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Abstract. Given a pair of positive real numbers α, β and a sesqui-analytic function K on a bounded
domain Ω ⊂ C

m, in this paper, we investigate the properties of the sesqui-analytic function K
(α,β) :=

Kα+β
(

∂i∂̄j logK
)m

i,j=1
, taking values in m × m matrices. One of the key findings is that K

(α,β) is

non-negative definite whenever Kα and Kβ are non-negative definite. In this case, a realization of
the Hilbert module determined by the kernel K(α,β) is obtained. Let Mi, i = 1, 2, be two Hilbert
modules over the polynomial ring C[z1, . . . , zm]. Then C[z1, . . . , z2m] acts naturally on the tensor
product M1 ⊗M2. The restriction of this action to the polynomial ring C[z1, . . . , zm] obtained using
the restriction map p 7→ p|∆ leads to a natural decomposition of the tensor product M1 ⊗M2, which
is investigated. Two of the initial pieces in this decomposition are identified.

1. Introduction

1.1. Hilbert Module. We will find it useful to state many of our results in the language of Hilbert
modules. The notion of a Hilbert module was introduced by R. G. Douglas (cf. [11]), which we recall
below. We point out that in the original definition, the module multiplication was assumed to be
continuous in both the variables. However, for our purposes, it would be convenient to assume that it
is continuous only in the second variable.

Definition 1.1 (Hilbert module). A Hilbert module M over a unital, complex algebra A consists of a
complex Hilbert space M and a map (a, h) 7→ a · h, a ∈ A, h ∈ M, such that

(i) 1 · h = h
(ii) (ab) · h = a · (b · h)
(iii) (a+ b) · h = a · h+ b · h
(iv) for each a in A, the map ma : M → M, defined by ma(h) = a · h, h ∈ M, is a bounded linear

operator on M.

A closed subspace S of M is said to be a submodule of M if mah ∈ S for all h ∈ S and a ∈ A. The
quotient module Q := H /S is the Hilbert space S⊥, where the module multiplication is defined to be
the compression of the module multiplication on H to the subspace S⊥, that is, the module action on
Q is given by ma(h) = PS⊥(mah), h ∈ S⊥. Two Hilbert modules M1 and M2 over A are said to be
isomorphic if there exists a unitary operator U : M1 → M2 such that U(a ·h) = a ·Uh, a ∈ A, h ∈ M1.

Let K : Ω × Ω → Mk(C) be a ses-qui analytic (that is holomorphic in first m-variables and anti-
holomorphic in the second set of m-variables) non-negative definite kernel on a bounded domain
Ω ⊂ Cm. It uniquely determines a Hilbert space (H,K) consisting of holomorphic functions on Ω
taking values in Ck possessing the following properties. For w ∈ Ω,

(i) the vector valued function K(·, w)ζ, ζ ∈ Ck, belongs to the Hilbert space H
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(ii) 〈f,K(·, w)ζ〉
H
= 〈f(w), ζ〉

Ck , f ∈ (H,K).

Assume that the operator of multiplication Mzi by the ith coordinate function zi is bounded on the
Hilbert space (H,K) for i = 1, . . . ,m. Then (H,K) may be realized as a Hilbert module over the
polynomial ring C[z1, . . . , zm] with the module action given by the point-wise multiplication:

mp(h) = ph, h ∈ (H,K), p ∈ C[z1, . . . , zm].

Let K1 and K2 be two scalar valued non-negative definite kernels defined on Ω × Ω. It turns out
that (H,K1)⊗ (H,K2) is the reproducing kernel Hilbert space with the reproducing kernel K1 ⊗K2,
where K1 ⊗K2 : (Ω ×Ω)× (Ω× Ω) → C is given by

(K1 ⊗K2)(z, ζ;w, ρ) = K1(z, w)K2(ζ, ρ), z, ζ, w, ρ ∈ Ω.

Assume that the multiplication operators Mzi , i = 1, . . . ,m, are bounded on (H,K1) as well as on
(H,K2). Then (H,K1) ⊗ (H,K2) may be realized as a Hilbert module over C[z1, . . . , z2m] with the
module action defined by

mp(h) = ph, h ∈ (H,K1)⊗ (H,K2), p ∈ C[z1, . . . , z2m].

The module (H,K1)⊗ (H,K2) admits a natural direct sum decomposition as follows.
For a non-negative integer k, let Ak be the subspace of (H,K1)⊗ (H,K2) defined by

(1.1) Ak :=
{
f ∈ (H,K1)⊗ (H,K2) :

((
∂
∂ζ

)i
f(z, ζ)

)
|∆

= 0, |i| ≤ k
}
,

where i ∈ Zm
+ , |i| = i1 + · · · + im,

(
∂
∂ζ

)i
= ∂|i|

∂ζ
i1
1 ···∂ζimm

, and
((

∂
∂ζ

)i
f(z, ζ)

)
|∆

is the restriction of
(

∂
∂ζ

)i
f(z, ζ) to the diagonal set ∆ := {(z, z) : z ∈ Ω}. It is easily verified that each of the subspaces

Ak is closed and invariant under multiplication by any polynomial in C[z1, . . . , z2m] and therefore they
are sub-modules of (H,K1) ⊗ (H,K2). Setting S0 = A⊥

0 , Sk := Ak−1 ⊖ Ak, k = 1, 2, . . ., we obtain a
direct sum decomposition of the Hilbert space

(H,K1)⊗ (H,K2) =

∞⊕

k=0

Sk.

In this decomposition, the subspaces Sk ⊆ (H,K1) ⊗ (H,K2) are not necessarily sub-modules. In-
deed, one may say they are semi-invariant modules following the terminology commonly used in
Sz.-Nagy–Foias model theory for contractions. We study the compression of the module action to
these subspaces analogous to the ones studied in operator theory. Also, such a decomposition is sim-
ilar to the Clebsch-Gordan formula, which describes the decomposition of the tensor product of two
irreducible representations, say ̺1 and ̺2 of a group G when restricted to the diagonal subgroup in
G×G:

̺1(g)⊗ ̺2(g) =
⊕

k

dkπk(g),

where πk, k ∈ Z+, are irreducible representation of the group G and dk, k ∈ Z+, are natural numbers.
However, the decomposition of the tensor product of two Hilbert modules cannot be expressed as
the direct sum of submodules. Noting that S0 is a quotient module, describing all the semi-invariant
modules Sk, k ≥ 1, would appear to be a natural question. To describe the equivalence classes of S0,
S1, . . . etc., it would be useful to recall the notion of the push-forward of a module.

Let ι : Ω → Ω × Ω be the map ι(z) = (z, z), z ∈ Ω. Any Hilbert module M over the polynomial
ring C[z1, . . . , zm] may be thought of as a module ι⋆M over the ring C[z1, . . . , z2m] by re-defining the
multiplication: mp(h) = (p ◦ ι)h, h ∈ M and p ∈ C[z1, . . . , z2m]. The module ι⋆M over C[z1, . . . , z2m]
is defined to be the push-forward of the module M over C[z1, . . . , zm] under the inclusion map ι.

In [1], Aronszajn proved that the Hilbert space (H,K1K2) corresponding to the point-wise product
K1K2 of two non-negative definite kernels K1 and K2 is obtained by the restriction of the functions
in the tensor product (H,K1)⊗ (H,K2) to the diagonal set ∆. Building on his work, it was shown in
[10] that the restriction map is isometric on the subspace S0 onto (H,K1K2) intertwining the module
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actions on ι⋆(H,K1K2) and S0. However, using the jet construction given below, it is possible to
describe the quotient modules A⊥

k , k ≥ 0. We reiterate that one of the main questions we address is
that of of describing the semi-invariant modules, namely, S1, S2, . . .. We have succeed in describing
only S1 only after assuming that the pair of kernels is of the form Kα, Kβ, α, β > 0, where the real
power of a non-negative definite kernel is defined below.

Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a non-zero sesqui-analytic func-
tion. Let t be a real number. The function Kt is defined in the usual manner, namely Kt(z, w) =
exp(t logK(z, w)), z, w ∈ Ω, assuming that a continuous branch of the logarithm of K exists on Ω×Ω.
Clearly, Kt is also sesqui-analytic. However, if K is non-negative definite, then Kt need not be non-
negative definite unless t is a natural number. A direct computation, assuming the existence of a
continuous branch of logarithm of K on Ω× Ω, shows that for 1 ≤ i, j ≤ m,

∂i∂̄j logK(z, w) =
K(z, w)∂i∂̄jK(z, w) − ∂iK(z, w)∂̄jK(z, w)

K(z, w)2
, z, w ∈ Ω,

where ∂i and ∂̄j denote ∂
∂zi

and ∂
∂w̄j

, respectively.

For a sesqui-analytic function K : Ω× Ω → C satisfying K(z, z) > 0, an alternative interpretation
of K(z, w)t (resp. logK(z, w)) is possible using the notion of polarization. The real analytic function
K(z, z)t (resp. logK(z, z)) defined on Ω extends to a unique sesqui-analytic function in some neigh-
bourhood U of the diagonal set {(z, z) : z ∈ Ω} in Ω × Ω. If the principal branch of logarithm of K
exists on Ω × Ω, then it is easy to verify that these two definitions of K(z, w)t (resp. logK(z, w))
agree on the open set U .

In the particular case, when K1 = (1− zw̄)−α and K2 = (1− zw̄)−β, α, β > 0, the description of
the semi-invariant modules Sk, k ≥ 0, is obtained from somewhat more general results of Ferguson
and Rochberg.

Theorem 1.2 (Ferguson-Rochberg,[13]). If K1(z, w) =
1

(1−zw̄)α and K2(z, w) =
1

(1−zw̄)β
on D×D for

some α, β > 0, then the Hilbert modules Sn and ι⋆(H, (1 − zw̄)−(α+β+2n)) are isomorphic.

In this paper, first we show that if Kα and Kβ, α, β > 0, are two non-negative definite kernels on
Ω, then function K(α,β) : Ω× Ω → Mm(C) defined by

K
(α,β)(z, w) = Kα+β(z, w)

( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

, z, w ∈ Ω,

is also a non-negative definite kernel. In this case, a description of the Hilbert module S1 is obtained.
Indeed, it is shown that the Hilbert modules S1 and ι⋆

(
H,K(α,β)

)
are isomorphic.

1.2. The jet construction. For a bounded domain Ω ⊂ Cm, let K1 and K2 be two scalar valued
non-negative kernels defined on Ω × Ω. Assume that the multiplication operators Mzi , i = 1, . . . ,m,
are bounded on (H,K1) as well as on (H,K2). For a non-negative integer k, let Ak be the subspace
defined in (1.1).

Let d be the cardinality of the set {i ∈ Zm
+ , |i| ≤ k}, which is

(m+k
m

)
. Define the linear map

Jk : (H,K1)⊗ (H,K2) → Hol(Ω ×Ω,Cd) by

(1.2) (Jkf)(z, ζ) =
∑

|i|≤k

(
∂
∂ζ

)i
f(z, ζ)⊗ ei, f ∈ (H,K1)⊗ (H,K2),

where
{
ei
}
i∈Zm

+ ,|i|≤k
is the standard orthonormal basis of Cd. Let R : ran Jk → Hol(Ω,Cd) be

the restriction map, that is, R(h) = h|∆, h ∈ ran Jk. Clearly, kerRJk = Ak. Hence the map

RJk : A⊥
k → Hol(Ω,Cd) is one to one. Therefore we can give a natural inner product on ran RJk,

namely,

〈RJk(f), RJk(g)〉 = 〈P
A⊥

k
f, P

A⊥
k
g〉, f, g ∈ (H,K1)⊗ (H,K2).
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In what follows, we think of ran RJk as a Hilbert space equipped with this inner product. The theorem
stated below is a straightforward generalization of one of the main results from [10].

Theorem 1.3. ([10, Proposition 2.3]) Let K1,K2 : Ω× Ω → C be two non-negative definite kernels.
Then ran RJk is a reproducing kernel Hilbert space and its reproducing kernel Jk(K1,K2)|res∆ is given
by the formula

Jk(K1,K2)|res∆(z, w) :=
(
K1(z, w)∂

i∂̄jK2(z, w)
)k
|i|,|j|=0

, z, w ∈ Ω.

Now for any polynomial p in z, ζ, define the operator Tp on ran RJk as

(Tp)(RJkf) =
∑

|l|≤k

(∑

q≤l

(
l
q

)((
∂
∂ζ

)q
p(z, ζ)

)
|∆

((
∂
∂ζ

)l−q
f(z, ζ)

)
|∆

)
⊗ el, f ∈ (H,K1)⊗ (H,K2),

where l = (l1, . . . , lm), q = (q1, . . . , qm) ∈ Zm
+ , and q ≤ l means qi ≤ li, i = 1, . . . ,m and

(
l
q

)
=(

l1
q1

)
· · ·
(
lm
qm

)
. The proof of the Proposition below follows from a straightforward computation using

the Leibniz rule, the details are on page 378 - 379 of [10].

Proposition 1.4. For any polynomial p in C[z1, . . . , z2m], the operator P
A⊥

k
Mp|A⊥

k
is unitarily equiv-

alent to the operator Tp on (ran RJk).

In section 4, we prove a generalization of the theorem of Salinas for all kernels of the form
Jk(K1,K2)|res∆. In particular, we show that if K1,K2 : Ω × Ω → C are two sharp kernels (resp.
generalized Bergman kernels), then so is the kernel Jk(K1,K2)|res∆.

In Section 5, we introduce the notion of a generalized Wallach set for an arbitrary non-negative
definite kernel K defined on a bounded domain Ω ⊂ Cm. Recall that the ordinary Wallach set
associated with the Bergman kernel BΩ of a bounded symmetric domain Ω is the set {t > 0 :
Bt

Ω is non-negative definite}. Replacing the Bergman kernel in the definition of the Wallach set
by an arbitrary non-negative definite kernel K, we define the ordinary Wallach set W(K). More im-
portantly, we introduce the generalized Wallach set GW(K) associated to the kernel K to be the set
{t ∈ R : Kt

(
∂i∂̄j logK

)m
i,j=1

is non-negative definite}, where we have assumed that Kt is well defined

for all t ∈ R. In the particular case of the Euclidean unit ball Bm in Cm and the Bergman kernel, the
generalized Wallach set GW(BBm), m > 1, is shown to be the set {t ∈ R : t ≥ 0}. If m = 1, then it
is the set {t ∈ R : t ≥ −1}.

In Section 6, we study quasi-invariant kernels. Let J : Aut(Ω) × Ω → GLk(C) be a function such
that J(ϕ, ·) is holomorphic for each ϕ in Aut(Ω), where Aut(Ω) is the group of all biholomorphic
automorphisms of Ω. A non-negative definite kernel K : Ω×Ω → Mk(C) is said to be quasi-invariant
with respect to J if K satisfies the following transformation rule:

J(ϕ, z)K(ϕ(z), ϕ(w))J(ϕ,w)∗ = K(z, w), z, w ∈ Ω, ϕ ∈ Aut(Ω).

It is shown that if K : Ω × Ω → C is a quasi-invariant kernel with respect to J : Aut(Ω) × Ω →
C \ {0}, then the kernel Kt

(
∂i∂̄j logK

)m
i,j=1

is also quasi-invariant with respect to J whenever t ∈
GW(K), where J(ϕ, z) = J(ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(Ω), z ∈ Ω. In particular, taking Ω ⊂ Cm to be a
bounded symmetric domain and setting K to be the Bergman kernel BΩ, in the language of [22], we

conclude that the multiplication tuple M z on (H,B
(t)
Ω ), where B

(t)
Ω (z, w) := (Bt

Ω∂i∂̄j logBΩ)
m
i,j=1, is

homogeneous with respect to the group Aut(Ω) for t in GW(BΩ).

2. A new non-negative definite kernel

The scalar version of the following lemma is well-known. However, the easy modifications necessary
to prove it in the case of k × k matrices are omitted.
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Lemma 2.1 (Kolmogorov). Let Ω ⊂ Cm be a bounded domain, and let H be a Hilbert space. If
φ1, φ2, . . . , φk are anti-holomorphic functions from Ω into H, then K : Ω × Ω → Mk(C) defined by

K(z, w) =
(
〈φj(w), φi(z)〉H

)k
i,j=1

, z, w ∈ Ω, is a sesqui-analytic non-negative definite kernel.

For any reproducing kernel Hilbert space (H,K), the following proposition, which is Lemma 4.1 of
[8] is a basic tool in what follows.

Proposition 2.2. Let K : Ω × Ω → Mk(C) be a non-negative definite kernel. For every i ∈ Zm
+ ,

η ∈ Ck and w ∈ Ω, we have

(i) ∂̄iK(·, w)η is in (H,K),
(ii)

〈
f, ∂̄iK(·, w)η

〉
(H,K)

=
〈
(∂if)(w), η

〉
Ck , f ∈ (H,K).

Here and throughout this paper, for any non-negative definite kernel K : Ω × Ω → Mk(C) and

η ∈ Ck, let ∂̄iK(·, w)η denote the function
(

∂
∂w1

)i1 · · ·
(

∂
∂wm

)imK(·, w)η and (∂if)(z) be the function
(

∂
∂z1

)i1 · · ·
(

∂
∂zm

)imf(z), i = (i1, . . . , im) ∈ Zm
+ .

Proposition 2.3. Let Ω be a bounded domain in Cm and K : Ω×Ω → C be a sesqui-analytic function.
Suppose that Kα and Kβ, defined on Ω × Ω, are non-negative definite for some α, β > 0. Then the
function

Kα+β(z, w)
( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

, z, w ∈ Ω,

is a non-negative definite kernel on Ω× Ω taking values in Mm(C).

Proof. For 1 ≤ i ≤ m, set φi(z) = β∂̄iK
α(·, z) ⊗Kβ(·, z) − αKα(·, z) ⊗ ∂̄iK

β(·, z). From Proposition
2.2, it follows that each φi is a function from Ω into the Hilbert space (H,Kα) ⊗ (H,Kβ). Then we
have

〈φj(w), φi(z)〉 = β2∂i∂̄jK
α(z, w)Kβ(z, w) + α2Kα(z, w)∂i∂̄jK

β(z, w)

− αβ
(
∂iK

α(z, w)∂̄jK
β(z, w) + ∂̄jK

α(z, w)∂iK
β(z, w)

)

= β2
(
α(α− 1)Kα+β−2(z, w)∂iK(z, w)∂̄jK(z, w) + αKα+β−1(z, w)∂i∂̄jK(z, w)

)

+ α2
(
β(β − 1)Kα+β−2(z, w)∂iK(z, w)∂̄jK(z, w) + βKα+β−1(z, w)∂i∂̄jK(z, w)

)

− 2α2β2Kα+β−2(z, w)∂iK(z, w)∂̄jK(z, w)

= (α2β + αβ2)Kα+β−2(z, w)
(
K(z, w)∂i∂̄jK(z, w) − ∂iK(z, w)∂̄jK(z, w)

)

= αβ(α+ β)Kα+β(z, w)∂i∂̄j logK(z, w).

An application of Lemma 2.1 now completes the proof. �

The particular case, when α = 1 = β occurs repeatedly in the following. We therefore record it
separately as a corollary.

Corollary 2.4. Let Ω be a bounded domain in Cm. If K : Ω × Ω → C is a non-negative definite
kernel, then

K2(z, w)
( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

is also a non-negative definite kernel, defined on Ω× Ω, taking values in Mm(C).

A more substantial corollary is the following, which is taken from [4]. Here we provide a slightly
different proof. Recall that a non-negative definite kernel K : Ω × Ω → C is said to be infinitely
divisible if for all t > 0, Kt is also non-negative definite.

Corollary 2.5. Let Ω be a bounded domain in Cm. Suppose that K : Ω × Ω → C is an infinitely
divisible kernel. Then the function

( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

is a non-negative definite kernel taking

values in Mm(C).
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Proof. For t > 0, Kt(z, w) is non-negative definite by hypothesis. Then it follows, from Corollary 2.4,
that

(
K2t∂i∂̄j logK

t(z, w)
)m
i,j=1

is non-negative definite. Hence
(
K2t∂i∂̄j logK(z, w)

)m
i,j=1

is non-

negative definite for all t > 0. Taking the limit as t → 0, we conclude that
(
∂i∂̄j logK(z, w)

)m
i,j=1

is

non-negative definite. �

Remark 2.6. It is known that even if K is a positive definite kernel,
( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

need

not be a non-negative definite kernel. In fact,
( (
∂i∂̄j logK

)
(z, w)

)m
i,j=1

is non-negative definite if and

only if K is infinitely divisible (see [4, Theorem 3.3]).
Let K : D × D → C be the positive definite kernel given by K(z, w) = 1 +

∑∞
i=1 aiz

iw̄i, z, w ∈ D,
ai > 0. For any t > 0, a direct computation gives

(
Kt∂∂̄ logK

)
(z, w) =

(
1 +

∞∑

i=1

aiz
iw̄i
)t
∂∂̄
( ∞∑

i=1

aiz
iw̄i − (

∑∞
i=1 aiz

iw̄i)2

2
+ · · ·

)

= (1 + ta1zw̄ + · · · )(a1 + 2(2a2 − a21)zw̄ + · · · )
= a1 + (4a2 + (t− 2)a21)zw̄ + · · · .

Thus, if t < 2, one may choose a1, a2 > 0 such that 4a2 + (t− 2)a21 < 0. Hence
(
Kt∂∂̄ logK

)
(z, w)

cannot be a non-negative definite kernel. Therefore, in general, for
( (
Kt∂i∂̄j logK

)
(z, w)

)m
i,j=1

to be

non-negative definite, it is necessary that t ≥ 2.

2.1. Boundedness of the multiplication operator on
(
H,K

)
. For α, β > 0, let K(α,β) denote

the kernel Kα+β(z, w)
( (

∂i∂̄j logK
)
(z, w)

)m
i,j=1

. If α = 1 = β, then we write K instead of K(1,1).

For a holomorphic function f : Ω → C, the operator Mf of multiplication by f on the linear space

Hol(Ω,Ck) is defined by the rule Mfh = f h, h ∈ Hol(Ω,Ck), where (f h)(z) = f(z)h(z), z ∈ Ω.
The boundedness criterion for the multiplication operator Mf restricted to the Hilbert space (H,K)
is well-known for the case of positive definite kernels. In what follows, often we have to work with
a kernel which is merely non-negative definite. A precise statement is given below. The first part
is from [24] and the second part follows from the observation that the boundedness of the operator∑n

i=1MiM
∗
i is equivalent to the non-negative definiteness of the kernel (c2 − 〈z, w〉)K(z, w) for some

positive constant c.

Lemma 2.7. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → Mk(C) be a non-negative definite
kernel.

(i) For any holomorphic function f : Ω → C, the operator Mf of multiplication by f is bounded

on (H,K) if and only if there exists a constant c > 0 such that
(
c2 − f(z)f(w)

)
K(z, w) is

non-negative definite on Ω×Ω. In case Mf is bounded, ‖Mf‖ is the infimum of all c > 0 such

that
(
c2 − f(z)f(w)

)
K(z, w) is non-negative definite.

(ii) The operator Mzi of multiplication by the ith coordinate function zi is bounded on (H,K) for
i = 1, . . . ,m, if and only if there exists a constant c > 0 such that

(
c2 − 〈z, w〉

)
K(z, w) is

non-negative definite.

As we have pointed out, the distinction between the non-negative definite kernels and the positive
definite ones is very significant. Indeed, as shown in [8, Lemma 3.6], it is interesting that if the
operator M z := (Mz1 , . . . ,Mzm) is bounded on (H,K) for some non-negative definite kernel K such
that K(z, z), z ∈ Ω, is invertible, then K is positive definite. A direct proof of this statement, different
from the inductive proof of Curto and Salinas is in the PhD thesis of the first named author [14].

It is natural to ask if the operator Mf is bounded on (H,K), then if it remains bounded on the
Hilbert space (H,K). From the Theorem stated below, in particular, it follows that the operator Mf

is bounded on (H,K) whenever it is bounded on (H,K).
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Theorem 2.8. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a non-negative definite
kernel. Let f : Ω → C be an arbitrary holomorphic function. Suppose that there exists a constant
c > 0 such that

(
c2 − f(z)f(w)

)
K(z, w) is non-negative definite on Ω × Ω. Then the function

(
c2 −

f(z)f(w)
)2
K(z, w) is non-negative definite on Ω× Ω.

Proof. Without loss of generality, we assume that f is non-constant and K is non-zero. The function
G(z, w) :=

(
c2 − f(z)f(w)

)
K(z, w) is non-negative definite on Ω × Ω by hypothesis. We claim that

|f(z)| < c for all z in Ω. If not, then by the open mapping theorem, there exists an open set Ω0 ⊂ Ω
such that |f(z)| > c, z ∈ Ω0. Since

(
c2 − |f(z)|2

)
K(z, z) ≥ 0, it follows that K(z, z) = 0 for all

z ∈ Ω0. Now, let h be an arbitrary vector in (H,K). Clearly, |h(z)| = | 〈h,K(·, z)〉 | ≤ ‖h‖‖K(·, z)‖ =

‖h‖K(z, z)
1
2 = 0 for all z ∈ Ω0. Consequently, h(z) = 0 on Ω0. Since Ω is connected and h is

holomorphic, it follows that h = 0. This contradicts the assumption that K is non-zero verifying the
validity of our claim.

From the claim, we have that the function c2 − f(z)f(w) is non-vanishing on Ω×Ω. Therefore, the
kernel K can be written as the product

K(z, w) =
1(

c2 − f(z)f(w)
)G(z, w), z, w ∈ Ω.

Since |f(z)| < c on Ω, the function 1(
c2−f(z)f(w)

) has a convergent power series expansion, namely,

1(
c2 − f(z)f(w)

) =
∞∑

n=0

1

c2(n+1)
f(z)nf(w)n, z, w ∈ Ω.

Therefore it defines a non-negative definite kernel on Ω× Ω. Note that
(
K(z, w)2∂i∂̄j logK(z, w)

)m
i,j=1

=
(
K(z, w)2∂i∂̄j log

1(
c2 − f(z)f(w)

)
)m
i,j=1

+
(
K(z, w)2∂i∂̄j logG(z, w)

)m
i,j=1

=
1

(
c2 − f(z)f(w)

)2
(
K(z, w)2

(
∂if(z)∂jf(w)

)m
i,j=1

+G(z, w)2
(
∂i∂̄j logG(z, w)

)m
i,j=1

)
,

where for the second equality, we have used that

∂i∂̄j log
1(

c2 − f(z)f(w)
) =

∂if(z)∂jf(w)(
c2 − f(z)f(w)

)2 , z, w ∈ Ω, 1 ≤ i, j ≤ m.

Thus
(
c2 − f(z)f(w)

)2
K(z, w)

= K(z, w)2
(
∂if(z)∂jf(w)

)m
i,j=1

+
(
G(z, w)2∂i∂̄j logG(z, w)

)m
i,j=1

.
(2.1)

By Lemma 2.1, the function
(
∂if(z)∂jf(w)

)m
i,j=1

is non-negative definite on Ω×Ω. Thus the product

K(z, w)2
(
∂if(z)∂jf(w)

)m
i,j=1

is also non-negative definite on Ω× Ω. Since G is non-negative definite

on Ω × Ω, by Corollary 2.4, the function
(
G(z, w)2∂i∂̄j logG(z, w)

)m
i,j=1

is also non-negative definite

on Ω × Ω. The proof is now complete since the sum of two non-negative definite kernels remains
non-negative definite. �

A sufficient condition for the boundedness of the multiplication operator on the Hilbert space
(
H,K

)

is an immediate Corollary.
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Corollary 2.9. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a non-negative definite
kernel. Let f : Ω → C be a holomorphic function. Suppose that the multiplication operator Mf on
(H,K) is bounded. Then the multiplication operator Mf is also bounded on (H,K).

Proof. Since the operator Mf is bounded on (H,K), by Lemma 2.7, we find a constant c > 0 such

that
(
c2 − f(z)f(w)

)
K(z, w) is non-negative definite on Ω×Ω. Then, by Theorem 2.8, it follows that(

c2 − f(z)f(w)
)2
K(z, w) is non-negative definite on Ω × Ω. Also, from the proof of Theorem 2.8, we

have that
(
c2 − f(z)f(w)

)−1
is non-negative definite on Ω × Ω (assuming that f is non-constant).

Hence
(
c− f(z)f(w)

)
K(z, w), being the product of two non-negative definite kernels, is non-negative

definite on Ω× Ω. An application of Lemma 2.7, a second time, completes the proof. �

A second Corollary provides a sufficient condition for the positive definiteness of the kernel K.

Corollary 2.10. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a non-negative definite
kernel satisfying K(w,w) > 0, w ∈ Ω. Suppose that the multiplication operator Mzi on (H,K) is
bounded for i = 1, . . . ,m. Then the kernel K is positive definite on Ω× Ω.

Proof. By Corollary 2.4, we already have that K is non-negative definite. Moreover, since Mzi on
(H,K) is bounded for i = 1, . . . ,m, it follows from Theorem 2.9 that Mzi is bounded on (H,K) also.
Therefore, using [8, Lemma 3.6], we see that K is positive definite if K(w,w) is invertible for all w ∈ Ω.
To verify this, set

φi(w) = ∂̄iK(·, w) ⊗K(·, w) −K(·, w)⊗ ∂̄iK(·, w), 1 ≤ i ≤ m.

From the proof of Proposition 2.3, we see that K(w,w) = 1
2

(
〈φj(w), φi(w)〉

)m
i,j=1

. Therefore K(w,w)

is invertible if the vectors φ1(w), . . . , φm(w) are linearly independent. Note that for w = (w1, . . . , wm)
in Ω and j = 1, . . . ,m, we have (Mzj −wj)

∗K(·, w) = 0. Differentiating this equation with respect to
w̄i, we obtain

(Mzj − wj)
∗∂̄iK(·, w) = δijK(·, w), 1 ≤ i, j ≤ m.

Thus

(2.2)
(
(Mzj − wj)

∗ ⊗ I
)(
φi(w)

)
= δijK(·, w) ⊗K(·, w), 1 ≤ i, j ≤ m.

Now assume that
∑m

i=1 ciφi(w) = 0 for some scalars c1, . . . , cm. Then, for 1 ≤ j ≤ m, we have that∑m
i=1

(
(Mzj − wj)

∗ ⊗ I
)(
φi(w)

)
= 0. Thus, using (2.2), we see that cjK(·, w) ⊗ K(·, w) = 0. Since

K(w,w) > 0, we conclude that cj = 0. Hence the vectors φ1(w), . . . , φm(w) are linearly independent.
This completes the proof. �

Remark 2.11. Recall that an operator T is said to be a 2−hyper contraction if I − T ∗T ≥ 0 and
I − 2T ∗T + T ∗2T 2 ≥ 0. If K : D × D → C is a non-negative definite kernel, then it is not hard to
verify that the adjoint M∗

z of the multiplication by the coordinate function z is a 2−hyper contraction
on (H,K) if and only if (1− zw̄)2K is non-negative definite. It follows from Theorem 2.8 that if M∗

z

on (H,K) is a contraction, then M∗
z on (H,K) is a 2−hyper contraction.

3. Realization of
(
H,K(α,β)

)

Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a sesqui-analytic function. Suppose
that the functions Kα and Kβ are non-negative definite for some α, β > 0. In this section, we give a
description of the Hilbert space

(
H, K(α,β)

)
. As before, we set

(3.1) φi(w) = β∂̄iK
α(·, w) ⊗Kβ(·, w) − αKα(·, w) ⊗ ∂̄iK

β(·, w), 1 ≤ i ≤ m, w ∈ Ω.

Let N be the subspace of (H,Kα)⊗ (H,Kβ) which is the closed linear span of the vectors
{
φi(w) : w ∈ Ω, 1 ≤ i ≤ m

}
.

From the definition of N, it is not easy to determine which vectors are in it. A useful alternative
description of the space N is given below.
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Recall that Kα ⊗Kβ is the reproducing kernel for the Hilbert space (H,Kα)⊗ (H,Kβ), where the
kernel Kα ⊗Kβ on (Ω× Ω)× (Ω× Ω) is given by

Kα ⊗Kβ(z, ζ; z′, ζ ′) = Kα(z, z′)Kβ(ζ, ζ ′),

z = (z1, . . . , zm), ζ = (ζ1, . . . , ζm), z′ = (zm+1, . . . , z2m), ζ ′ = (ζm+1, . . . , ζ2m) are in Ω. We realize the
Hilbert space (H,Kα) ⊗ (H,Kβ) as a space consisting of holomorphic functions on Ω × Ω. Let A0

and A1 be the subspaces defined by

A0 =
{
f ∈ (H,Kα)⊗ (H,Kβ) : f|∆ = 0

}

and

A1 =
{
f ∈ (H,Kα)⊗ (H,Kβ) : f|∆ = (∂m+1f)|∆ = · · · = (∂2mf)|∆ = 0

}
,

where ∆ is the diagonal set {(z, z) ∈ Ω×Ω : z ∈ Ω}, ∂if is the derivative of f with respect to the ith
variable, and f|∆, (∂if)|∆ denote the restrictions to the set ∆ of the functions f , ∂if , respectively. It

is easy to see that both A0 and A1 are closed subspaces of the Hilbert space (H,Kα)⊗ (H,Kβ) and
A1 is a closed subspace of A0.

Now observe that, for 1 ≤ i ≤ m, we have

∂̄i(K
α ⊗Kβ)(·, (z′, ζ ′)) = ∂̄iK

α(·, z′)⊗Kβ(·, ζ ′), z′, ζ ′ ∈ Ω

∂̄m+i(K
α ⊗Kβ)(·, (z′, ζ ′)) = Kα(·, z′)⊗ ∂̄iK

β(·, ζ ′), z′, ζ ′ ∈ Ω.
(3.2)

Hence, taking z′ = ζ ′ = w, we see that

(3.3) φi(w) = β∂̄i(K
α ⊗Kβ)(·, (w,w)) − α∂̄m+i(K

α ⊗Kβ)(·, (w,w)).
We now state a useful lemma on the Taylor coefficients of an analytic functions. The straightforward
proof follows from the chain rule [25, page 8], which is omitted.

Lemma 3.1. Suppose that f : Ω× Ω → C is a holomorphic function satisfying f|∆ = 0. Then

(∂if)|∆ + (∂m+if)|∆ = 0, 1 ≤ i ≤ m.

An alternative description of the subspace N of (H,Kα)⊗ (H,Kβ) is provided below.

Proposition 3.2. N = A0 ⊖A1.

Proof. For all z ∈ Ω, we see that

φi(w)(z, z) = αβKα+β−1(z, w)∂̄iK(z, w) − αβKα+β−1(z, w)∂̄iK(z, w) = 0.

Hence each φi(w), w ∈ Ω, 1 ≤ i ≤ m, belongs to A0 and consequently, N ⊂ A0. Therefore, to complete
the proof of the proposition, it is enough to show that A0 ⊖N = A1.

To verify this, note that f ∈ N⊥ if and only if 〈f, φi(w)〉 = 0, 1 ≤ i ≤ m, w ∈ Ω. Now, in view of
(3.3) and Proposition 2.2, we have that

〈f, φi(w)〉 =
〈
f, β∂̄i(K

α ⊗Kβ)(·, (w,w)) − α∂̄m+i(K
α ⊗Kβ)(·, (w,w))

〉

=β(∂if)(w,w) − α(∂m+if)(w,w), 1 ≤ i ≤ m, w ∈ Ω.
(3.4)

Thus f ∈ N⊥ if and only if the function β (∂if)|∆−α (∂m+if)|∆ = 0, 1 ≤ i ≤ m. Combining this with
Lemma 3.1, we see that any f ∈ A0 ⊖N, satisfies

β(∂if)|∆ − α(∂m+if)|∆ = 0,

(∂if)|∆ + (∂m+if)|∆ = 0,

for 1 ≤ i ≤ m. Therefore, we have (∂if)|∆ = (∂m+if)|∆ = 0, 1 ≤ i ≤ m. Hence f belongs to A1.
Conversely, let f ∈ A1. In particular, f ∈ A0. Hence invoking Lemma 3.1 once again, we see that

(∂if)|∆ + (∂m+if)|∆ = 0, 1 ≤ i ≤ m.
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Since f is in A1, (∂m+if)|∆ = 0, 1 ≤ i ≤ m, by definition. Therefore, (∂if)|∆ = (∂m+if)|∆ = 0, 1 ≤
i ≤ m, which implies

β(∂if)|∆ − α(∂m+if)|∆ = 0, 1 ≤ i ≤ m.

Hence f ∈ A0 ⊖N, completing the proof. �

We now give a description of the Hilbert space
(
H, K(α,β)

)
. Define a linear map R1 : (H,Kα) ⊗

(H,Kβ) → Hol(Ω,Cm) by setting

(3.5) R1(f) =
1√

αβ(α + β)



(β∂1f − α∂m+1f)|∆

...
(β∂mf − α∂2mf)|∆




for f ∈ (H,Kα)⊗ (H,Kβ) and note that

(3.6) R1(f)(w) =
1√

αβ(α + β)




〈f, φ1(w)〉
...

〈f, φm(w)〉


 , w ∈ Ω.

From Equation (3.6), it is easy to see that kerR1 = N⊥. We have N = A0 ⊖ A1, see Proposition
3.2. Therefore, kerR⊥

1 = A0 ⊖ A1 and the map R1|A0⊖A1
→ ran R1 is bijective. Require this map to

be a unitary by defining an appropriate inner product on ran R1, that is, Set

(3.7) 〈R1(f),R1(g)〉 := 〈PA0⊖A1
f, PA0⊖A1

g〉 , f, g ∈ (H,Kα)⊗ (H,Kβ),

where PA0⊖A1 is the orthogonal projection of (H,Kα) ⊗ (H,Kβ) onto the subspace A0 ⊖ A1. This
choice of the inner product on the range of R1 makes the map R1 unitary.

Theorem 3.3. Let Ω ⊂ Cm be a bounded domain and K : Ω× Ω → C be a sesqui-analytic function.
Suppose that the functions Kα and Kβ are non-negative definite for some α, β > 0. Let R1 be the
map defined by (3.5). Then the Hilbert space determined by the non-negative definite kernel K(α,β)

coincides with the space ran R1 and the inner product given by (3.7) on ran R1 agrees with the one

induced by the kernel K(α,β).

Proof. Let {e1, . . . , em} be the standard orthonormal basis of Cm. For 1 ≤ i, j ≤ m, from the proof of
Proposition 2.3, we have

〈φj(w), φi(z)〉 = αβ(α + β)Kα+β(z, w)∂i∂̄j logK(z, w)(3.8)

= αβ(α + β)
〈
K

(α,β)(z, w)ej , ei

〉
Cm

, z, w ∈ Ω.(3.9)

Therefore, from (3.6), it follows that for all w ∈ Ω and 1 ≤ j ≤ m,

R1(φj(w)) =
√
αβ(α + β)K(α,β)(·, w)ej .

Hence, for all w ∈ Ω and η ∈ Cm, K(α,β)(·, w)η belongs to ran R1. Let R1(f) be an arbitrary element
in ran R1 where f ∈ A0 ⊖A1. Then

〈
R1(f),K

(α,β)(·, w)ej
〉
=

1√
αβ(α + β)

〈R1(f),R1(φj(w))〉

=
1√

αβ(α + β)
〈f, φj(w)〉

=
1√

αβ(α + β)
(β∂jf(w,w) − α∂m+jf(w,w))

= 〈R1(f)(w), ej〉Cm ,

where the second equality follows since both f and φj(w) belong to A0 ⊖ A1. This completes the
proof. �
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We obtain the density of polynomials in
(
H,K(α,β)

)
as a consequence of this theorem. Let z =

(z1, . . . , zm) and let C[z] := C[z1, . . . , zm] denote the ring of polynomials in m-variables. The following

proposition gives a sufficient condition for density of C[z]⊗Cm in the Hilbert space
(
H,K(α,β)

)
.

Proposition 3.4. Let Ω ⊂ Cm be a bounded domain and K : Ω×Ω → C be a sesqui-analytic function
such that the functions Kα and Kβ are non-negative definite on Ω × Ω for some α, β > 0. Suppose
that both the Hilbert spaces (H,Kα) and (H,Kβ) contain the polynomial ring C[z] as a dense subset.

Then the Hilbert space
(
H,K(α,β)

)
contains the ring C[z]⊗ Cm as a dense subset.

Proof. Since C[z] is dense in both the Hilbert spaces (H,Kα) and (H,Kβ), it follows that C[z] ⊗
C[z], which is C[z1, . . . , z2m], is contained in the Hilbert space (H,Kα)⊗ (H,Kβ) and is dense in it.

Since R1 maps (H,Kα) ⊗ (H,Kβ) onto
(
H,K(α,β)

)
, to complete the proof, it suffices to show that

R1(C[z1, . . . , z2m]) = C[z] ⊗ Cm. It is easy to see that R1(C[z1, . . . , z2m]) ⊆ C[z] ⊗ Cm. Conversely,
if
∑m

i=1 pi(z1, . . . , zm) ⊗ ei is an arbitrary element of C[z] ⊗ Cm, then it is easily verified that the

function p(z1, . . . , z2m) :=
√

αβ
α+β

∑m
i=1(zi− zm+i)pi(z1, . . . , zm) belongs to C[z1, . . . , z2m] and R1(p) =∑m

i=1 pi(z1, . . . , zm)⊗ ei . Therefore R1(C[z1, . . . , z2m]) = C[z]⊗ Cm, completing the proof. �

3.1. Description of the Hilbert module S1. In this subsection, we give a description of the Hilbert
module S1 in the particular case when K1 = Kα and K2 = Kβ for some sesqui-analytic function K
defined on Ω×Ω and a pair of positive real numbers α, β.

Theorem 3.5. Let K : Ω × Ω → C be a sesqui-analytic function such that the functions Kα and
Kβ, defined on Ω × Ω, are non-negative definite for some α, β > 0. Suppose that the multiplication
operators Mzi , i = 1, 2, . . . ,m, are bounded on both (H,Kα) and (H,Kβ). Then the Hilbert module S1

is isomorphic to the push-forward module ι⋆
(
H,K(α,β)

)
via the module map R1|S1 .

Proof. From Theorem 3.3, it follows that the map R1 defined in (3.5) is a unitary map from S1 onto

(H,K(α,β)). Now we will show that R1PS1(ph) = (p ◦ ι)R1h, h ∈ S1, p ∈ C[z1, . . . , z2m]. Let h be an
arbitrary element of S1. Since kerR1 = S⊥1 (see the discussion before Theorem 3.3), it follows that
R1PS1(ph) = R1(ph), p ∈ C[z1, . . . , z2m]. Hence

R1PS1(ph) = R1(ph)

=
1√

αβ(α + β)

m∑

j=1

(β∂j(ph)− α∂m+j(ph))|∆ ⊗ ej

=
1√

αβ(α + β)

m∑

j=1

p|∆(β∂jh− α∂m+jh)|∆ ⊗ ej +
m∑

j=1

h|∆(β∂jp− α∂m+jp)|∆ ⊗ ej

=
1√

αβ(α + β)

m∑

j=1

p|∆(β∂jh− α∂m+jh)|∆ ⊗ ej (since h ∈ S1)

= (p ◦ ι)R1h,

completing the proof. �

Notation 3.6. For 1 ≤ i ≤ m, let M
(1)
i and M

(2)
i denote the operators of multiplication by the

coordinate function zi on the Hilbert spaces (H,K1) and (H,K2), respectively. If m = 1, we let M (1)

and M (2) denote the operators M
(1)
1 and M

(2)
1 , respectively.

In case K1 = Kα and K2 = Kβ, let M
(α)
i , M

(β)
i and M

(α+β)
i denote the operators of multiplication

by the coordinate function zi on the Hilbert spaces (H,Kα), (H,Kβ) and (H,Kα+β), respectively. If

m = 1, we write M (α), M (β) and M (α+β) instead of M
(α)
1 , M

(β)
1 and M

(α+β)
1 , respectively.

Finally, let M
(α,β)
i denote the operator of multiplication by the coordinate function zi on (H,K(α,β)).

Also let M(α,β) denote the operator M
(α,β)
1 whenever m = 1.
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Remark 3.7. It is verified that (M
(α)
i ⊗ I)∗(φj(w)) = w̄iφj(w) + βδijK

α(·, w) ⊗ Kβ(·, w) and (I ⊗
M

(β)
i )∗(φj(w)) = w̄iφj(w)− αδijK

α(·, w) ⊗Kβ(·, w), 1 ≤ i, j ≤ m,w ∈ Ω. Therefore,

PS1
(M

(α)
i ⊗ I)|S1 = PS1

(I ⊗M
(β)
i )|S1 , i = 1, 2, . . . ,m.

Corollary 3.8. The m-tuple of operators
(
PS1(M

(α)
1 ⊗ I)|S1 , . . . , PS1(M

(α)
m ⊗ I)|S1

)
is unitarily equiv-

alent to the m-tuple of operators (M
(α,β)
1 , . . . ,M

(α,β)
m ) on

(
H,K(α,β)

)
. In particular, if either the

m-tuple of operators (M
(α)
1 , . . . ,M

(α)
m ) on (H,Kα) or the m-tuple of operators (M

(β)
(1) , . . . ,M

(β)
m ) on

(H,Kβ) is bounded, then the m-tuple (M
(α,β)
1 , . . . ,M

(α,β)
m ) is also bounded on

(
H,K(α,β)

)
.

Proof. The proof of the first statement follows from Theorem 3.5 and the proof of the second statement
follows from the first together with Remark 3.7. �

3.2. Description of the quotient module A⊥
1 . In this subsection, we give a description of the

quotient module A⊥
1 . Let (H,Kα+β)⊕̂(H,K(α,β)) be the Hilbert module, which is the Hilbert space

(H,Kα+β)⊕(H,K(α,β)) equipped with the multiplication over the polynomial ring C[z1, . . . , z2m] in-
duced by the 2m-tuple of operators (T1, . . . , Tm, Tm+1, . . . , T2m) described below. First, for any poly-
nomial p ∈ C[z1, . . . , z2m], let p∗(z) := (p ◦ ι)(z) = p(z, z), z ∈ Ω and let Sp : (H,K

α+β) → (H,K(α,β))
be the operator given by

Sp(f0) =
1√

αβ(α+ β)

m∑

j=1

(β(∂jp)
∗ − α(∂m+jp)

∗)f0 ⊗ ej , f0 ∈ (H,Kα+β).

On the Hilbert space (H,Kα+β) ⊕ (H,K(α,β)), let Ti =
(

Mzi
0

Szi
Mzi

)
, and Tm+i =

(
Mzi

0
Szm+i

Mzi

)
, 1 ≤

i ≤ m. Now, a straightforward verification shows that the module multiplication induced by these
2m-tuple of operators is given by the formula:

(3.10) mp(f0 ⊕ f1) =

(
Mp∗f0 0
Spf0 Mp∗f1

)
, f0 ⊕ f1 ∈ (H,Kα+β)⊕ (H,K(α,β)).

Clearly, this module multiplication is distinct from the one induced by theMp⊕Mp, p ∈ C[z1, . . . , zm]

on the direct sum (H,Kα+β)⊕(H,K(α,β)).

Theorem 3.9. Let K : Ω × Ω → C be a sesqui-analytic function such that the functions Kα and
Kβ, defined on Ω × Ω, are non-negative definite for some α, β > 0. Suppose that the multiplication
operators Mzi , i = 1, 2, . . . ,m, are bounded on both (H,Kα) and (H,Kβ). Then the quotient module

A⊥
1 and the Hilbert module (H,Kα+β)⊕̂(H,K(α,β)) are isomorphic.

Proof. The proof is accomplished by showing that the compression operator P
A⊥

1
Mp|A⊥

1
is unitarily

equivalent to the operator
(

Mp∗ 0
Sp Mp∗

)
on (H,Kα+β)

⊕
(H,K(α,β)) for an arbitrary polynomial p in

C[z1, . . . , z2m].
We recall that the map R0 : (H,Kα) ⊗ (H,Kβ) → (H,Kα+β) given by R0(f) = f|∆, f in

(H,Kα) ⊗ (H,Kβ) defines a unitary map from S0 onto (H,Kα+β), and it intertwines the opera-
tors PS0

Mp|S0
on S0 and Mp∗ on (H,Kα+β), that is, Mp∗R0|S0 = R0|S0PS0

Mp|S0
. Combining this with

Theorem 3.3, we conclude that the map R =
(

R0|S0
0

0 R1|S1

)
is unitary from S0

⊕
S1 (which is A⊥

1 ) to

(H,Kα+β)
⊕

(H,K(α,β)). Since S0 is invariant under M∗
p , it follows that PS1

M∗
p |S0

= 0. Hence

RP
A⊥

1
M∗

p |A⊥
1
R
∗ =

(
R0PS0M

∗
p |S0

R∗
0 R0PS0M

∗
p |S1

R∗
1

0 R1PS1
M∗

p |S1
R∗
1

)
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on S0
⊕

S1. We have R0PS0
M∗

p |S0
R∗
0 = (Mp∗)

∗, already, on (H,Kα+β). From Theorem 3.5, we see

that R1PS1M
∗
p |S1

R∗
1 = (Mp∗)

∗ on (H,K(α,β)). To prove this, note that R0PS0M
∗
p |S1

R∗
1 = S∗

p . Recall

that R∗
1(K

(α,β)(·, w)ej) = φj(w). Consequently, an easy computation gives

R0PS0M
∗
p |S1

R
∗
1(K

(α,β)(·, w)ej) =
1√

αβ(α + β)
(β(∂jp)(w,w) − α(∂m+jp)(w,w))K

α+β(·, w).

Set S♯
p = R1PS1Mp|S0

R∗
0. Then for 1 ≤ j ≤ m, and w ∈ Ω, we get

(S♯
p)

∗(K(α,β)(·, w)ej) =
1√

αβ(α + β)
(β(∂jp)(w,w) − α(∂m+jp)(w,w))K

α+β(·, w).

For f in (H,Kα+β), we have

〈S♯
pf(z), ej〉 = 〈S♯

pf,K
(α,β)(·, z)ej〉

= 〈f, (S♯
p)

∗(K(α,β)(·, z)ej)〉

=
1√

αβ(α + β)
(β(∂jp)(z, z) − α(∂m+jp)(z, z))〈f,Kα+β(·, z) 〉

=
1√

αβ(α + β)

(
β(∂jp)(z, z) − α(∂m+jp)(z, z)

)
f(z).

Hence S♯
p = Sp, completing the proof of the theorem. �

Corollary 3.10. Let Ω ⊂ C be a bounded domain. The operator P
A⊥

1
(M (α) ⊗ I)|A⊥

1
is unitarily

equivalent to the operator
(

M (α+β) 0
δ inc M(α,β))

)
on (H,Kα+β)

⊕
(H,K(α,β)), where δ = β√

αβ(α+β)
and inc

is the inclusion operator from (H,Kα+β) into (H,K(α,β)).

4. Generalized Bergman Kernels

We now discuss an important class of operators introduced by Cowen and Douglas in the very
influential paper [6]. The case of 2 variables was discussed in [7], while a detailed study in the general
case appeared later in [8]. The definition below is taken from [8]. Let T := (T1, ..., Tm) be a m-tuple
of commuting bounded linear operators on a separable Hilbert space H. Let DT : H → H ⊕ · · · ⊕H

be the operator defined by DT (x) = (T1x, ..., Tmx), x ∈ H.

Definition 4.1 (Cowen-Douglas class operator). Let Ω ⊂ Cm be a bounded domain. The operator T

is said to be in the Cowen-Douglas class Bn(Ω) if T satisfies the following requirements:

(i) dim kerDT−w = n, w ∈ Ω
(ii) ran DT−w is closed for all w ∈ Ω

(iii)
∨{

kerDT−w : w ∈ Ω
}
= H.

If T ∈ Bn(Ω), then for each w ∈ Ω, there exist functions γ1, . . . , γn holomorphic in a neighbourhood
Ω0 ⊆ Ω containing w such that kerDT−w′ =

∨{γ1(w′), . . . , γn(w
′)} for all w′ ∈ Ω0 (cf. [7]). Conse-

quently, every T ∈ Bn(Ω) corresponds to a rank n holomorphic hermitian vector bundle ET defined
by

ET = {(w, x) ∈ Ω×H : x ∈ kerDT−w}
and π(w, x) = w, (w, x) ∈ ET .

For a bounded domain Ω in Cm, let Ω∗ = {z : z̄ ∈ Ω}. It is known that if T is an operator in
Bn(Ω

∗), then for each w ∈ Ω, T is unitarily equivalent to the adjoint of the multiplication tuple
(Mz1 , . . . ,Mzm) on some reproducing kernel Hilbert space (H,K) ⊆ Hol(Ω0,C

n) for some open subset
Ω0 ⊆ Ω containing w. Here the kernel K can be described explicitly as follows. Let Γ = {γ1, . . . , γn}
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be a holomorphic frame of the vector bundle ET on a neighbourhood Ω∗
0 ⊆ Ω∗ containing w̄. Define

KΓ : Ω0 × Ω0 → Mn(C) by KΓ(z, w) =
(
〈γj(w̄), γi(z̄)〉

)n
i,j=1

, z, w ∈ Ω0. Setting K = KΓ, one

may verify that the operator T is unitarily equivalent to the adjoint of the m-tuple of multiplication
operators (Mz1 , . . . ,Mzm) on the Hilbert space (H,K).

If T ∈ B1(Ω
∗), the curvature matrix KT (w̄) at a fixed but arbitrary point w̄ ∈ Ω∗ is defined by

KT (w̄) =
(
∂i∂̄j log ‖γ(w̄)‖2

)m
i,j=1

,

where γ is a holomorphic frame of ET defined on some open subset Ω∗
0 ⊆ Ω∗ containing w̄. If T is

realized as the adjoint of the multiplication tuple (Mz1 , . . . ,Mzm) on some reproducing kernel Hilbert
space (H,K) ⊆ Hol(Ω0), where w ∈ Ω0, the curvature KT (w̄) is then equal to

(
∂i∂̄j logK(w,w)

)m
i,j=1

.

The study of operators in the Cowen-Douglass class using the properties of the kernel functions was
initiated by Curto and Salinas in [8]. The following definition is taken from [26].

Definition 4.2 (Sharp kernel and generalized Bergman kernel). A positive definite kernel K : Ω×Ω →
Mk(C) is said to be sharp if

(i) the multiplication operator Mzi is bounded on (H,K) for i = 1, . . . ,m,
(ii) kerD(Mz−w)∗ = ran K(·, w), w ∈ Ω,

where M z denotes the m-tuple (Mz1 ,Mz2 , . . . ,Mzm) on (H,K). Moreover, if ran D(Mz−w)∗ is closed
for all w ∈ Ω, then K is said to be a generalized Bergman kernel.

We start with the following lemma (cf. [9, page 285]) which provides a sufficient condition for the
sharpness of a non-negative definite kernel K.

Lemma 4.3. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → Mk(C) be a non-negative definite
kernel. Assume that the multiplication operator Mzi on (H,K) is bounded for 1 ≤ i ≤ m. If the vector
valued polynomial ring C[z1, . . . , zm]⊗Ck is contained in (H,K) as a dense subset, then K is a sharp
kernel.

Corollary 4.4. Let Ω ⊂ Cm be a bounded domain and K : Ω × Ω → C be a sesqui-analytic function
such that the functions Kα and Kβ are non-negative definite on Ω × Ω for some α, β > 0. Sup-

pose that either the m-tuple of operators (M
(α)
1 , . . . ,M

(α)
m ) on (H,Kα) or the m-tuple of operators

(M
(β)
1 , . . . ,M

(β)
m ) on (H,Kβ) is bounded. If both the Hilbert spaces (H,Kα) and (H,Kβ) contain the

polynomial ring C[z1, . . . , zm] as a dense subset, then the kernel K(α,β) is sharp.

Proof. By Corollary 3.8, we have that the m-tuple of operators (M
(α,β)
1 , . . . ,M

(α,β)
m ) is bounded on(

H,K(α,β)
)
. If both the Hilbert spaces (H,Kα) and (H,Kβ) contain the polynomial ring C[z1, . . . , zm]

as a dense subset, then by Proposition 3.4, we see that the ring C[z1, . . . , zm] ⊗ Cm is contained in

(H,K(α,β)) and is dense in it. An application of Lemma 4.3 now completes the proof. �

Some of the results in this paper generalize, among other things, one of the main results of [26],
which is reproduced below.

Theorem 4.5 (Salinas, [26, Theorem 2.6]). Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω×Ω → C

are two sharp kernels (resp. generalized Bergman kernels), then K1 ⊗ K2 and K1K2 are also sharp
kernels (resp. generalized Bergman kernels).

For two scalar valued non-negative definite kernels K1 andK2, defined on Ω×Ω, the jet construction
(Theorem 1.3) gives rise to a family of non-negative kernels Jk(K1,K2)|res∆, k ≥ 0, where

Jk(K1,K2)|res∆(z, w) :=
(
K1(z, w)∂

i∂̄jK2(z, w)
)k
|i|,|j|=0

, z, w ∈ Ω.
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In the particular case when k = 0, it coincides with the point-wise product K1K2. In this section, we
generalize Theorem 4.5 for all kernels of the form Jk(K1,K2)|res∆. First, we discuss two important
corollaries of the jet construction which will be used later in this paper.

For 1 ≤ i ≤ m, let JkMi denote the operator of multiplication by the ith coordinate function zi on
the Hilbert space

(
H, Jk(K1,K2)|res∆

)
. In case m = 1, we write JkM instead of JkM1.

Taking p(z, ζ) to be the ith coordinate function zi in Proposition 1.4, we obtain the following
corollary.

Corollary 4.6. Let K1,K2 : Ω × Ω → C be two non-negative definite kernels. Then the m-

tuple of operators
(
P
A⊥

k
(M

(1)
1 ⊗ I)|A⊥

k
, . . . , P

A⊥
k
(M

(1)
m ⊗ I)|A⊥

k

)
is unitarily equivalent to the m-tuple

(JkM1, . . . , JkMm) on the Hilbert space
(
H, Jk(K1,K2)|res∆

)
.

Combining this with Corollary 3.10 we obtain the following result.

Corollary 4.7. Let Ω ⊂ C be a bounded domain and K : Ω×Ω → C be a sesqui-analytic function such
that the functions Kα and Kβ are non-negative definite on Ω × Ω for some α, β > 0. The following
operators are unitarily equivalent:

(i) the operator P
A⊥

1
(M (α) ⊗ I)|A⊥

1

(ii) the multiplication operator J1M on
(
H, J1(K

α,Kβ)|res∆
)

(iii) the operator

(
M (α+β) 0

δ inc M(α,β)

)
on (H,Kα+β)

⊕
(H,K(α,β)) where δ = β√

αβ(α+β)
and inc is

the inclusion operator from (H,Kα+β) into (H,K(α,β)).

We need the following lemmas for the generalization of Theorem 4.5.

Lemma 4.8. Let H1 and H2 be two Hilbert spaces and T be a bounded linear operator on H1. Then

ker(T ⊗ IH2) = kerT ⊗H2.

Proof. It is easily seen that kerT ⊗H2 ⊂ ker(T ⊗ IH2). To establish the opposite inclusion, let x be
an arbitrary element in ker(T ⊗ IH2). Fix an orthonormal basis {fi} of H2. Note that x is of the form∑
vi ⊗ fi for some vi’s in H1. Since x ∈ ker(T ⊗ IH2

), we have
∑
Tvi ⊗ fi = 0. Moreover, since {fi}

is an orthonormal basis of H2, it follows that Tvi = 0 for all i. Hence x belongs to ker(T ) ⊗ H2,
completing the proof of the lemma. �

Lemma 4.9. Let H1 and H2 be two Hilbert spaces. If B1, . . . , Bm are closed subspaces of H1, then

m⋂

l=1

(Bl ⊗H2) =
( m⋂

l=1

Bl

)
⊗H2.

Proof. We only prove the non-trivial inclusion, namely, ∩m
l=1 (Bl ⊗H2) ⊂ (∩m

l=1Bl)⊗H2.
Let {fj}j be an orthonormal basis of H2 and x be an arbitrary element in H1 ⊗H2. Recall that x

can be written uniquely as
∑
xj ⊗ fj, xj ∈ H1.

Claim: If x belongs to Bl ⊗H2, then xj belongs to Bl for all j.
To prove the claim, assume that {ei}i is an orthonormal basis of Bl. Since {ei ⊗ fj}i,j is an or-

thonormal basis of Bl ⊗ H2 and x can be written as
∑
xijei ⊗ fj =

∑
j(
∑

i xijei) ⊗ fj. Then, the

uniqueness of the representation x =
∑
xj ⊗ fj, ensures that xj =

∑
i xijei. In particular, xj belongs

to Bl for all j. Thus the claim is verified.
Now let y be any element in ∩m

l=1 (Bl ⊗H2) . Let
∑
yj ⊗ fj be the unique representation of y in

H1 ⊗H2. Then from the claim, it follows that yj ∈ ∩m
l=1Bl. Consequently, y ∈ (∩m

l=1Bl) ⊗H2. This
completes the proof. �

The proof of the following lemma is straightforward and therefore it is omitted.
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Lemma 4.10. Let H1 and H2 be two Hilbert spaces. Let A : H1 → H1 be a bounded linear operator
and B : H1 → H2 be a unitary operator. Then

kerBAB∗ = B(kerA).

The lemma given below is a generalization of [6, Lemma 1.22 (i)] to commuting tuples. Recall

that for a commuting m-tuple T = (T1, . . . , Tm), the operator T i is defined by T i1
1 · · ·T im

m , where
i = (i1, . . . , im) ∈ Zm

+ .

Lemma 4.11. If K : Ω × Ω → C is a positive definite kernel such that the m-tuple of multiplication
operators M z = (Mz1 , . . . ,Mzm) on (H,K) is bounded, then for w ∈ Ω and i = (i1, . . . , im), j =
(j1, . . . , jm) in Zm

+ ,

(i) (M ∗
z − w̄)i∂̄jK(·, w) = 0 if |i| > |j|,

(ii) (M∗
z − w̄)i∂̄jK(·, w) = j!δijK(·, w) if |i| = |j|.

Proof. First, we claim that if il > jl for some 1 ≤ l ≤ m, then (M∗
zl
− w̄l)

il ∂̄jll K(·, w) = 0. The claim is
verified by induction on jl. The case jl = 0 holds trivially since (M∗

zl
− w̄l)K(·, w) = 0. Now assume

that the claim is valid for jl = p.We have to show that it is true for jl = p+1 also. Suppose il > p+1.
Then il − 1 > p. Hence, by the induction hypothesis, (M∗

zl
− w̄l)

il−1∂̄pl K(·, w) = 0. Differentiating this
with respect to w̄l, we see that

(il − 1)(M∗
zl
− w̄l)

il−2(−1)∂̄pl K(·, w) + (M∗
zl
− w̄l)

il−1∂̄p+1
l K(·, w) = 0.

Applying (M∗
zl
− w̄l) to both sides of the equation above, we obtain

(il − 1)(M∗
zl
− w̄l)

il−1(−1)∂̄pl K(·, w) + (M∗
zl
− w̄l)

il ∂̄p+1
l K(·, w) = 0.

Using the induction hypothesis once again, we conclude that (M∗
zl
− w̄l)

il ∂̄p+1
l K(·, w) = 0. Hence the

claim is verified.
Now, to prove the first part of the lemma, assume that |i| > |j|. Then there exists a l such that

il > jl. Hence from the claim, we have (M∗
zl
− w̄l)

il ∂̄jll K(·, w) = 0. Differentiating with respect to all

other variables except w̄l, we get (M∗
zl
− w̄l)

il ∂̄jK(·, w) = 0. Applying the operator (M ∗
z − w̄)i−ilel ,

where el is the lth standard unit vector of Cm, we see that (M ∗
z − w̄)i∂̄jK(·, w) = 0, completing the

proof of the first part.
For the second part, assume that |i| = |j| and i 6= j. Then there is atleast one l such that il > jl.

Hence by the argument used in the last paragraph, we conclude that (M ∗
z− w̄)i∂̄jK(·, w) = 0. Finally,

if i = j, we use induction on i to proof the lemma. There is nothing to prove if i = 0. For the proof
by induction, now, assume that (M∗

z − w̄)i∂̄iK(·, w) = i!K(·, w) for some i ∈ Zm
+ . To complete the

induction step, we have to prove that (M∗
z − w̄)i+el ∂̄i+elK(·, w) = (i + el)!K(·, w). By the first part

of the lemma, we have (M ∗
z − w̄)i+el ∂̄iK(·, w) = 0. Differentiating with respect to w̄l, we get that

(M∗
z − w̄)i+el ∂̄i+elK(·, w)− (il + 1)(M ∗

z − w̄)i∂̄iK(·, w) = 0.

Hence, by the induction hypothesis, (M∗
z − w̄)i+el ∂̄i+elK(·, w) = (i+ el)!K(·, w). This completes the

proof. �

Corollary 4.12. Let K : Ω × Ω → C be a positive definite kernel. Suppose that the m-tuple of
multiplication operators M z on (H,K) is bounded. Then, for all w ∈ Ω, the set

{
∂̄iK(·, w) : i ∈ Zm

+

}

is linearly independent. Consequently, the matrix
(
∂i∂̄jK(w,w)

)
i,j∈Λ

is positive definite for any finite

subset Λ of Zm
+ .

Proof. Let w be an arbitrary point in Ω. It is enough to show that the set
{
∂̄iK(·, w) : i ∈ Zm

+ , |i| ≤ k
}

is linearly independent for each non-negative integer k. Since K is positive definite, there is nothing to
prove if k = 0. To complete the proof by induction on k, assume that the set

{
∂̄iK(·, w) : i ∈ Zm

+ , |i| ≤
k
}
is linearly independent for some non-negative integer k. Suppose that

∑
|i|≤k+1 ai∂̄

iK(·, w) = 0
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for some ai’s in C. Then (M∗
z − w̄)q(

∑
|i|≤k+1 ai∂̄

iK(·, w)) = 0, for all q ∈ Zm
+ with |q| ≤ k + 1. If

|q| = k+ 1, by Lemma 4.11, we have that aq q!K(·, w) = 0. Consequently, aq = 0 for all q ∈ Zm
+ with

|q| = k + 1. Hence, by the induction hypothesis, we conclude that ai = 0 for all i ∈ Zm
+ , |i| ≤ k + 1

and the set
{
∂̄iK(·, w) : i ∈ Zm

+ , |i| ≤ k + 1
}
is linearly independent, completing the proof of the

first part of the corollary.
If Λ is a finite subset of Zm

+ , then it follows form the linear independence of the vectors
{
∂̄iK(·, w) :

i ∈ Λ
}
that the matrix

( 〈
∂̄jK(·, w), ∂̄iK(·, w)

〉 )
i,j∈Λ

is positive definite. Now the proof is complete

since
〈
∂̄jK(·, w), ∂̄iK(·, w)

〉
= ∂i∂̄jK(w,w) (see Proposition 2.2). �

The following proposition is also a generalization to the multi-variate setting of [6, Lemma 1.22
(ii)]( see also [7]).

Proposition 4.13. If K : Ω× Ω → C is a sharp kernel, then for every w ∈ Ω
⋂

|j|=k+1

ker (M ∗
z − w̄)j =

∨{
∂̄jK(·, w) : |j| ≤ k

}
.

Proof. The inclusion
∨{∂̄jK(·, w) : |j| ≤ k} ⊆ ⋂|j|=k+1 ker (M

∗
z− w̄)j follows from part (i) of Lemma

4.11. We use induction on k for the opposite inclusion. From the definition of sharp kernel, this
inclusion is evident if k = 0. Assume that⋂

|j|=k+1

ker (M ∗
z − w̄)j ⊆

∨{
∂̄jK(·, w) : |j| ≤ k

}

for some non-negative integer k. To complete the proof by induction, we show that the inclusion
remains valid for k+1 as well. Let f be an arbitrary element of

⋂
|i|=k+2 ker(M

∗
z − w̄)i. Fix a j ∈ Zm

+

with |j| = k + 1. Then it follows that (M ∗
z − w̄)jf belongs to ∩m

l=1 ker(M
∗
zl
− w̄l). Since K is sharp,

we see that (M ∗
z − w̄)jf = cjK(·, w) for some constant cj depending on w. Therefore

(M ∗
z − w̄)j

(
f −

∑

|q|=k+1

cq
q!
∂̄qK(·, w)

)
=cjK(·, w) −

∑

|q|=k+1

cq
q!

(M ∗
z − w̄)j ∂̄qK(·, w)

=cjK(·, w) −
∑

|q|=k+1

cqδjq
j!
q!K(·, w)

=0,

where the last equality follows from Lemma 4.11. Hence the element f −∑|q|=k+1
cq
q! ∂̄

qK(·, w) be-

longs to
⋂

|j|=k+1 ker(M
∗
z − w̄)j . Thus by the induction hypothesis, f − ∑|q|=k+1

cq
q! ∂̄

qK(·, w) =∑
|j|≤k dj ∂̄

jK(·, w). Hence f belongs to
∨
{∂̄jK(·, w) : |j| ≤ k + 1}. This completes the proof. �

For a m-tuple of bounded operators T = (T1, . . . , Tm) on a Hilbert space H, we define an operator
DT : H

⊕ · · ·⊕H → H by

DT (x1, . . . , xm) =

m∑

i=1

Tixi, x1, . . . , xm ∈ H.

A routine verification shows that (DT )
∗ = DT ∗

. The following lemma is undoubtedly well known,
however, we provide a proof for the sake of completeness.

Lemma 4.14. Let K : Ω×Ω → C be a positive definite kernel such that the m-tuple of multiplication
operators M z on (H,K) is bounded. Let w = (w1, . . . , wm) be a fixed but arbitrary point in Ω and let
Vw be the subspace given by {f ∈ (H,K) : f(w) = 0}. Then K is a generalized Bergman kernel if and
only if for every w ∈ Ω,

(4.1) Vw =
{∑m

i=1(zi − wi)gi : gi ∈ (H,K)
}
.
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Proof. First, observe that the right-hand side of (4.1) is equal to ran DMz−w. Hence it suffices to show
that K is a generalized Bergman kernel if and only if Vw = ran DMz−w. In any case, we have the
following inclusions

ran DMz−w = ran (D(M z−w)∗)
∗ ⊆ ran (D(M z−w)∗)∗ = kerD(Mz−w)∗

⊥(4.2)

⊆ {cK(·, w) : c ∈ C}⊥

= Vw.

Hence it follows that Vw = ran DMz−w if and only if equality is forced everywhere in these inclu-
sions, that is, ran (D(Mz−w)∗)

∗ = ran (D(M z−w)∗)∗ and kerD(Mz−w)∗
⊥ = {cK(·, w) : c ∈ C}⊥. Now

ran (D(M z−w)∗)
∗ = ran (D(Mz−w)∗)∗ if and only if ran (D(Mz−w)∗)

∗ is closed. Recall that, if H1,H2

are two Hilbert spaces, and an operator T : H1 → H2 has closed range, then T ∗ also has closed
range. Therefore, ran (D(M z−w)∗)

∗ is closed if and only if ran D(Mz−w)∗ is closed. Finally, note that

kerD(Mz−w)∗
⊥ = {cK(·, w) : c ∈ C}⊥ holds if and only if kerD(Mz−w)∗ = {cK(·, w) : c ∈ C}. This

completes the proof. �

Notation 4.15. Recall that for 1 ≤ i ≤ m, M
(1)
i ,M

(2)
i , JkMi denote the operators of multiplication by

the coordinate function zi on the Hilbert spaces (H,K1), (H,K2) and (H, Jk(K1,K2)|res∆), respectively.

Set M (1) = (M
(1)
1 , . . . ,M

(1)
m ), M (2) = (M

(2)
1 , . . . ,M

(2)
m ) and JkM = (JkM1, . . . , JkMm). Also, for

the sake of brevity, let H1 and H2 be the Hilbert spaces (H,K1) and (H,K2), respectively for the rest
of this section.

The following lemma is the main tool to prove that the kernel Jk(K1,K2)|res∆ is sharp whenever
K1 and K2 are sharp.

Lemma 4.16. If K1,K2 : Ω× Ω → C are two sharp kernels, then for all w = (w1, . . . , wm) ∈ Ω,
m⋂

p=1

ker
((

(M (1)
p − wp)

∗ ⊗ I
)
|A⊥

k

)
=
⋂

|i|=1

ker
(
M (1) − w

)∗i ⊗
⋂

|i|=k+1

ker
(
M (2) − w

)∗i

=
∨{

K1(·, w) ⊗ ∂̄iK2(·, w) : |i| ≤ k
}
.

Proof. Since K1 and K2 are sharp kernels, by Proposition 4.13, it follows that

(4.3)
⋂

|i|=1

ker (M (1) − w)∗
i ⊗

⋂

|i|=k+1

ker (M (2) − w)∗
i
=
∨

{K1(·, w) ⊗ ∂̄jK2(·, w) : |j| ≤ k}.

Therefore, if we can show that

(4.4)

m⋂

p=1

ker
((

(M (1)
p − wp)

∗ ⊗ I
)
|Ak

⊥

)
=
⋂

|i|=1

ker (M (1) − w)∗
i ⊗

⋂

|i|=k+1

ker (M (2) − w)∗
i
,

then we will be done. To prove this, first note that
m⋂

p=1

ker
((

(M (1)
p − wp)

∗ ⊗ I
)
|A⊥

k

)
=
( m⋂

p=1

ker
(
(M (1)

p − wp)
∗ ⊗ I

))⋂
A

⊥
k

=
( m⋂

p=1

(
ker(M (1)

p − wp)
∗ ⊗H2

))⋂
A

⊥
k

=
(( m⋂

p=1

ker(M (1)
p − wp)

∗
)
⊗H2

)⋂
A

⊥
k

=
(
kerD(M (1)−w)∗ ⊗H2

)⋂
A

⊥
k .
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Here the second equality follows from Lemma 4.8 and the third equality follows from Lemma 4.9. In
view of the above computation, to verify (4.4), it is enough to show that

(4.5)
(
kerD(M (1)−w)∗ ⊗H2

)⋂
A

⊥
k =

⋂

|i|=1

ker (M (1) − w)∗
i ⊗

⋂

|i|=k+1

ker (M (2) − w)∗
i
.

Since K1 is a sharp kernel, kerD(M (1)−w)∗ is spanned by the vector K1(·, w). It is also easy to see that

the vector K1(·, w) ⊗ ∂̄jK2(·, w) belongs to A⊥
k and hence, it is in

(
kerD(M (1)−w)∗ ⊗ H2

)⋂
A⊥

k for

all j in Zm
+ with |j| ≤ k. Therefore, by (4.3), we have the inclusion

(4.6)
⋂

|i|=1

ker (M (1) − w)∗
i ⊗

⋂

|i|=k+1

ker (M (2) − w)∗
i ⊆

(
kerD(M (1)−w)∗ ⊗H2

)⋂
A

⊥
k .

Now to prove the opposite inclusion, note that an arbitrary vector of
(
kerD(M (1)−w)∗ ⊗H2

)⋂
A⊥

k can

be taken to be of the form K1(·, w)⊗ g, where g ∈ H2 is such that K1(·, w)⊗ g ∈ A⊥
k . We claim that

such a vector g must be in
⋂

|i|=k+1 ker (M
(2) − w)∗

i
.

As before, we realize the vectors of H1 ⊗ H2 as functions in z = (z1, . . . , zm), ζ = (ζ1, . . . , ζm) in
Ω. Fix any i ∈ Zm

+ with |i| = k + 1. Then (ζ − z)i = (ζq1 − zq1)(ζq2 − zq2) · · · (ζqk+1
− zqk+1

) for some

1 ≤ q1, q2, . . . , qk+1 ≤ m. Since M
(1)
i and M

(2)
i are bounded for 1 ≤ i ≤ m, for any h ∈ H1 ⊗H2, we

see that the function (ζ − z)ih belongs to H1 ⊗H2. Then
〈
K1(·, w) ⊗ g, (ζq1 − zq1)(ζq2 − zq2) · · · (ζqk+1

− zqk+1
)h
〉

=
〈
M∗

(ζq1−zq1)
(K1(·, w) ⊗ g), (ζq2 − zq2) · · · (ζqk+1

− zqk+1
)h
〉

=
〈
(I ⊗M (2)

q1

∗ −M (1)
q1

∗ ⊗ I)K1(·, w) ⊗ g, (ζq2 − zq2) · · · (ζqk+1
− zqk+1

)h
〉

=
〈
K1(·, w) ⊗M (2)

q1

∗
g − w̄q1K1(·, w) ⊗ g, (ζq2 − zq2) · · · (ζqk+1

− zqk+1
)h
〉

=
〈
K1(·, w) ⊗ (M (2)

q1 − wq1)
∗g, (ζq2 − zq2) · · · (ζqk+1

− zqk+1
)h
〉
.

Repeating this process, we get
〈
K1(·, w) ⊗ g, (ζ − z)ih

〉
=
〈
K1(·, w) ⊗ (M (2) − w)∗

i
g, h
〉
.

Since |i| = k+1, it follows that the element (ζ−z)ih belongs to Ak. Furthermore, since K1(·, w)⊗g ∈
A⊥

k , from the above equality, we have
〈
K1(·, w) ⊗ (M (2) − w)∗

i
g, h
〉
= 0

for any h ∈ H1 ⊗H2. Taking h = K1(·, w)⊗K2(·, u), u ∈ Ω, we get K1(w,w)
(
(M (2) − w)∗

i
g
)
(u) = 0

for all u ∈ Ω. Since K1(w,w) > 0, it follows that (M (2) − w)∗
i
g = 0. Since this is true for all i ∈ Zm

+

with |i| = k + 1, it follows that g ∈ ⋂|i|=k+1 ker (M
(2) − w)∗

i
. Hence K1(·, w) ⊗ g belongs to

⋂

|i|=1

ker (M (1) − w)∗
i ⊗

⋂

|i|=k+1

ker (M (2) −w)∗
i
,

proving the opposite inclusion of (4.6). This completes the proof of equality in (4.4). �

Theorem 4.17. Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω × Ω → C are two sharp kernels,
then so is the kernel Jk(K1,K2)|res∆, k ≥ 0.
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Proof. Since the tuple M (1) is bounded, by Corollary 4.6, it follows that the tuple JkM is also
bounded. Now we will show that the kernel Jk(K1,K2)|res∆ is positive definite on Ω × Ω. Since

K2 is positive definite, by Corollary 4.12, we obtain that the matrix
(
∂i∂̄jK2(w,w)

)k
|i|,|j|=0

is positive

definite for w ∈ Ω. Moreover, since K1 is also positive definite, we conclude that Jk(K1,K2)|res∆(w,w)
is positive definite for w ∈ Ω. Hence, by [8, Lemma 3.6], we conclude that the kernel Jk(K1,K2)|res∆
is positive definite.

To complete the proof, we need to show that

kerD(JkM−w)∗ = ran Jk(K1,K2)|res∆(·, w), w ∈ Ω.

Note that, by the definition of R and Jk (see the discussion before Theorem 1.3), we have

(4.7) RJk(K1(·, w) ⊗ ∂̄iK2(·, w)) = Jk(K1,K2)|res∆(·, w)ei, i ∈ Z
m
+ , |i| ≤ k.

In the computation below, the third equality follows from Lemma 4.10, the injectivity of the map
RJk |A⊥

k
implies the fourth equality, the fifth equality follows from Lemma 4.16 and finally the last

equality follows from (4.7):

kerD(JkM−w)∗ =

m⋂

p=1

ker(JkMp − wp)
∗

=

m⋂

p=1

ker
(
(RJk)PA⊥

k

(
(M (1)

p − wp)
∗ ⊗ I

)
|A⊥

k

(RJk)
∗
)

=
m⋂

p=1

(RJk)
(
ker
(
P
A⊥

k

(
(M (1)

p − wp)
∗ ⊗ I

)
|A⊥

k

))

=(RJk)
( m⋂

p=1

ker
(
P
A⊥

k

(
(M (1)

p − wp)
∗ ⊗ I

)
|A⊥

k

))

=(RJk)
(∨{

K1(·, w) ⊗ ∂̄iK2(·, w) : |j| ≤ k
} )

=ran Jk(K1,K2)|res∆(·, w).

This completes the proof. �

The lemma given below is the main tool to prove Theorem 4.19.

Lemma 4.18. Let K1,K2 : Ω×Ω → C be two generalized Bergman kernels, and let w = (w1, . . . , wm)

be an arbitrary point in Ω. Suppose that f is a function in H1⊗H2 satisfying
((

∂
∂ζ

)i
f(z, ζ)

)
|z=ζ=w

= 0

for all i ∈ Zm
+ , |i| ≤ k. Then

f(z, ζ) =

m∑

j=1

(zj − wj)fj(z, ζ) +
∑

|q|=k+1

(z − ζ)qf ♯q(z, ζ)

for some functions fj, f
♯
q in H1 ⊗H2, j = 1, . . . ,m, q ∈ Zm

+ , |q| = k + 1.

Proof. Since K1 and K2 are generalized Bergman kernels, by Theorem 4.5, we have that K1 ⊗K2 is
also a generalized Bergman kernel. Therefore, if f is a function in H1 ⊗H2 vanishing at (w,w), then
using Lemma 4.14, we find functions f1, . . . , fm, and g1, . . . , gm in H1 ⊗H2 such that

f(z, ζ) =

m∑

j=1

(zj −wj)fj +

m∑

j=1

(ζj − wj)gj .
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Equivalently, we have

f(z, ζ) =
m∑

j=1

(zj − wj)(fj + gj) +
m∑

j=1

(zj − ζj)(−gj).

Thus the statement of the lemma is verified for k = 0. To complete the proof by induction on k,
assume that the statement is valid for some non-negative integer k. Let f be a function in H1 ⊗H2

such that
((

∂
∂ζ

)i
f(z, ζ)

)
|z=ζ=w

= 0 for all i ∈ Zm
+ , |i| ≤ k + 1. By induction hypothesis, we can write

(4.8) f(z, ζ) =

m∑

j=1

(zj − wj)fj(z, ζ) +
∑

|q|=k+1

(z − ζ)qf ♯q(z, ζ)

for some fj , f
♯
q ∈ H1⊗H2, j = 1, . . . ,m, q ∈ Zm

+ , |q| = k+1. Fix a i ∈ Zm
+ with |i| = k+1. Applying(

∂
∂ζ

)i
to both sides of (4.8), we see that

(
∂
∂ζ

)i
f(z, ζ) =

m∑

j=1

(zj − wj)
(

∂
∂ζ

)i
fj(z, ζ) +

∑

|q|=k+1

(
∂
∂ζ

)i(
(z − ζ)qf ♯q(z, ζ)

)

=

m∑

j=1

(zj − wj)
(

∂
∂ζ

)i
fj(z, ζ) +

∑

|q|=k+1

∑

p≤i

(
i
p

)(
∂
∂ζ

)p
(z − ζ)q

(
∂
∂ζ

)i−p
f ♯q(z, ζ).

Putting z = ζ = w, we obtain
((

∂
∂ζ

)i
f(z, ζ)

)
|z=ζ=w

= (−1)|i|i! f ♯
i
(w,w),

where we have used the simple identity:
((

∂
∂ζ

)p
(z − ζ)q

)
|z=ζ=w

= δpq(−1)|p|p!.

Since
((

∂
∂ζ

)i
f(z, ζ)

)
|z=ζ=w

= 0, we conclude that f ♯
i
(w,w) = 0. Since the statement of the lemma

has been shown to be valid for k = 0, it follows that

(4.9) f ♯i (z, ζ) =
m∑

j=1

(zj − wj)
(
f ♯i
)
j
(z, ζ) +

m∑

j=1

(zj − ζj)
(
f ♯i
)♯
j
(z, ζ)

for some
(
f ♯i
)
j
,
(
f ♯i
)♯
j
∈ H1 ⊗ H2, j = 1, . . . ,m. Since (4.9) is valid for any i ∈ Zm

+ , |i| = k + 1,

replacing the f ♯q’s in (4.8) by
∑m

j=1(zj − wj)
(
f ♯q
)
j
(z, ζ) +

∑m
j=1(zj − ζj)

(
f ♯q
)♯
j
(z, ζ), we obtain the

desired conclusion after some straightforward algebraic manipulation. �

Theorem 4.19. Let Ω ⊂ Cm be a bounded domain. If K1,K2 : Ω × Ω → C are generalized Bergman
kernels, then so is the kernel Jk(K1,K2)|res∆, k ≥ 0.

Proof. By Theorem 4.17, we will be done if we can show that ran D(JkM−w)∗ is closed for every

w ∈ Ω. Fix a point w = (w1, . . . , wm) in Ω. Let X :=
(
P
A⊥

k
(M

(1)
1 ⊗ I)|A⊥

k
, . . . , P

A⊥
k
(M

(1)
m ⊗ I)|A⊥

k

)
. By

Corollary 4.6, we see that ran D(JkM−w)∗ is closed if and only if ran D(X−w)∗ is closed. Moreover,

since (D(X−w)∗)
∗ = D(X−w), we conclude that ran D(X−w)∗ is closed if and only if ran D(X−w) is

closed. Note that X satisfies the following equality:

kerD(X−w)∗
⊥ = ran (D(X−w)∗)

∗ = ran D(X−w).

Therefore, to prove ran D(X−w) is closed, it is enough to show that kerD(X−w)∗
⊥ ⊆ ran DX−w. To

prove this, note that

D(X−w)(g1 ⊕ · · · ⊕ gm) = P
A⊥

k

( m∑

i=1

(zi − wi)gi
)
, gi ∈ A

⊥
k , i = 1, . . . ,m.
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Thus

(4.10) ran D(X−w) =
{
P
A⊥

k

( m∑

i=1

(zi − wi)gi : g1, . . . , gm ∈ A
⊥
k

}
.

Now, let f be an arbitrary element of kerD(X−w)∗
⊥. Then, by Lemma 4.16 and Proposition 2.2, we

have
((

∂
∂ζ

)i
f(z, ζ)

)
|z=ζ=w

= 0 for all i ∈ Zm
+ , |i| ≤ k. By Lemma 4.18,

f(z, ζ) =

m∑

j=1

(zj − wj)fj(z, ζ) +
∑

|q|=k+1

(z − ζ)qf ♯q(z, ζ)

for some functions fj, f
♯
q in H1 ⊗ H2, j = 1, . . . ,m and q ∈ Zm

+ , |q| = k + 1. Note that the element∑
|q|=k+1(z − ζ)qf ♯q belongs to Ak. Hence f = P

A⊥
k
(f) = P

A⊥
k

(∑m
j=1(zj − wj)fj

)
. Furthermore, since

the subspace Ak is invariant under (M
(1)
j − wj), j = 1, . . . ,m, we see that

f = P
A⊥

k

(∑m
j=1(zj −wj)fj

)
= P

A⊥
k

(∑m
j=1(zj −wj)

(
P
A⊥

k
fj + PAk

fj
))

= P
A⊥

k

(∑m
j=1(zj − wj)(PA⊥

k
fj)
)
.

Therefore, from (4.10), we conclude that f ∈ ran D(X−w). This completes the proof. �

4.1. The class FB2(Ω). In this subsection, first we will use Theorem 4.19 to prove that, if Ω ⊂ C,

and Kα, Kβ, defined on Ω × Ω, are generalized Bergman kernels, then so is the kernel K(α,β). The
following proposition, which is interesting on its own right, is an essential tool in proving this theorem.
The notation below is chosen to be close to that of [16].

Proposition 4.20. Let Ω ⊂ C be a bounded domain. Let T be a bounded linear operator of the form[
T0 S
0 T1

]
on H0

⊕
H1. Suppose that T belongs to B2(Ω) and T0 belongs to B1(Ω). Then T1 belongs

to B1(Ω).

Proof. First, note that, for w ∈ Ω,

(4.11) (T − w)(x⊕ y) = ((T0 − w)x+ Sy)⊕ (T1 −w)y.

Since T ∈ B2(D), T − w is onto. Hence, from the above equality, it follows that (T1 − w) is onto.
Now we claim that dimker(T1 − w) = 1 for all w ∈ Ω. From (4.11), we see that (x⊕ y) belongs to

ker(T −w) if and only if (T0 −w)x+Sy = 0 and y ∈ ker(T1 −w). Therefore, if dimker(T1 −w) is 0, it
must follow that ker(T −w) = ker(T0 −w), which is a contradiction. Hence dimker(T1 −w) is atleast
1. Now assume that dimker(T1 −w) > 1. Let v1(w) and v2(w) be two linearly independent vectors in
ker(T1−w). Since (T0−w) is onto, there exist u1(w), u2(w) ∈ H0 such that (T0−w)ui(w)+Svi(w) = 0,
i = 1, 2. Hence the vectors (u1(w) ⊕ v1(w)), (u2(w) ⊕ v2(w)) belong to ker(T − w). Also, since
dimker(T0 − w) = 1, there exists γ(w) ∈ H0, such that (γ(w) ⊕ 0) belongs to ker(T − w). It is easy
to verify that the vectors {(u1(w) ⊕ v1(w)), (u2(w) ⊕ v2(w)), (γ(w) ⊕ 0)} are linearly independent.
This is a contradiction since dimker(T − w) = 2. Therefore dimker(T1 − w) ≤ 1. In consequence,
dimker(T1 −w) = 1.

Finally, to show that
∨

w∈Ω ker(T1−w) = H1, let y be an arbitrary vector in H1 which is orthogonal

to
∨

w∈Ω ker(T1 − w). Then it follows that (0⊕ y) is orthogonal to ker(T − w), w ∈ Ω. Consequently,
y = 0. This completes the proof. �

Theorem 4.21. Let Ω ⊂ C be a bounded domain and K : Ω × Ω → C be a sesqui-analytic function
such that the functions Kα and Kβ are positive definite on Ω×Ω for some α, β > 0. Suppose that the
operators M (α)∗ on (H,Kα) and M (β)∗ on (H,Kβ) belong to B1(Ω

∗). Then the operator M(α,β)∗ on

(H,K(α,β)) belongs to B1(Ω
∗). Equivalently, if Kα and Kβ are generalized Bergman kernels, then so

is the kernel K(α,β).
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Proof. Since the operators M (α)∗ and M (β)∗ belong to B1(Ω
∗), it follows from Theorem 4.19 that

the kernel J1(K
α,Kβ)|res∆ is a generalized Bergman kernel. Therefore, from corollary 4.7, we deduce

that the operator
(

M (α+β)∗ η inc
∗

0 M(α,β)∗

)
belongs to B2(Ω

∗), where η = β√
αβ(α+β)

and inc is the inclusion

operator from (H,Kα+β) into (H,K(α,β)). Also, by Theorem 4.5, the operator M (α+β)∗ on (H,Kα+β)

belongs to B1(Ω
∗). Proposition 4.20, therefore shows that the operator M(α,β)∗ on (H,K(α,β)) belongs

to B1(Ω
∗). �

A smaller class of operators FBn(Ω) from Bn(Ω), n ≥ 2, was introduced in [16]. A set of tractable
complete unitary invariants and concrete models were given for operators in this class. We give below
examples of a large class of operators in FB2(Ω). In case Ω is the unit disc D, these examples include
the homogeneous operators of rank 2 in B2(D) which are known to be in FB2(D).

Definition 4.22. An operator T on H0
⊕
H1 is said to be in FB2(Ω) if it is of the form

[
T0 S
0 T1

]
,

where T0, T1 ∈ B1(Ω) and S is a non-zero operator satisfying T0S = ST1.

Theorem 4.23. Let Ω ⊂ C be a bounded domain and K : Ω × Ω → C be a sesqui-analytic function
such that the functions Kα and Kβ are positive definite on Ω × Ω for some α, β > 0. Suppose that
the operators M (α)∗ on (H,Kα) and M (β)∗ on (H,Kβ) belong to B1(Ω

∗). Then the operator (J1M)∗

on (H, J1(K
α,Kβ)|res∆) belongs to FB2(Ω

∗).

Proof. By Theorem 4.19, the operator (J1M)∗ on (H, J1(K
α,Kβ)|res∆) belongs to B2(Ω

∗), and by

Corollary 4.7, it is unitarily equivalent to
(

M (α+β)∗ η inc
∗

0 M(α,β)∗

)
on (H,Kα+β)

⊕
(H,K(α,β)). By Theorem

4.5, the operatorM (α+β)∗ on (H,Kα+β) belongs to B1(Ω
∗) and by Theorem 4.21, the operator M(α,β)∗

on (H,K(α,β)) belongs to B1(Ω
∗). The adjoint of the inclusion operator inc clearly intertwinesM (α+β)∗

and M(α,β)∗. Therefore the operator (J1M)∗ on (H, J1(K
α,Kβ)|res∆) belongs to FB2(Ω

∗). �

Let Ω ⊂ C be a bounded domain and K : Ω × Ω → C be a sesqui-analytic function such that
the functions Kα1 ,Kα2 ,Kβ1 and Kβ2 are positive definite on Ω × Ω for some αi, βi > 0, i = 1, 2.

Suppose that the operators M (αi)
∗
on (H,Kαi) and M (βi)

∗
on (H,Kβi), i = 1, 2, belong to B1(Ω

∗).
Let A1(αi, βi) be the subspace A1 of the Hilbert space (H,Kαi)⊗ (H,Kβi) for i = 1, 2. Then we have
the following corollary.

Corollary 4.24. The operators
(
M (α1) ⊗ I

)∗
|A1(α1,β1)⊥

and
(
M (α2) ⊗ I

)∗
|A1(α2,β2)⊥

are unitarily equiv-

alent if and only if α1 = α2 and β1 = β2.

Proof. If α1 = α2 and β1 = β2, then there is nothing to prove. For the converse, assume that
the operators

(
M (α1) ⊗ I

)∗
|A1(α1,β1)⊥

and
(
M (α2) ⊗ I

)∗
|A1(α2,β2)⊥

are unitarily equivalent. Then, by

Corollary 3.10, we see that the operators
(

M (α1+β1)
∗

η1 (inc)∗1
0 M(α1,β1)

∗

)
on (H,Kα1+β1)

⊕
(H,K(α1,β1)) and

(
M (α2+β2)

∗
η2 (inc)∗2

0 M(α2,β2)
∗

)
on (H,Kα2+β2)

⊕
(H,K(α2 ,β2)) are unitarily equivalent, where ηi =

βi√
αiβi(αi+βi)

and (inc)i is the inclusion operator from (H,Kαi+βi) into (H,K(αi,βi)), i = 1, 2. Since M (αi)
∗
on

(H,Kαi) and M (βi)∗ on (H,Kβi), i = 1, 2, belong to B1(Ω
∗), by Theorem 4.23, we conclude that the

operator
(

M (αi+βi)
∗

ηi (inc)
∗
i

0 M(αi,βi)
∗

)
belongs to FB2(Ω

∗) for i = 1, 2. Therefore, by [16, Theorem 2.10], we

obtain that

(4.12) KM (α1+β1)
∗ = KM (α2+β2)

∗ and
η1 ‖(inc)∗1(t1)‖2

‖t1‖2
=
η2 ‖(inc)∗2(t2)‖2

‖t2‖2
,

where KM (αi+βi)
∗ , i = 1, 2, is the curvature of the operator M (αi+βi)∗, and t1 and t2 are two non-

vanishing holomorphic sections of the vector bundles E
M(α1,β1)

∗ and E
M(α2,β2)

∗ , respectively. Note

that, for i = 1, 2, ti(w) = K(αi,βi)(·, w) is a holomorphic non-vanishing section of the vector bundle



24 S. GHARA AND G. MISRA

E
M(αi,βi)

∗ , and also (inc)∗i (K
(αi,βi)(·, w)) = Kαi+βi(·, w), w ∈ Ω. Therefore the second equality in

(4.12) implies that

η1K
α1+β1(w,w)

Kα1+β1(w,w)∂∂̄ logK(w,w)
=

η2K
α2+β2(w,w)

Kα2+β2(w,w)∂∂̄ logK(w,w)
, w ∈ Ω,

or equivalently η1 = η2. Furthermore, it is easy to see that KM (α1+β1)
∗ = KM (α2+β2)

∗ if and only if
α1 + β1 = α2 + β2. Hence, from (4.12), we see that

(4.13) α1 + β1 = α2 + β2 and η1 = η2.

Then a simple calculation shows that (4.13) is equivalent to α1 = α2 and β1 = β2, completing the
proof. �

5. The generalized Wallach set

Let Ω be a bounded domain in Cm. Recall that the Bergman space A2(Ω) is the Hilbert space of all
square integrable analytic functions defined on Ω. The inner product of A2(Ω) is given by the formula

〈f, g〉 :=
∫

Ω
f(z)g(z) dV(z), f, g ∈ A2(Ω),

where dV(z) is the area measure on Cm. The evaluation linear functional f 7→ f(w) is bounded on
A2(Ω) for all w ∈ Ω. Consequently, the Bergman space is a reproducing kernel Hilbert space. The
reproducing kernel of the Bergman space A2(Ω) is called the Bergman kernel of Ω and is denoted by
BΩ.

If Ω ⊂ Cm is a bounded symmetric domain, then the ordinary Wallach set WΩ is defined as
{t > 0 : Bt

Ω is non-negative definite}. Here Bt
Ω, t > 0, makes sense since every bounded symmetric

domain Ω is simply connected and the Bergman kernel on it is non-vanishing. If Ω is the Euclidean
unit ball Bm, then the Bergman kernel is given by

(5.1) BBm(z, w) = (1− 〈z, w〉)−(m+1) , z, w ∈ BBm ,

and the Wallach set WBm = {t ∈ R : t > 0}. But, in general, there are examples of bounded symmetric
domains, like the open unit ball in the space of all m × n matrices, m,n > 1, with respect to the
operator norm, where the Wallach set is a proper subset of {t ∈ R : t > 0}. An explicit description of
the Wallach set WΩ for a bounded symmetric domain Ω is given in [12].

Replacing the Bergman kernel in the definition of the Wallach set by an arbitrary scalar valued
non-negative definite kernel K, we define the ordinary Wallach set W(K) to be the set

{t > 0 : Kt is non-negative definite}.
Here we have assumed that there exists a continuous branch of logarithm of K on Ω×Ω and therefore
Kt, t > 0, makes sense. Clearly, every natural number belongs to the Wallach set W(K). In [4], it is
shown that Kt is non-negative definite for all t > 0 if and only if

(
∂i∂̄j logK(z, w)

)m
i,j=1

is non-negative

definite. Therefore it follows from the discussion in the previous paragraph that there are non-negative
definite kernels K on Ω × Ω for which

(
∂i∂̄j logK(z, w)

)m
i,j=1

need not define a non-negative definite

kernel on Ω×Ω. However, it follows from Proposition 2.3 that Kt1+t2
(
∂i∂̄j logK(z, w)

)m
i,j=1

is a non-

negative kernel on Ω×Ω as soon as t1 and t2 are in the Wallach set W(K). Therefore it is natural to
introduce the generalized Wallach set for any scalar valued kernel K defined on Ω× Ω as follows:

(5.2) GW(K) :=
{
t ∈ R : Kt−2

K is non-negative definite
}
,

where, as before, we have assumed that Kt is well defined for all t ∈ R. Clearly, we have the following
inclusion {

t1 + t2 : t1, t2 ∈ W(K)
}
⊆ GW(K).
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5.1. Generalized Wallach set for the Bergman kernel of the Euclidean unit ball in Cm.

In this section, we compute the generalized Wallach set for the Bergman kernel of the Euclidean
unit ball in Cm. In the case of the unit disc D, the Bergman kernel BD(z, w) = (1 − zw̄)−2 and

∂∂̄ logBD(z, w) = 2(1−zw̄)−2, z, w ∈ D. Therefore t is in GW(BD) if and only if (1−zw̄)−(2t+2) is non-
negative definite on D× D. Consequently, GW(BD) = {t ∈ R : t ≥ −1}. For the case of the Bergman
kernel BBm of the Euclidean unit ball Bm, m ≥ 2, we have shown that GW(BBm) = {t ∈ R : t ≥ 0}.
The proof is obtained by putting together a number of lemmas which are of independent interest.

Before computing the generalized Wallach set GW(BBm) for the Bergman kernel of the Euclidean
ball Bm, we point out that the result is already included in [23, Theorem 3.7], see also [19, 15]. The
justification for our detailed proofs in this particular case is that it is direct and elementary in nature.

As before, we write K � 0 to denote that K is a non-negative definite kernel. For two non-negative
definite kernels K1,K2 : Ω × Ω → Mk(C), we write K1 � K2 if K2 − K1 is a non-negative definite
kernel on Ω× Ω. Analogously, we write K1 � K2 if K1 −K2 is non-negative definite.

Lemma 5.1. Let Ω be a bounded domain in Cm, and λ0 > 0 be an arbitrary constant. Let {Kλ}λ≥λ0

be a family of non-negative definite kernels, defined on Ω× Ω, taking values in Mk(C) such that

(i) if λ ≥ λ′ ≥ λ0, then Kλ′ � Kλ,
(ii) for z, w ∈ Ω, Kλ(z, w) converges to Kλ0(z, w) entrywise as λ→ λ0.

Any f : Ω → Ck which is holomorphic and is in (H,Kλ) for all λ > λ0 belongs to (H,Kλ0) if and
only if supλ>λ0

‖f‖(H,Kλ) <∞.

Proof. Recall that if K and K ′ are two non-negative definite kernels satisfying K � K ′, then (H,K) ⊆
(H,K ′) and ‖h‖(H,K ′) ≤ ‖h‖(H,K) for h ∈ (H,K) (see [24, Theorem 6.25]). Therefore, by the hypoth-
esis, we have that

(5.3) (H,Kλ′) ⊆ (H,Kλ) and ‖h‖(H,Kλ) ≤ ‖h‖(H,Kλ′ )
,

whenever λ ≥ λ′ ≥ λ0 and h ∈ (H,Kλ′ ).
Now assume that f ∈ (H,Kλ0). Then, clearly ‖f‖(H,Kλ) ≤ ‖f‖(H,Kλ0

) for all λ > λ0. Consequently,

supλ>λ0
‖f‖(H,Kλ) ≤ ‖f‖(H,Kλ0

) < ∞. For the converse, assume that supλ>λ0
‖f‖(H,Kλ) < ∞. Then,

from (5.3), it follows that limλ→λ0 ‖f‖(H,Kλ) exists and is equal to supλ>λ0
‖f‖(H,Kλ). Since f ∈

(H,Kλ) for all λ > λ0, by [24, Theorem 6.23], we have that

f(z)f(w)∗ � ‖f‖2(H,Kλ)
Kλ(z, w).

Taking limit as λ→ λ0 and using part (ii) of the hypothesis, we obtain

f(z)f(w)∗ � sup
λ>λ0

‖f‖2(H,Kλ)
Kλ0(z, w).

Hence, using [24, Theorem 6.23] once again, we conclude that f ∈ (H,Kλ0). �

If m ≥ 2, then from (5.1), we have

((
Bt

Bm
∂i∂̄j logBBm

)
(z, w)

)m
i,j=1

=
m+ 1

(1− 〈z, w〉)t(m+1)+2




1−∑j 6=1 zjw̄j z2w̄1 · · · zmw̄1

z1w̄2 1−
∑

j 6=2 zjw̄j · · · zmw̄2

...
...

...
...

z1w̄m z2w̄m · · · 1−∑j 6=m zjw̄j


 .

(5.4)
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For m ≥ 2, λ ∈ R and z, w ∈ Bm, set

(5.5) Kλ(z, w) :=
1

(1− 〈z, w〉)λ




1−
∑

j 6=1 zjw̄j z2w̄1 · · · zmw̄1

z1w̄2 1−∑j 6=2 zjw̄j · · · zmw̄2

...
...

...
...

z1w̄m z2w̄m · · · 1−∑j 6=m zjw̄j


 .

In view (5.4) and (5.5), for λ > 2, we have

Kλ =
2

t(m+ 1)

(
(B

t
2
Bm

)2∂i∂̄j logB
t
2
Bm

)m
i,j=1

,

where t = λ−2
m+1 > 0. Since B

t/2
Bm

is positive definite on Bm × Bm for t > 0, it follows from Corollary

2.4 that Kλ is non-negative definite on Bm × Bm for λ > 2. Since Kλ(z, w) → K2(z, w), z, w ∈ Bm,
entrywise as λ→ 2, we conclude that K2 is also non-negative definite on Bm × Bm.

Let {e1, . . . , em} be the standard basis of Cm. The lemma given below finds the norm of the vector
z2 ⊗ e1 in (H,Kλ) when λ > 2.

Lemma 5.2. For each λ > 2, the vector z2 ⊗ e1 belongs to (H,Kλ) and ‖z2 ⊗ e1‖(H,Kλ) =
√

λ−1
λ(λ−2) .

Proof. By a straight forward computation, we obtain

∂̄1Kλ(·, 0)e2 = z2 ⊗ e1 + (λ− 1)z1 ⊗ e2

and
∂̄2Kλ(·, 0)e1 = (λ− 1)z2 ⊗ e1 + z1 ⊗ e2.

Thus we have

(5.6) (λ− 1)∂̄2Kλ(·, 0)e1 − ∂̄1Kλ(·, 0)e2 = (λ2 − 2λ)z2 ⊗ e1.

By Proposition 2.2, the vectors ∂̄2Kλ(·, 0)e1 and ∂̄1Kλ(·, 0)e2 belong to (H,Kλ). Since λ > 2, from
(5.6), it follows that the vector z2 ⊗ e1 belongs to (H,Kλ). Now, taking norm in both sides of (5.6)
and using Proposition 2.2 a second time, we obtain

(λ2 − 2λ)2‖z2 ⊗ e1‖2

= (λ− 1)2〈∂2∂̄2Kλ(0, 0)e1, e1〉 − (λ− 1)〈∂1∂̄2Kλ(0, 0)e1, e2〉
− (λ− 1)〈∂̄1∂2Kλ(0, 0)e2, e1〉+ 〈∂1∂̄1Kλ(0, 0)e2, e2〉

(5.7)

By a routine computation, we obtain

∂i∂̄jKλ(0, 0) = (λ− 1)δijIm + Eji,

where δij is the Kronecker delta function, Im is the identity matrix of order m, and Eji is the matrix
whose (j, i)th entry is 1 and all other entries are 0. Hence, from (5.7), we see that

(λ2 − 2λ)2||z2 ⊗ e1||2

= (λ− 1)2(λ− 1)− 2(λ− 1) + (λ− 1)

= (λ− 1)(λ2 − 2λ).

Hence ||z2 ⊗ e1|| =
√

λ−1
λ(λ−2) , completing the proof of the lemma. �

Lemma 5.3. The multiplication operator by the coordinate function z2 on (H,K2) is not bounded.

Proof. Since K2(·, 0)e1 = e1, we have that the constant function e1 is in (H,K2). Hence, to prove that
Mz2 is not bounded on (H,K2), it suffices to show that the vector z2 ⊗ e1 does not belong to (H,K2).

Consider the family of non-negative definite kernels {Kλ}λ≥2. Observe that for λ ≥ λ′ ≥ 2,

(5.8) Kλ(z, w) −Kλ′(z, w) =
(
(1− 〈z, w〉)−(λ−λ′) − 1

)
Kλ′(z, w).
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It is easy to see that if λ ≥ λ′, then (1−〈z, w〉)−(λ−λ′)−1 � 0. Thus the right hand side of (5.8), being
a product of a scalar valued non-negative definite kernel with a matrix valued non-negative definite
kernel, is non-negative definite. Consequently, Kλ′ � Kλ. Also since Kλ(z, w) → K2(z, w) entry-wise
as λ→ 2, by Lemma 5.1, it follows that z2⊗e1 ∈ (H,K2) if and only if supλ>2 ‖z2⊗e1‖(H,Kλ) <∞. By

lemma 5.2, we have ‖z2 ⊗ e1‖(H,Kλ) =
√

λ−1
λ(λ−2) . Thus supλ>2 ||z2 ⊗ e1||(H,Kλ) = ∞. Hence the vector

z2 ⊗ e1 does not belong to (H,K2) and the operator Mz2 on (H,Kλ) is not bounded. �

The following theorem describes the generalized Wallach set for the Bergman kernel of the Euclidean
unit ball in Cm, m ≥ 2.

Theorem 5.4. If m ≥ 2, then GW(BBm) = {t ∈ R : t ≥ 0}.

Proof. In view of (5.4) and (5.5), we see that t ∈ GW(BBm) if and only if Kt(m+1)+2 is non-negative
definite on Bm × Bm. Hence we will be done if we can show that Kλ is non-negative if and only if
λ ≥ 2.

From the discussion preceding Lemma 5.2, we have that Kλ is non-negative definite on Bm × Bm

for λ ≥ 2.
To prove the converse, assume that Kλ is non-negative definite for some λ < 2. Note that K2 can

be written as the product

(5.9) K2(z, w) = (1− 〈z, w〉)−(2−λ)
Kλ(z, w), z, w ∈ Bm.

Also, the multiplication operator Mz2 on (H, (1 − 〈z, w〉)−(2−λ)) is bounded. Hence, by Lemma 2.7,

there exists a constant c > 0 such that (c2 − z2w̄2)(1 − 〈z, w〉)−(2−λ) is non-negative definite. Conse-

quently, the product (c2 − z2w̄2)(1− 〈z, w〉)−(2−λ)Kλ, which is (c2 − z2w̄2)K2, is non-negative. Hence,
again by Lemma 2.7, it follows that the operator Mz2 is bounded on (H,K2). This is a contradiction
to the Lemma 5.3. Hence our assumption that Kλ is non-negative for some λ < 2, is not valid. This
completes the proof. �

6. Quasi-invariant kernels

In this section, we show that if K a is quasi-invariant kernel with respect to some J , then Kt−2K

is also a quasi-invariant kernel with respect to J := J(ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(Ω), z ∈ Ω, whenever t
is in the generalized Wallach set GW(K). The lemma given below, which will be used in the proof of
the Proposition 6.2, follows from applying the chain rule [25, page 8] twice.

Lemma 6.1. Let φ = (φ1, . . . , φm) : Ω → Cm be a holomorphic map and g : ran φ → C be a real
analytic function. If h = g ◦ φ, then

( (
∂i∂̄jh

)
(z)
)m
i,j=1

= (Dφ(z))tr
( (

∂i∂̄jg
)
(ϕ(z))

)m
i,j=1

(Dφ(z)),

where (Dφ)(z)tr is the transpose of the derivative of φ at z.

Proposition 6.2. Let Ω ⊂ Cm be a bounded domain. Let K : Ω× Ω → C be a non-negative definite
kernel and J : Aut(Ω)×Ω → C\{0} be a function such that J(ϕ, ·) is holomorphic for each ϕ in Aut(Ω).
Suppose that K is quasi-invariant with respect to J . Then the kernel Kt−2K is also quasi-invariant
with respect to J whenever t ∈ GWΩ(K), where J(ϕ, z) = J(ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(Ω), z ∈ Ω.

Proof. Since K is quasi-invariant with respect to J , we have

logK(z, z) = log |J(ϕ, z)|2 + logK(ϕ(z), ϕ(z)), ϕ ∈ Aut(Ω), z ∈ Ω.

Also, J(ϕ, ·) is a non-vanishing holomorphic function on Ω, therefore ∂i∂̄j log |J(ϕ, z)|2 = 0. Hence

(6.1) ∂i∂̄j logK(z, z) = ∂i∂̄j logK(ϕ(z), ϕ(z)), ϕ ∈ Aut(Ω), z ∈ Ω.
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Any biholomorphic automorphism ϕ of Ω is of the form (ϕ1, . . . , ϕm), where ϕi : Ω → C is holo-
morphic, i = 1, . . . ,m. By setting g(z) = logK(z, z), z ∈ Ω, and using Lemma 6.1, we obtain

(
∂i∂̄j logK(ϕ(z), ϕ(z))

)m
i,j=1

= Dϕ(z)tr
((
∂l∂̄p logK

)
(ϕ(z), ϕ(z))

)m
l,p=1

Dϕ(z).

Combining this with (6.1), we obtain

(6.2)
(
∂i∂̄j logK(z, z)

)m
i,j=1

= Dϕ(z)tr
((
∂l∂̄p logK

)
(ϕ(z), ϕ(z))

)m
l,p=1

Dϕ(z).

Multiplying K(z, z)t both sides and using the quasi-invariance of K, a second time, we obtain
(
K(z, z)t∂i∂̄j logK(z, z)

)m
i,j=1

= J(ϕ, z)tDϕ(z)trK(ϕ(z), ϕ(z))t
((
∂l∂̄p logK

)
(ϕ(z), ϕ(z)

)m
l,p=1

J(ϕ, z)tDϕ(z).

Equivalently, we have

(6.3) Kt−2(z, z)K(z, z) = J(ϕ, z)Kt−2(ϕ(z), ϕ(z))K(ϕ(z), ϕ(z))J(ϕ, z)∗ ,

where J(ϕ, z) = J(ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(Ω), z ∈ Ω. Therefore, polarizing both sides of the above
equation, we have the desired conclusion. �

Remark 6.3. The function J in the definition of quasi-invariant kernel is said to be a projective
cocycle if it is a Borel map satisfying

(6.4) J(ϕψ, z) = m(ϕ,ψ)J(ψ, z)J(ϕ,ψz), ϕ, ψ ∈ Aut(Ω), z ∈ Ω,

where m : Aut(Ω) × Aut(Ω) → T is a multiplier, that is, m is Borel and satisfies the following
properties:

(i) m(e, ϕ) = m(ϕ, e) = 1, where ϕ ∈ Aut(Ω) and e is the identity in Aut(Ω)
(ii) m(ϕ1, ϕ2)m(ϕ1ϕ2, ϕ3) = m(ϕ1, ϕ2ϕ3)m(ϕ2, ϕ3), ϕ1, ϕ2, ϕ3 ∈ Aut(Ω).

J is said to be a cocycle if it is a projective cocycle with m(ϕ,ψ) = 1 for all ϕ,ψ in Aut(Ω).
If J : Aut(Ω)×Ω → C \ {0} in the Proposition 6.2 is a cocycle, then it is verified that the function

J is a projective co-cycle. Moreover, if t is a positive integer, then J is also a cocycle.

For the preceding to be useful, one must exhibit non-negative definite kernels which are quasi-
invariant. It is known that the Bergman kernel BΩ of any bounded domain Ω is quasi-invariant with
respect to J , where J(ϕ, z) = detDϕ(z), ϕ ∈ Aut(Ω), z ∈ Ω .

Lemma 6.4. ([18, Proposition 1.4.12]) Let Ω ⊂ Cm be a bounded domain and ϕ : Ω → Ω be a
biholomorphic map. Then

BΩ(z, w) = detDϕ(z)BΩ(ϕ(z), ϕ(w))detDϕ(w), z, w ∈ Ω.

The following proposition follows from combining Proposition 6.2 and Lemma 6.4, and therefore
the proof is omitted.

Proposition 6.5. Let Ω be a bounded domain Cm. If t is in GW(BΩ), then the kernel

B
(t)
Ω (z, w) :=

(
Bt

Ω(z, w)∂i∂̄j logBΩ(z, w)
)
i,j=1

is quasi-invariant with respect to (detDϕ(z))tDϕ(z)tr, ϕ ∈ Aut(Ω), z ∈ Ω.

For a fixed but arbitrary ϕ ∈ Aut(Ω), let Uϕ be the linear map on Hol(Ω,Ck) defined by

(6.5) Uϕ(f) = J
(
ϕ−1, ·

)
f ◦ ϕ−1, f ∈ Hol(Ω,Ck).

The following proposition is a basic tool in defining unitary representations of the automorphism
group Aut(Ω). The straightforward proof for the case of unit disc D appears in [17]. The proof for
the general domain Ω follows in exactly the same way.

Proposition 6.6. The linear map Uϕ is unitary on (H,K) for all ϕ in Aut(Ω) if and only if the
kernel K is quasi-invariant with respect to J .
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Let Q : Ω → Mk(C) be a real analytic function such that Q(w) is positive definite for w ∈ Ω. Let
H be the Hilbert space of Ck valued holomorphic functions on Ω which are square integrable with
respect to Q(w)dV (w), that is,

H =
{
f ∈ Hol(Ω,Ck) : ‖f‖2 :=

∫

Ω
〈Q(w)f(w), f(w)〉CkdV(w) <∞

}
,

where dV is the normalized volume measure on Cm. Assume that the constant functions are in H.
The operator Uϕ, defined in (6.5) is unitary if and only if

‖Uϕf‖2 =

∫

Ω
〈Q(w)(Uϕf)(w), (Uϕf)(w)〉dV (w)

=

∫

Ω
〈J(ϕ−1, w)

tr
Q(w)J(ϕ−1, w)f(ϕ−1(w)), f(ϕ−1(w))〉dV (w)

=

∫

Ω
〈Q(w)f(w), f(w)〉dV (w),

that is, if and only if Q transforms according to the rule

(6.6) J(ϕ−1, w)
tr
Q(w)J(ϕ−1, w) = Q(ϕ−1(w))|det(Dϕ−1)(w)|2.

Set J(ϕ−1, w) = det(Dϕ−1(w))tDϕ−1(w)tr and Q(t)(w) := BΩ(w,w)
1−tK(w,w)−1, where K(z, w) :=(

∂i∂̄j logBΩ(z, w)
)m
i,j=1

, t > 0. Then Q(t) transforms according to the rule (6.6) since K trans-

forms according to (6.2) and BΩ transfomrs as in Lemma 6.4. If for some t > 0, the Hilbert space
L2
hol(Ω, Q

(t) dV ) determined by the measure is nontrivial, then the corresponding reproducing kernel
is of the form Bt

Ω(z, w)K(z, w).
Let Ω be a bounded symmetric domain in Cm. Note that if K : Ω×Ω → Mk(C) is a quasi-invariant

kernel with respect to some J and the commuting tuple M z = (Mz1 , . . . ,Mzm) on (H,K) is bounded,
then the commuting tuple Mϕ := (Mϕ1 , . . . ,Mϕm) is unitarily equivalent to M z via the unitary map
Uϕ, where ϕ = (ϕ1, . . . , ϕm) is in Aut(Ω). If t is in GW(BΩ) and the operator of multiplication

Mzi by the coordinate function zi is bounded on the Hilbert space (H, B
t/2
Ω ), then it follows from

Corollary 2.9 that the operator Mzi on the Hilbert space
(
H,B

(t)
Ω ) is bounded as well. Therefore, in

the language of [22], we conclude that the multiplication tuple M z on (H,B
(t)
Ω ) is homogeneous with

respect to the group Aut(Ω). In particular, if Ω is the Euclidean unit ball in Cm, and t is any positive

real number, then the multiplication tuple M z on (H, B
t/2
Bm

) is bounded. Also, from Theorem 5.4, it

follows that B
(t)
Bm

is non-negative definite. Consequently, the commuting m - tuple of operators M z

must be homogeneous with respect to the group Aut(Bm).
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