
This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 137–146 |  137

Cite this: Soft Matter, 2023,

19, 137

Packing and emergence of the ordering of rods in
a spherical monolayer†

Dharanish Rajendra, a Jaydeep Mandal, a Yashodhan Hatwalneb and
Prabal K. Maiti *a

Spatially ordered systems confined to surfaces such as spheres exhibit interesting topological structures

because of curvature induced frustration in orientational and translational order. The study of these

structures is important for investigating the interplay between the geometry, topology, and elasticity, and

for their potential applications in materials science, such as engineering directionally binding particles. In

this work, we numerically simulate a spherical monolayer of soft repulsive spherocylinders (SRSs) and

study the packing of rods and their ordering transition as a function of the packing fraction. In the

model that we study, the centers of mass of the spherocylinders (situated at their geometric centers) are

constrained to move on a spherical surface. The spherocylinders are free to rotate about any axis that

passes through their respective centers of mass. We show that, up to moderate packing fractions, a two

dimensional liquid crystalline phase is formed whose orientational ordering increases continuously with

increasing density. This monolayer of orientationally ordered SRS particles at medium densities

resembles a hedgehog—long axes of the SRS particles are aligned along the local normal to the sphere.

At higher packing fractions, the system undergoes a transition to the solid phase, which is riddled with

topological point defects (disclinations) and grain boundaries that divide the whole surface into several

domains.

1 Introduction

The statistical mechanics of rod-like particles has been an
important problem ever since Onsager developed the theory
for (three dimensional) isotropic–nematic liquid crystalline (IN)
phase transition in a system of hard rods.1 Since then, a
number of studies have investigated the different phases and
phase transitions for hard and soft rods.2–10 Bolhuis and
Frenkel2 have extensively studied the phases of hard rods in
bulk and showed that the phases and phase boundaries vary
depending on the shape anisotropy A = L/D (D and L are the
diameter and core length of the rod, respectively). Cuetos and
Martinez-Haya3 have studied the effect of temperature on the
phase diagram by using the mapping equation between soft
and hard rods and observed triple points between different
phases. Bates and Frenkel4 have simulated hard rods on a 2D
plane, and showed that for A Z 6, there is a nematic phase with
algebraically decaying orientational correlation, whereas, for
small shape anisotropies, there is an isotropic phase with

strong local positional and orientational correlation. External
fields can also introduce novel phases in systems of soft
polarizable spherocylinders.11 Furthermore, Dussi et al.12 have
simulated different single component systems with particles of
different shapes, and showed that depending on the system
size, a prolate columnar phase appears in the system. But this
columnar phase is mechanically unstable as the system size is
increased. This phenomenon is quite general in the sense that
it is observed for all the different particle shapes. The study of
phases is not only limited to single component systems of hard
and soft rods. Experimental and simulation studies have also
been carried out for a binary mixture of particles,13–17 In
general, the study of liquid crystals is quite extensive.18–22

In recent years, the study of two dimensional nematic order
on curved surfaces (such as spheres) has gained impetus because
of possible experimental realizations of systems such as colloido-
somes in which a spherical shell of colloids is constrained on a
spherical emulsion droplet.23,24 Microfluidics has also been
successfully used to constrain colloidal rods to lie tangent to
the spherical surface.25 Curvature driven dynamics also play an
important role in different biological processes26–28 as well as in
different properties of colloidal systems.29–31 Three dimensional
uniaxial nematics are orientationally ordered fluids, and can be
characterized by the three component unit director n̂ = (nx(x,y,z),-
ny(x,y,z),nz(x,y,z)), whereas the unit director of two dimensional
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nematics in a plane has two components: n̂ = (nx(x,y),ny(x,y)). On
a curved surface such as a sphere, the two dimensional nematic
director lies in the local tangent plane to the sphere. However,
any such vector or director field on the sphere is frustrated
because of the intrinsic (Gaussian) curvature of the sphere. As
is well known, a hairy ball cannot be combed flat without creating
vortices of total strength 2, or at least one hair whorl or a single
vortex.32,33 In condensed matter physics these topological point
defects are called disclinations.18 Surrounding the disclination
point (eye of the vortex), very large orientational deformations are
present, destroying the orientational order. Disclinations are
characterized by their index and have ‘‘molten’’ core regions of
finite extent encompassing the disclination point. Because of the
rich variety of configurations shown by such systems, various
numerical studies have also been carried out to analyze the
structures and defects. Lubensky and Prost34 have theorized that
the director configuration of nematics on spherical surfaces
would have four +1/2 disclinations, which has been verified in
the numerical study of Bates.35 Interestingly, the arrangement of
the defect configuration for nematic liquid crystals on spherical
surfaces is observed to alter with elastic anisotropy.36,37 The
change in elastic anisotropy can be realized by a change in the
temperature of the system38 and other system environmental
conditions. Along with the defects, numerical studies have also
revealed various textures (director fields) for systems in which the
rods lie tangent to spherical surfaces.39,40

Disclination cores on spherical particles such as micron-sized
colloidal particles coated with liquid crystals can be functiona-
lized to create ‘‘superatoms’’ with directional bonds.41 This
opened up new possibilities for the self-assembly of superatoms
by linking across functionalized groups (including biomolecules
such as DNA) and the development of atomic chemistry at
micron scales. Thin nematic shells consisting of a nematic drop
containing a smaller aqueous drop have been obtained in double
emulsions.42 These can be engineered to imitate sp, sp2, and sp3

geometries of carbon bonds.43 Deformable vesicles with orienta-
tional order can form facets. These fascinating properties have
led to rapid advances in theoretical and experimental studies
such as the functionalization of the inevitable defect structure of
a nematic on a sphere.44,45

In recent years a new branch of colloidal science called
‘‘topological colloids’’ has emerged. When introduced into a
nematic liquid crystal, topological colloids induce three dimen-
sional director fields and topological defects dictated by colloi-
dal topology. This lays the groundwork for new applications of
colloids, such as topological memory devices, etc., and the
experimental study of low dimensional topology.46–50

In this work, we focus on the phases and structural transitions
between them, and on the topological defects in a spherical
monolayer of SRS particles. The rods lie within a spherical shell
of inner and outer radii (R � (L + D)/2) and (R + (L + D)/2),
respectively, where R is the radius of the sphere on which the
center of masses of the rods is constrained to lie, and D and L are
the diameter and core length of the rod.

At a low packing fraction (Z t 0.35) (see Section 2 for the
definition of packing fraction Z), the system is weakly orienta-
tionally ordered with nematic and radial order parameters (see
Section 2 eqn (5) and (6) for definition) taking small values
(Fig. 1A). At medium densities (Z B 0.35–0.65), it adopts an
orientationally ordered configuration with the rods all aligned
with the local radial direction (Fig. 1B). At medium densities,
the nematic and radial order parameters take values up to
0.8 and 1, respectively. This phase does not have positional
ordering, and therefore, we characterize it as a radially
oriented, two dimensional liquid crystalline phase. We note
that in contrast to two dimensional nematics, the liquid crystal-
line phase described above has a three component director on a
two dimensional spherical surface. Moreover, the ground state
configuration of this phase is disclination free, as the hairy ball
theorem is not applicable to it—the director is everywhere

Fig. 1 Different phases seen in the system: (A) the system shows a weakly nematic structure, where particles have a very small orientational correlation,
but they show a preferred direction because of the presence of spherical confinement, which is the radially outward direction on the sphere, (B) highly
orientationally ordered LC phase at medium packing fractions, where particles are directed radially outwards, (C) solid phase that occurs at high packing
fractions and has multiple domains of high ordering separated by defect lines of low ordering. The ordering in the fluid phase increases with an increase in
packing fraction. All simulations were done for A = 5. Z = ar is the packing fraction (a,r are the cross-sectional area of spherocylinders and surface
density, respectively) and S is the nematic order parameter.
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normal to the spherical surface. The orientationally ordered
sphere itself is the core of a surface (two dimensional) topolo-
gical defect called an index 2 hedgehog.51 Spheres with this
structure are called hedgehog particles.52

The solid phase occurs at high packing fractions (Z \ 0.65)
(Fig. 1C) and shows a high degree of positional and orientational
ordering. However, the ordering is not uniform across the surface
of the sphere, and there exist domains of high crystalline order-
ing separated by line defects with low or no ordering.

The rest of the paper is organized as follows. In Section 2, we
describe the model, the interaction potential, the constraints
used, and the simulation details. In Section 3, we highlight the
main results—the properties of the different phases, the nature
of phase transitions between them, and their dependence on
shape anisotropy and the topological defects in the solid phase.
In Section 4, we discuss the results and their interpretations
and implications, and conclude with possible future directions
for this work.

2 Model and simulation details

The system we study is a collection of soft repulsive spherocy-
linders (right circular cylinders with hemispherical end caps),
each having mass m. The length of the cylinder (or the core of
the spherocylinder) is L, and the diameter of the hemispheres
and the cylinder is D. Note that the total length of the
spherocylinder would be L + D. The shape anisotropy of such
a molecule is A = L/D. When A = 0, the spherocylinder would
become a sphere. The aspect ratio, the ratio of total length to
width, is A + 1. These SRS particles interact with each other with
a generalization of the Weeks–Chandler–Anderson potential53

to non-spherical particles, in which the force acts along the line
of shortest distance54 between the cores of the spherocylinders,
as opposed to between the line joining their centers. This
interaction potential is given as follows:

U ¼
4e

D

dm

� �12

� D

dm

� �6
" #

þ e; dm o 21=6D

0; dm � 21=6D;

8>><
>>: (1)

where dm is the shortest distance between their axes (or cores),
as shown in Fig. 2A. The centers of mass of the spherocylinders
(situated at their geometric centers) are constrained to lie on
the surface of a sphere of radius R. The center of mass velocities
are tangent to the surface of the sphere, whereas their orienta-
tion and angular velocities are unconstrained, as shown in
Fig. 2B. More specifically, the constraints are:

|-r| = R, (2)

-vi�
-ri = 0, (3)

where -ri and -vi are the center of mass position and velocity of
the ith spherocylinder and the origin of the coordinate system
is at the center of the sphere. The constraints are applied to
each ith spherocylinder.

We performed molecular dynamics (MD) simulations of this
system in the constant number–volume–temperature (NVT)
ensemble. We use the velocity Verlet integration algorithm55

to update the positions and velocities and an adaptation of the
RATTLE algorithm56 to enforce the constraints. All quantities,
thermodynamic and structural, are scaled by the system para-
meters e and D and calculated in reduced units: temperature
T* = kBT/e, pressure P* = aP/(kBT), packing fraction Z = ar, where
r = N/V is the density, N is the number of particles, V = 4pR2 is
the surface area and a = pD2/4 is the cross-sectional area of the
spherocylinder. In our calculations, we take kB = 1 and measure
time in units of D(m/e)1/2. The temperature of the system was
maintained using a Berendsen thermostat57 with a temperature
coupling time of tT = 0.05 for smaller densities and down to
tT = 0.01 for larger densities.

Because of the constraint eqn (2), the translational degrees
of freedom for the particles is 2. Therefore, pressure is
calculated as:

P ¼ 1

V
NT þ 1

2
X

� �
(4)

where X ¼
PN
i¼1
~ri �~Fi is the virial and

-

Fi is the force acting on the

ith particle due to interaction with all other particles. We
prepared the initial state of the system with all particles evenly
distributed on the surface of the sphere and having a coordination
number of 6, with the use of a Fibonacci sphere construction.58

Initially, all particle orientations (ŝ) are along the outward normal
to the surface. The translational and rotational velocities are given
random values in accordance with the constraints. We per-
formed the simulations for a system size of N = 2500 particles
and shape anisotropy A = 5. After setting up the initial state, we
run the simulation at T* = 5 for 4 � 105 timesteps to equilibrate

Fig. 2 (A) Schematic diagram of the interaction between two SRS
particles. The dashed line segment between the centers of the two
hemispherical end caps on each SRS is called the core. ŝ1 and ŝ2 are the
orientations of the two SRSs, respectively. rcm is the distance between the
center of mass of the two SRSs while dm is the shortest distance between
the cores. The force between these two particles depends on dm and acts
along the shortest line segment between the two cores. The schematics
apply to all pairs of particles. (B) Schematic of the spherical shell constraint
on the SRSs. The center of mass lies on the surface of the sphere, while its
translational velocities are tangential to the surface.
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the system. Following this, we simulated the system for another
4 � 105 timesteps while calculating and averaging the thermo-
dynamic and structural quantities. We use an integration time-
step of dt = 0.001 throughout the simulations. We simulate the
system for a range of packing fractions (Z) from 0.95 to 0.1. The
shape anisotropy A = 5 and temperature T* = 5 were chosen such
that the unconstrained 3D system would show all phases –
isotropic, nematic, smectic A, and crystal – in this range of
packing fractions.3,59 Therefore, working with these values will
help us understand the effect of spherical constraints on the
different phases as compared to 3 dimensional systems. We
changed the packing fraction after each stage of the simulation
process (equilibration and measurement) by changing the
radius of the constraining sphere by an appropriate amount.
Note that the system is not re-initialized after each state point
simulation, and the end state of the previous stage becomes the
starting point for the equilibration of the next stage. The equili-
bration is sufficiently long for the system to settle into its new
steady state and not have any memory of the previous state. To
check for finite size effects, if any, we have also performed
simulations for a system size of N = 25 000.

The ordering transitions are determined by calculating the
nematic order parameter and the radial order parameter. The tensor
order parameter is a traceless symmetric tensor Q defined as:

Qab ¼
1

N

XN
i¼1

3

2
siasib �

1

2
dab (5)

where i and j correspond to the particle index and a and b
correspond to the components of the unit orientation vector ŝ.
The unit vector ŝ is parallel to the axis of the spherocylinder and
due to their top-down symmetry, ŝ can point in either direction.
That is, the system and all its properties are invariant with the
operation ŝi - �ŝi8i. The scalar nematic order parameter S is the
largest eigenvalue of Q, and its corresponding (three-dimensional)
eigenvector -n is the director of the ordered phase. In highly
ordered states, S E 1 and in highly disordered states, S E 0.
The radial order parameter quantifies how well the particles are
aligned along their local radial direction and is defined as follows:

Sr ¼
3

2

1

N

XN
i¼1

ŝi � r̂i �
1

2
(6)

Since the system in consideration has a spherical geometry,
the nematic and radial order parameters can vary as a function
of the position on the sphere. Therefore, we divide the system
into 20 equally sized and shaped regions and calculate the
order parameter for each of them separately. These 20 regions
are the faces of an inscribed spherical icosahedron.

The orientational ordering is also quantified with the orien-
tational correlation of the particles, which is a function of the
geodesic angle y, i.e. the angle subtended by the lines joining
the center of the constraining sphere to two points on its
surface. It is calculated as:

OCðyÞ ¼ 3

2
ðŝi � ŝjÞ2 �

1

2

� �
dðy� arccosðr̂i � r̂jÞÞ

� �
; (7)

where the angle brackets indicate an average over all pairs of
particles. The spatial ordering is quantified with the radial
distribution function calculated as a function of the geodesic
angle y as follows:

gðyÞ ¼ V

N2

X
iaj

dðy� arccosðr̂i � r̂jÞÞ (8)

The positional ordering is also quantified with the use of the
structure factor S(-q) defined as follows:

Sð~qÞ ¼ 1

N

XN
i¼1

XN
j¼1

e�i~q� ~ri�~rjð Þ (9)

3 Results

Below, we individually discuss the properties of each of the
different phases observed in the system. The results and values
reported here are for the simulation of a system with A = 5.0,
T* = 5.0, and N = 2500, unless otherwise stated.

3.1 Fluid phases

At very low packing fractions (Z t 0.35), the pressure of the
system is small (Fig. 3A) and it exhibits a liquid crystalline fluid
phase in which there is no positional order but very weak
orientational order (Fig. 1A). The lack of positional order can
be inferred from the radial distribution function g(y) in Fig. 4A,
which rises rapidly to 1 and saturates. The structure factor
(Fig. 5A) for Z r 0.64 also does not show any peaks other than
the central q = 0 peak, confirming the absence of positional
ordering (see Fig. S1 in the ESI† for a structure factor for
Z = 0.3). The weak orientational ordering can be inferred from
the nematic order parameter in Fig. 3B, the radial order
parameter in Fig. 3C and the orientational correlation in
Fig. 4B. The orientational correlation sharply decays to near 0
as y increases from 0, and the nematic and radial order
parameters take low values. We observe that the orientational
ordering increases with the packing fraction.

At medium packing fractions (Z B 0.35–0.65), there is an
emergence of substantial orientational ordering. This can be
inferred from the nematic and radial order parameters taking
values of B0.8 and B1, respectively (Fig. 3B and C). The
orientational ordering can also be understood from the form
of orientational correlation which tends to a sinusoidal-like
curve as the packing fraction increases. Such a curve indicates
that, on average, the particles are aligned along the local radial
direction. The structure factor (Fig. 5A) clearly shows that there
is no positional ordering established in these packing fractions
(Z B 0.35–0.65). The maximum and the minimum values of the
nematic order parameter over the regions match closely, indi-
cating homogeneity in the orientational ordering across the
spherical monolayer. Therefore, we term this phase as a radially
oriented two-dimensional liquid crystal (2D LC).

The istropic–nematic transition of SRSs and hard sphero-
cylinders (HSCs) in 3D cases is of first order,2,60,61 where the
equation of state changes discontinuously at phase transition
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points. To study the finite size effect for the system, we have
performed simulations of a system of size N = 25 000
i.e. 10 times the size of the initial system which we were

studying. In this case also, we see the existence of the liquid
crystalline phase at low to medium densities. Interestingly, this
system does not show the deviation of the maximum and
minimum values of the nematic or radial order parameter
within the calculated range of densities. To determine the
nature of the phase transitions, we have also performed the
simulations for a system of size N = 2500 with both expanding
and contracting schemes. That is, the system is simulated for
each state point and then expanded to cover a range of packing
fractions (Z: 0.95–0.1) Following the simulation of the lowest
packing fraction (Z = 0.1) state point, the system is then
compressed to cover the same range in the reverse direction.

Fig. 4 (A) Radial distribution function g(y) as a function of the geodesic
angle y for low to medium packing fractions. At low packing fractions
(Z t 0.35), there is no structuring at all. But at medium packing fractions
(Z B 0.35–0.65), it shows short ranged spatial ordering and structure.
(B) The orientational correlation OC(y) as a function of the geodesic angle y
for the same range of packing fractions. At low packing fractions, the
orientations are weakly correlated. At medium packing fractions, the sinu-
soidal orientational correlation shows that the particles are radially oriented.

Fig. 5 Emergence of positional ordering in the solid phase. (A) Structure
factor of a region in the nematic phase just below the phase transition
point and it shows no long-range ordering. (B–D) Structure factors of a
representative domain in the solid phase. As the packing fraction increases
into the solid phase (Z \ 0.65), the range of ordering also increases,
indicated by the number of bright points in the plot. Before calculation of
these structure factors, the region was first transformed such that its
center of mass coincides with the origin and then flattened onto the xy
plane.

Fig. 3 (A) Equation of state of the system, reduced pressure P* vs. packing fraction Z of a system of 2500 particles with A = 5, with both compression and
expansion simulation schemes. (B) Nematic order parameters S and (C) radial order parameter Sr as a function Z for the same system and simulation
schemes. The minimum and maximum are calculated over the 20 regions of the spherical surface. The closeness of the minimum and maximum
indicates the degree of homogenous ordering across the system. A large difference between the maximum and minimum of the order parameters
indicates inhomogeneous ordering. The high (maximum) values of S at high Z indicate the appearance of crystalline domains, whereas the minimum
values appear due to the defect lines that separate the two domains. Therefore, the disagreement between the line of maximum and minimum of the
nematic order parameter is also an indicator of the appearance of the solid phase. Both plots are with T* = 5, A = 5, and N = 2500.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
7 

D
ec

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
2/

30
/2

02
2 

8:
52

:2
9 

A
M

. 
View Article Online

https://doi.org/10.1039/d2sm00799a


142 |  Soft Matter, 2023, 19, 137–146 This journal is © The Royal Society of Chemistry 2023

The equation of state and order parameters of this simulation
scheme are shown in Fig. 3. If the transition is discontinuous,
we expect to see a difference in the expansion and compression
curves, like a hysteresis curve. However, in both these plots, we
see that for a range of low (Z t 0.35) to medium packing
fractions (Z B 0.35–0.65), the curve obtained by compression
exactly follows the curve obtained by expansion. The disagree-
ment that is seen at higher packing fractions is due to the
liquid crystal–solid phase transition.

3.2 The solid phase

The solid phase occurs at high packing fractions (Z \ 0.65),
and shows high positional and orientational ordering within
crystalline domains (Fig. 1C). These domains are separated by
line defects having low or no order. To determine the nature of
packing in the domains of the solid phase, we performed
structure factor calculations on a representative domain of
the state of the system for a range of packing fractions. Fig. 5
shows the emergence of well-set translational ordering as the
packing fraction is increased, as understood by the increasing
number of rings in the plot. The structure factor (Fig. 5) shows
that the domains are crystalline in nature with hexagonal
packing of the particles.

The phase transition from a 2D LC phase to a solid phase is
a first-order transition, as indicated by the disagreement or
hysteresis in the equation of state during the expansion and
compression simulation regimes (Fig. 3A). For sufficiently high
shape anisotropy, the phase transition from 2D LC to solid is
also identified by the deviation of the maximum and minimum
values of the order parameters across the spherical monolayer
(Fig. 3B and C). The LC to solid phase transition point depends
on anisotropy A and temperature T*. The phase transition also
depends on the number of particles N due to the finite-sized
nature of the system. For an anisotropy of A = 5, a temperature

of T* = 5, and a system size of N = 2500, the transition point
occurs at Z B 0.66 and P* B 16.094.

3.3 Topological defects in the solid phase

The defects in solids are known to exist in grain boundaries or
at the edges of grains. These kinds of defects exist only in
polycrystalline solids and are generally absent in monocrystal-
line solids at low temperatures. However, in a spherical shell, it
is impossible to have a defect-free crystal due to its positive
Gaussian curvature. 2D positional ordering is incompatible
with surfaces having the Gaussian curvature and is frustrated
due to the well-known Euler’s theorem of topology as well as
the fact that straight lines (geodesics) on spheres are not
parallel.62–64 In fact, in the limit L/D - 0, i.e. for spherical
particles, experimental observations have confirmed the for-
mation of 12 isolated ‘seas’ of defects, compatible with icosa-
hedron symmetry on the surface of the sphere.65 For the cases
of spherocylinders, it is due to the line defects that crystalline
domains of high positional and orientational order can exist in
the spherical shell i.e. some particles move out of the way to
form line defects which allows the other particles to come
closer and form tighter packing in a domain. At small system
sizes and high spherical curvatures, the line defects consist of
particles that are oriented at a large angle from the directors of
the neighboring crystal domains and are nearly parallel to the
surface of the constraining sphere (Fig. 6A). Therefore, the
deviation of the maximum and minimum of the nematic order
parameter of the regions implies the existence of a solid phase;
however, the converse need not be true. In addition to these
orientational line defects, there also exist disclinations (defects
along the edges of the domains which have a coordination
number other than six) (Fig. 6A). Furthermore, there also exist
point defects in the interior of domains. These are dislocations
due to which one particle has a higher coordination number

Fig. 6 Defects seen in the solid phase of the system at two different system sizes (A) N = 2500 particles and (B) N = 25 000 particles, with A = 5. The
particles are colored based on the coordination number (CN) and defect type. Both systems show large regions with a coordination number of 6,
separated by defect lines, albeit of different types. The defect lines in the smaller system are formed by orientational defects and disclinations, while that
of the larger system is formed by dislocation defects. They also form grain boundary scars.
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and another particle has a lower coordination number com-
pared to their neighbors (Fig. 6A). However, at very large system
sizes, the line defects are of a different nature. The orientational
defects no longer occur. The defect lines separating domains
consist only of positional dislocation defects (Fig. 6B). This
occurs because the low curvature at high system sizes causes
less frustration in the ordering of the particles and it can better
accommodate crystalline packing. We also observe the appear-
ance of grain boundary scars that appear and terminate within
the spherical surface itself (Fig. 6B). Interestingly, one more
important ratio for our system is L/R, which has an implication
on the splay strain of the system. When L/R is large, the splay
strain for the particles is large, and the tail ends of the rods feel
strong repulsive forces inside the sphere, which results in the
formation of orientational defects. But as we reduce the value of
L/R, the splay strain decreases, and the rods can be accommo-
dated on the sphere without the formation of orientational
defects. This is also seen in Fig. 6A and B. At constant high
packing fractions, as N increases, R also increases, decreasing
the splay strain, and resulting in the absence of orientational
defects. Therefore, increasing the number of particles to N = 25 000
not only confirms the absence of isotropic phase66 but also the
effect of the splay strain of the system. It demonstrates the
importance of the dimensionless ratio L/R. In the limit of
infinite system size, the curvature tends to zero, and the system
becomes an unconstrained 2D system in which there can be
perfect crystallinity.

3.4 Other shape anisotropies

The phases of a system of a soft monolayer67,68 of spherocy-
linders naturally depend on the shape anisotropy of the rods in
addition to the temperature, density, and curvature of the
constraining sphere. So far, we have looked at systems at a
constant temperature of T* = 5, and constant shape anisotropy
of A = L/D = 5 at varying packing fractions. To understand the
dependence of the phases on the shape anisotropy, we have
also simulated the system over the same range of packing
fractions for various other shape anisotropies (A: 3–7).

We observe that the phase transition from 2D LC to solid
occurs at lower packing fractions as the shape anisotropy is
increased, as shown by the decreasing curve in Fig. 7 (LC–solid).
For example, for A = 4, the transition occurs for a packing
fraction of B0.71. In contrast, for A = 7, the transition occurs at
a packing fraction of B0.49. This is expected because when the
shape anisotropy increases, the tail end of the rods in the
interior of the constraining sphere interacts at closer distances
and experiences stronger repulsive forces. Due to this, the
orientational defect lines would form at a lower packing frac-
tion. This is the effect of the topological constraint. For bulk 3D
cases, the critical density for the smectic to crystalline phase
transition does not show similar dependence on the shape
anisotropy of the particles. (Fig. 7 Bulk Sm–K). In 3D bulk, the
smectic to crystalline transition is mainly controlled by the
packing fraction or density. Interestingly, the 2D LC–solid phase
transition packing fraction shows a similar decreasing behavior
as the 3D bulk isotropic to nematic transition density.

Below a certain critical shape anisotropy Ac, orientational
defects are no longer observed, and the LC–solid transition
becomes continuous. This can be seen in Fig. 8 (also see Fig. S3
in the ESI†), which shows that for A = 3, the maximum and
minimum nematic and radial order parameter lines match
each other throughout, while for A = 4, they deviate at high
packing fractions. However, other defects, namely disclina-
tions, still exist due to the curvature of the sphere. The homo-
geneity of the nematic order parameter for A = 3 indicates that
there are no particles with large orientational deviations from
their neighbors. This implies the absence of orientational
defects. The continuous nature of the LC–solid transition is
seen from the absence of any disagreement or hysteresis in the
equation of state during compression and expansion for A = 3
(Fig. S4 in the ESI†). However, there is a disagreement between
the compression and expansion equations of state curves for
A = 4. There is also a gradual emergence of short-ranged
hexagonal positional order with increasing packing fraction
for A = 3 even without any discontinuity in the equation of state
(Fig. S5 in the ESI†).

Both of these facts indicate that for T* = 5 and N = 2500,
3 o Ac o 4. After further study, we find that the critical shape
anisotropy lies in the interval Ac A (3.47, 3.487). Below the critical
shape anisotropy, the rods do not experience sufficient repulsive
interactions at their tail ends in the interior of the sphere. Due to
this, all of the rods can be accommodated in a radially aligned
configuration and there is no need for orientational defects to
arise. And therefore, there is no large difference in the maximum
and minimum values of the nematic order parameter such as
that seen above the critical shape anisotropy. Furthermore, below
Ac, the appearance of the solid phase is no longer synonymous
with the appearance of orientational defects and a deviation in
the maximum and minimum of the order parameters.

Fig. 7 The shape anisotropy dependence of the packing fraction at the
phase boundary Z* for the transition from the 2D liquid crystal to a solid
(LC–solid) for a spherical monolayer. Also shown for are the 3D bulk
transitions, namely isotropic–nematic (I–N), nematic–smectic (N–Sm) and
smectic–crystal (Sm–K). The packing fraction for SRSs in bulk 3D is defined
as Z = vhscr, where r = N/V, vhsc = pD2(D/6 + L/4). The data for the bulk
transitions are taken from Cuetos and Martinez-Haya.3 All transition
packing fractions shown here are for melting from the phase with higher
order to the phase with lower order.
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We note that for shape anisotropy values lower than the
critical value (A o Ac), orientational defects, and hence a
heterogeneity in the order, may appear only if the packing
fraction is extremely high (41). However, such high packing
fractions also result in extremely high pressures due to the
sharply increasing pressure as a function of the packing
fraction (Fig. 3A). Therefore, we limit our study to reasonable
packing fractions in the range of 0–1. Moreover, in the limit
that A = L/D - 0, the spherocylinder reduces to a simple
sphere. In this limit, orientational defects are not possible even
at arbitrarily large packing fractions. Additionally, for hard
spheres on the surface of a sphere, the fluid–solid transition
is a continuous one;69,70 the continuous nature of the LC–solid
transition below Ac is consistent with this.

At medium packing fractions (Z B 0.35–0.65), since the
particle orientation is almost normal to the surface of the sphere,
the shape of the projection of the rods on the spherical surface is
like a disk. Therefore, it would be of interest to compare the results
of melting of disk-like particles in 2 dimensions. Simulation
studies show that the melting of hard disks in two dimensions
undergoes two different transitions, a liquid to hexatic first-order

transition and a hexatic to solid continuous transition.71 The
liquid-hexatic co-existence is shown to occur near the packing
fraction ZB 0.71.68 For soft disks, the nature of the transitions can
alter depending on the strength of the potential.72 In contrast, the
LC–solid transition for spherocylinders in a spherical monolayer
does depend on the shape anisotropy of the particles.

In 3D bulk, the presence of the nematic phase depends on
the shape anisotropy and may not be observed below the
minimum shape anisotropy.3 This is also seen in a system
consisting of a mixture of active and passive spherocylinders, in
which the presence of the nematic phase depends on the shape
anisotropy and the relative activity.73 However, we observe a 2D
LC phase for all values of A that we considered in our simula-
tions. i.e. A = 3–7.

4 Conclusions

In this work, we have studied the phase behavior of soft
spherocylinders whose centers of masses are constrained to
move on the surface of a sphere. We showed that the isotropic
phase is absent for such a system of a monolayer of SRS
particles and the orientational ordering of the system increases
continuously as density is increased. The LC phase at medium
densities shows a hedgehog-particle-like structure where the rods
are aligned normally to the surface of the sphere. At even higher
packing fractions, there appears a solid phase consisting of
crystalline domains of high orientational and hexagonal close
packing, separated by defect lines. We show that the transition
from a 2D liquid crystal to a solid is a first-order phase transition.
This phase transition from a liquid crystal to a solid depends not
only on the temperature and density of the system, but also on
the curvature of the constraining spherical surface and the shape
anisotropy of the rods. Keeping the other variables at a fixed
value, there appears a critical value of the shape anisotropy below
which the LC–solid phase transition is continuous, and orienta-
tional defects can no longer be observed. We also found that the
LC–solid phase transition density (packing fraction) decreases
with increasing shape anisotropy of the particles, similar to the
case of isotropic–nematic transition in 3D bulk. We observed
various point and line defects in the solid phase, which appear
due to the curved geometry of the sphere. Interestingly, the point
defects can have coordination numbers of not only 5 and 7
(which is the case for spherical particles on a spherical
surface74) but also 4 and 8. For small system sizes with high
curvatures of the constraining sphere, orientational defects and
disclinations appear, whereas for large system sizes with low
curvatures, we see dislocations and grain boundary scars emer-
ging in the system.

So far, there have been several studies to understand the
system of colloidal rod-like particles constrained to move
tangent to the surface of a sphere.38,42,44 While Chen et al.25

have studied substantially more complex systems of spherically
constrained rod-like particles, experiments with particles free
to rotate, such as in our system, would be very insightful and
beneficial to the field. Such experiments, with control on the

Fig. 8 Nematic order parameter S as a function of the packing fraction Z
for (A) shape anisotropy, A = 3, and (B) A = 4. Both are calculated for
systems with T* = 5 and N = 2500. For A = 3, there is no large difference
between the maximum and minimum values of the order parameters
during the liquid crystal to solid phase transition while there is a large
difference in the case of A = 4. This indicates that there is indeed a critical
shape anisotropy 3 o Ac o 4 below which the LC–solid transition is
continuous.
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density of particles on the sphere, will tell us how such a system
would behave in the real world.

We see several theoretical and computational future direc-
tions of this work involving the examination of phase behaviors
of similar but modified systems. Constraining rods on other
manifolds such as ellipsoids or toroids could give rise to distinct
phases and defect structures due to the different properties of the
manifolds. Chiral particles in 3D bulk show twist deformation
and cholesteric phases,75,76 but such particles in 2D cannot show
twist, and hence cholesteric phases are absent. However, if they
are constrained in a spherical shell like in this work, they may be
able to twist and show cholesteric phases. Spherocylinders in
bulk show a nematic phase for packing fractions in the range of
B0.5–0.659,60 and more ordered smectic and crystal phases at
higher packing fractions. This system of a spherical monolayer of
spherocylinders also shows a liquid crystalline phase around the
same range of packing fractions. Therefore, it might be possible
for a constrained spherical shell of spherocylinders in the
ordered phase to exist in the bulk of unconstrained spherocylin-
ders. In such a system the bulk particles close to the sphere will
try to align with the local spherical director and particles far away
try to be parallel. The transition from one to another is formed by
defects and should be studied in detail. A system of active rods on
such constraining manifolds, in which the non-equilibrium
behavior of a mixture of active and passive rods on a spherical
geometry may give rise to novel structures and phase separations.
Our future plan involves the study of such systems.
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