the local chart

V c
2 × V c

1 of Ω̂ℓ such that

K̂ρ′

(x, y) = φ(x) K̂ρ(x, y) φ(y). (5.4)

Putting y = 0 we obtain

1 = K̂ρ′

(x, 0) = φ(x) K̂ρ(x, 0) φ(0) = φ(x) φ(0).

Therefore φ is constant. After normalization, we may assume φ = 1. Then (5.4) implies

K̂ρ′

(x, y) = K̂ρ(x, y)

for all x, y. In view of (5.2), this implies ρm+1 = ρ′
m+1

for all m ∈ Nℓ
+. By (5.1), the singular

submodules M̃ and M̃′ have the same truncated kernel K̃(z, w) = K̃′(z, w). �

6. Outlook and Concluding Remarks

For the Hardy module H2(Dd) it is evident that not all submodules are of the form [I], for some

ideal I of the polynomial ring. (Here [I] is the closure of I in H2(Dd)). Ahern and Clark [4] show that

all submodules (of the Hardy module) of finite codimension are of this form. In general, if a submodule

M̃ ⊆ M is not of the form [I], then it is not covered by the known Rigidity theorems with only one

exception, namely [18, Theorem, pp. 70]. However, the geometric invariants constructed in [9] and in

the current paper, it is hoped, might be useful in studying a much larger class of submodules. Recall

that a submodule of an analytic Hilbert module M based on the domain Ω defines a coherent analytic

sheaf [8, 9]. It possesses a Hermitian structure away from the zero variety and on this smaller open

set, we have a holomorphic Hermitian vector bundle, which determines the class of the submodule.

What we have shown here is that it has an analytic Hermitian continuation to the blow-up space. This

interesting phenomenon naturally leads to the notion of, what one may call a Hermitian sheaf and

eventually determine the equivalence class of these in terms of the geometric data already implicit in

the definition, as in the examples we have discussed here.

We conclude this paper with several remarks concerning interesting directions for future research

Remark 6.1. In [27] we consider more general Hilbert modules related to Kepler varieties, where the

integration does not take place on the Kepler ball Ωℓ but on certain boundary strata, including the

Hardy type inner product (3.4). These Hilbert modules, and their submodules defined by a vanishing

condition on Ωℓ−1 provide a wider class of natural examples to which the above treatment is applicable.

Remark 6.2. It is easy to generalize the singular Hilbert modules treated in this paper, defined by a

vanishing condition of order 1 on the singular set, to vanishing conditions of higher order. In this case

the truncated kernel, generalizing (5.1), has the form

K̃(z, w) =
∑

m∈Nℓ
+

(d/r)m+k

ρm+k

(ra/2)m+k

(ℓa/2)m+k

Em+k(z, w),

corresponding to vanishing of order ≥ k on Vℓ−1. Here k = (k, . . . , k, 0, . . . , 0) with k repeated ℓ times.

In principle, one could also start with an arbitrary partition µ > 0 of length ℓ and consider truncations

such as

K̃(z, w) =
∑

n∈Nℓ
+
, n≥µ

(d/r)n
ρn

(ra/2)n
(ℓa/2)n

En(z, w).
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In this case one expects to have the finite-dimensionalK-module Pµ(V ) occurring as a quotient module.

On the other hand, treating singularities where the rank decreases by more than 1, for example Vℓ−2 ⊂
Vℓ, or the origin V0 = {0} as a singularity in Ω = Ωr, seems to be more difficult.

Remark 6.3. In the maximal rank case ℓ = r the ball Ωr = Ω is invariant under the full non-linear

group G. For tube type domains, the singular set Ωr−1 has codimension 1, defined by vanishing of the

Jordan algebra determinant. This case formally resembles the one-dimensional situation and is not

covered by our approach (it was excluded to begin with). On the other hand, let V be a hermitian

Jordan triple not of tube type. There are three cases

• The rectangular matrices V = Cr×s with s > r.

• The skew-symmetric matrices V = CN×N
asym of odd order N = 2r + 1

• The exceptional Jordan triple V = O1×2
C

of rank r = 2 and dimension 16.

For these cases the singular set

Vr−1 = {z ∈ V : rank(z) < r}
has codimension > 1. The intersection

Ωr−1 := Vr−1 ∩ Ω

with the unit ball Ω ⊂ V is an analytic subvariety of Ω. For any automorphism g ∈ G = Aut(Ω) we

obtain another subvariety g(Ωr−1) ⊂ Ω. Since G acts on the weighted Bergman spaces Mν = H2
ν (Ω)

one can consider submodules of Mν defined by vanishing on Ωr−1 and g(Ωr−1), respectively, where

g ∈ G does not belong to K.

A similar situation arises for the so-called Mok embeddings

ιc : B → Ω

of the unit ball B = Bn into a symmetric domain Ω of higher rank, constructed in [30]. Here c ∈ S1 is

any rank 1 tripotent. These embeddings have the property that the respective Bergman kernels satisfy

KB(x, y) = KΩ(ιc(x), ιc(y))

for all x, y ∈ B. Let Bc := ιc(B) ⊂ Ω be the image variety (whose defining equations are explicitly

known [30]) and consider, for g ∈ G, the subvariety g(Bc) with associated Hilbert submodule M̃ν ⊆ Mν

defined by a vanishing condition on g(Bc).

It would be of interest to study the reduced modules and rigidity problems for singular submodules

in such a G-equivariant setting.

Remark 6.4. Beyond the scalar case treated in this paper, analytic Hilbert modules for higher rank

vector bundles (n > 1) have recently attracted much attention [23, 24, 26] and should give rise to

interesting singular submodules as well.
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